
CS 589, Principles of Database Systems, Lecture 3-2

1
© 2002, 2004, 2006, 2008, 2011, 2014,

2016

David Maier & Lois Delcambre

Principles of Database Systems

David Maier 1Unit 4: Notes 2Unit 3: Notes 2

Transformation-Based Optimization

Basis for a series of optimizer frameworks:
Exodus, Volcano, Cascades, Columbia,
Colombia

Optimize an expression: look for all equivalent
plans

• requires optimizing sub-expressions
• “memoize” results for later reuse

Produce logically equivalent expressions via
rewrite

(then map them to physical plans and estimate their
costs)

Principles of Database Systems

David Maier 2Unit 4: Notes 2Unit 3: Notes 2

Based on Algebraic Equivalences

Example:
P(u  v)  P(u)  P(v)
Need to know such equivalences are

correct
Usually easiest to work from set-theoretic

definition
P(r) = {t | t  r and P(t)}
r  s = {t | t  r and t  s}

CS 589, Principles of Database Systems, Lecture 3-2

2
© 2002, 2004, 2006, 2008, 2011, 2014,

2016

David Maier & Lois Delcambre

Principles of Database Systems

David Maier 3Unit 4: Notes 2Unit 3: Notes 2

Expand Left Side

P(u  v) =
P({t1 | t1  u and t1  v}) =
{t2 | t2  {t1 | t1  u and t1  v} and

P(t2)} =
{t2 | (t2  u and t2  v) and P(t2)}

Principles of Database Systems

David Maier 4Unit 4: Notes 2Unit 3: Notes 2

Expand Right Side

P(u)  P(v) =

{t1 | t1  u and P(t1)}  {t2 | t2  v
and P(t2)} =

{t3 | t3  {t1 | t1  u and P(t1)} and
t3  {t2 | t2  v and P(t2)}} =

{t3 | (t3  u and P(t3)) and
(t3  v and P(t3))} =

CS 589, Principles of Database Systems, Lecture 3-2

3
© 2002, 2004, 2006, 2008, 2011, 2014,

2016

David Maier & Lois Delcambre

Principles of Database Systems

David Maier 5Unit 4: Notes 2Unit 3: Notes 2

Continuing ...

{t3 | (t3  u and P(t3)) and
(t3  v and P(t3))} = [simplify]

{t3 | t3  u and P(t3) and t3  v} =
[rearrange]

{t3 | (t3  u and t3  v) and P(t3)} =
[change variable]

{t2 | (t2  u and t2  v) and P(t2)}
et voila!

Principles of Database Systems

David Maier 6Unit 4: Notes 2Unit 3: Notes 2

Equivalences Can Have Side Conditions

An equivalence may hold only under
certain conditions

X(P(r))  P(X(r))
if mentioned(P)  X

mentioned(P) = set of attributes used
in P

ABC(A>B(r))  A>B(ABC(r)) OK
BC(A>B (r))  A>B(BC(r)) not OK

CS 589, Principles of Database Systems, Lecture 3-2

4
© 2002, 2004, 2006, 2008, 2011, 2014,

2016

David Maier & Lois Delcambre

Principles of Database Systems

David Maier 7Unit 4: Notes 2Unit 3: Notes 2

Rewriting Group-by

Initial translation usually puts group-
by above join
May be useful to move past

other operators

Move down:
makes one of the
join inputs smaller

Move up:
might make input to
group-by smaller

G[W,F]⋈
E1 E2

G[W,F]

⋈
E1

E2

Principles of Database Systems

David Maier 8Unit 4: Notes 2Unit 3: Notes 2

Select and Group-by

Consider the following
starting expression
Find max # of economy

seats for flights that
use a 737

f.L,ME

u.A=737

⋈[f.L=u.L]

uses:u

G[f.L,u.A;ME=max(f.E)]

flights:f

CS 589, Principles of Database Systems, Lecture 3-2

5
© 2002, 2004, 2006, 2008, 2011, 2014,

2016

David Maier & Lois Delcambre

Principles of Database Systems

David Maier 9Unit 4: Notes 2Unit 3: Notes 2

Do Selection Early

Is this okay?
Yes – the select applies

to the grouping
attributes, which are
constant for a group

Want groups to pass in an
all-or-nothing manner

f.L,ME

u.A=737⋈[f.L=u.L]

uses:u

G[f.L,u.A;ME=max(f.E)]

flights:f

Principles of Database Systems

David Maier 10Unit 4: Notes 2Unit 3: Notes 2

I’m Confused!

Paper* says you can move a
select if the attributes
it uses are functionally
determined by the
grouping attributes
Assume L  A on uses
Doesn’t seem right to me: u.A

isn’t visible above the group-
by

*Orthogonal Optimization of Subqueries and
Aggregation

u.A=737

G[u.L;ME=max(f.E)]

u.A=737

G[u.L;ME=max(f.E)]

CS 589, Principles of Database Systems, Lecture 3-2

6
© 2002, 2004, 2006, 2008, 2011, 2014,

2016

David Maier & Lois Delcambre

Principles of Database Systems

David Maier 11Unit 4: Notes 2Unit 3: Notes 2

Add an Attribute?

If we lift a selection
above a Group-by, add
the attribute to the
grouping condition?

• Won’t create more groups
if L  A.

• Will need to project away A
at some point.

u.A=737

G[u.L;ME=max(f.E)]

u.A=737

G[u.L,u.A;ME=max(f.E)]

Principles of Database Systems

David Maier 12Unit 4: Notes 2Unit 3: Notes 2

Group-by and Join

u.A=737

⋈[f.L=u.L]

uses:u

G[f.L;SE=sum(f.E)]

flights:f

u.A=737

⋈[f.L=u.L]

uses:u

G[f.L;SE=sum(f.E)]

flights:f

OK? f.L, SE

CS 589, Principles of Database Systems, Lecture 3-2

7
© 2002, 2004, 2006, 2008, 2011, 2014,

2016

David Maier & Lois Delcambre

Principles of Database Systems

David Maier 13Unit 4: Notes 2Unit 3: Notes 2

Side Conditions

Have r(R), s(S), P mentions X  R
Group-by through join okay if

1. X is in W: join columns of R included in
grouping columns

2. W contains a key of s
3. F only uses columns of r

⋈[P]

G[W;F]

r s

⋈[P]

G[W;F]

r

s



Principles of Database Systems

David Maier 14Unit 4: Notes 2Unit 3: Notes 2

Why?

1. Can’t lose the join columns
2. Need to have only one s tuple per

row of G[W;F]
Can relax for max and min

3. Only have r available
Transforming from right to left,

conditions 1 and 3 come for free
Given that the initial expression is well

formed

CS 589, Principles of Database Systems, Lecture 3-2

8
© 2002, 2004, 2006, 2008, 2011, 2014,

2016

David Maier & Lois Delcambre

Principles of Database Systems

David Maier 15Unit 4: Notes 2Unit 3: Notes 2

Splitting a Group-by

Can do partial grouping (local group-
by), then a join, then rest of grouping

select u.A, min(f.E)

from flight as f, uses as u,
capacity as c

where f.L = u.L and u.A = c.A
and c.MXE > 100

group-by u.A

Principles of Database Systems

David Maier 16Unit 4: Notes 2

c.MXE>100

⋈[f.L=u.L]

uses:u

G[u.A;min(f.E)]

flights:f ⋈[u.A=c.A]

capacity:c
c.MXE>100

⋈[f.L=u.L]

uses:u

G[u.A;min(E1)]

flights:f ⋈[u.A=c.A]

capacity:c

G[f.L;E1=min(f.E)]

CS 589, Principles of Database Systems, Lecture 3-2

9
© 2002, 2004, 2006, 2008, 2011, 2014,

2016

David Maier & Lois Delcambre

Principles of Database Systems

David Maier 17Unit 4: Notes 2Unit 3: Notes 2

Min of Mins = Min of all

u.A f.L f.E u.A f.L E1 u.A min(E1)

737 115 65

737 115 70 737 115 65

737 115 75 737 65

737 80 95 737 80 75

737 80 75

Principles of Database Systems

David Maier 18Unit 4: Notes 2Unit 3: Notes 2

Works for Sum, Too

u.A f.L f.E u.A f.L E1 u.A sum(E1)
737 115 65
737 115 70 737 115 210
737 115 75 737 380
737 80 95 737 80 170
737 80 75

E1 = sum(f.E)

What about count? Does count of counts = count of all?
What about average??

CS 589, Principles of Database Systems, Lecture 3-2

10
© 2002, 2004, 2006, 2008, 2011, 2014,

2016

David Maier & Lois Delcambre

Principles of Database Systems

David Maier 19Unit 4: Notes 2Unit 3: Notes 2

Removing Sub-queries

We introduced “apply” to translate
subqueries

select u.A

from uses as u

where 20 > [BA]

(select avg(f.B) [as BA]

from flights as f

where f.L = u.L)

Principles of Database Systems

David Maier 20Unit 4: Notes 2Unit 3: Notes 2

u.A

20>BA

A

uses:u G1[BA=avg(f.B)]

u.L=f.L

flights:f

CS 589, Principles of Database Systems, Lecture 3-2

11
© 2002, 2004, 2006, 2008, 2011, 2014,

2016

David Maier & Lois Delcambre

Principles of Database Systems

David Maier 21Unit 4: Notes 2Unit 3: Notes 2

Apply Options

Can have a direct (for-loop)
implementation of apply as a physical
operator

But it is also possible to remove apply
via rewriting

Strategy:
Use push-down transforms that move apply

towards bottom of expression tree
Until its right input no longer depends on the

left input
Then, convert apply to a join

Principles of Database Systems

David Maier 22Unit 4: Notes 2Unit 3: Notes 2

Example: Apply through Scalar Group-by

r A G1[F](e(x))  G[r.*,F](r ALOJ e(x))
ALOJ keeps every tuple t in r, even if

e(t) is empty
need it because G1 always produces a row
r ALOJ e(x) =
r LOJ (DE(r) A e(x))

CS 589, Principles of Database Systems, Lecture 3-2

12
© 2002, 2004, 2006, 2008, 2011, 2014,

2016

David Maier & Lois Delcambre

Principles of Database Systems

David Maier 23Unit 4: Notes 2Unit 3: Notes 2

u.A

20>BA

A

uses:u G1[BA=avg(f.B)]

u.L=f.L

flights:f

u.A

20>BA

ALOJ

uses:u

G [u.*;BA=avg(f.B)]

u.L=f.L

flights:f

Principles of Database Systems

David Maier 24Unit 4: Notes 2Unit 3: Notes 2

Example: Apply-to-Join Conversion

r ALOJ P(e)  r LOJ[P] e
if e does not depend on r

(okay for P to depend on r)

Can think of apply as a “catalyst”: used
in transforming algebra, but doesn’t
show up in the end product

CS 589, Principles of Database Systems, Lecture 3-2

13
© 2002, 2004, 2006, 2008, 2011, 2014,

2016

David Maier & Lois Delcambre

Principles of Database Systems

David Maier 25Unit 4: Notes 2Unit 3: Notes 2

u.A

20>BA

ALOJ

uses:u

G [u.*;BA=avg(f.B)]

u.L=f.L

flights:f

u.A

20>BA

uses:u

G [u.*;BA=avg(f.B)]

flights:f

LOJ[u.L=f.L]

Principles of Database Systems

David Maier 26Unit 4: Notes 2Unit 3: Notes 2

What Was I Lying About?

Not all query plans are created equal
They differ in physical properties

• sort order
• distribution
• compression

Some physical operators need inputs
with certain properties in order to
work correctly
Sort-merge join: needs inputs sorted on

attributes in an equality join condition

CS 589, Principles of Database Systems, Lecture 3-2

14
© 2002, 2004, 2006, 2008, 2011, 2014,

2016

David Maier & Lois Delcambre

Principles of Database Systems

David Maier 27Unit 4: Notes 2Unit 3: Notes 2

Physical Properties Can Affect Cost

Union, project might be faster on
compressed inputs
Fewer bytes to deal with

Principles of Database Systems

David Maier 28Unit 4: Notes 2Unit 3: Notes 2

Physical Properties and Optimization

Because of differing physical
properties, cheapest sub-plan might
not be best choice in overall plan.
consider join of r, s and u

filescan
r(AB)

hash-⋈
filescan
s(BC)

cost=550

A-sorted B-sorted

A-sorted

filescan
s(BC)

hash-⋈
filescan
r(AB)

cost=700

B-sorted A-sorted

B-sorted

CS 589, Principles of Database Systems, Lecture 3-2

15
© 2002, 2004, 2006, 2008, 2011, 2014,

2016

David Maier & Lois Delcambre

Principles of Database Systems

David Maier 29Unit 4: Notes 2Unit 3: Notes 2

Now Join with u(BD)

The more expensive sub-plan might
allow a cheaper join with u(BD)

filescan
r(AB)

hash-⋈
filescan
s(BC)

cost=550

A-sorted B-sorted

A-sorted

hash-⋈
filescan
u(BD)

B-sorted

A-sorted

cost=60cost=60

local cost=660
total cost=1270

Principles of Database Systems

David Maier 30Unit 4: Notes 2Unit 3: Notes 2

merge-⋈
filescan
u(BD)

B-sorted

B-sorted

cost=60cost=60

local cost=300
total cost=1060

filescan
s(BC)

hash-⋈
filescan
r(AB)

cost=700

B-sorted A-sorted

B-sorted

CS 589, Principles of Database Systems, Lecture 3-2

16
© 2002, 2004, 2006, 2008, 2011, 2014,

2016

David Maier & Lois Delcambre

Principles of Database Systems

David Maier 31Unit 4: Notes 2Unit 3: Notes 2

So, Do We Forget the Optimality Principle?

No – it still holds, relative to plans
with the same physical properties.

So – need to keep best plan for each
physical property
For example, dynamic programming approach

keeps the best plan for each collection of
physical properties

no order
guarantees A-sorted B-sorted550 550 700

hash-⋈
r s

hash-⋈
r s

hash-⋈
s r

Principles of Database Systems

David Maier 32Unit 4: Notes 2Unit 3: Notes 2

Do We Need Plans for Every Possible Property?

Probably not. For example, System R
only keeps best plans for each
interesting order (sort orders that
might be useful in rest of query)
• attributes in a join predicate
• grouping attributes in an aggregate
• order-by clause in original query

CS 589, Principles of Database Systems, Lecture 3-2

17
© 2002, 2004, 2006, 2008, 2011, 2014,

2016

David Maier & Lois Delcambre

Principles of Database Systems

David Maier 33Unit 4: Notes 2Unit 3: Notes 2

Can Enforce Properties

Even if a sub-plan
doesn’t produce a
particular physical
property, usually
possible to modify
output to do so.
Enforcer: physical operator

that enforces a physical
property, but is a “no-op”
at the logical level

Usually incurs some costfilescan
r(AB)

hash-⋈
filescan
s(BC)

A-sorted C-sorted

sort[B]

B-sorted

A-sorted

Principles of Database Systems

David Maier 34Unit 4: Notes 2Unit 3: Notes 2

Mapping Logical to Physical

Not a one-to-one correspondence
generally between logical and physical
operators
• Can have several physical ops that

correspond to a given logical op
join: nested-loops join, index-
nested-loops join, hash join,
merge join

• One physical op might implement several
logical ops

Have flags on hash join for regular
join, outer-join, semi-join

CS 589, Principles of Database Systems, Lecture 3-2

18
© 2002, 2004, 2006, 2008, 2011, 2014,

2016

David Maier & Lois Delcambre

Principles of Database Systems

David Maier 35Unit 4: Notes 2Unit 3: Notes 2

• One physical op might
translate a tree of
logical ops ⋈

 



hash-join(join-pred, pre-left,
pre-right, post-pred)

Principles of Database Systems

David Maier 36Unit 4: Notes 2Unit 3: Notes 2

Cost Estimation

Can view operators under alternative
interpretations
Normal view

• A>B: relation  relation
Alternative interpretations

Properties
• A>B: order  order, FDs  FDs

Stats
• A>B: column histogram  column histogram

Costs
• A>B: CPU secs  CPU secs

CS 589, Principles of Database Systems, Lecture 3-2

19
© 2002, 2004, 2006, 2008, 2011, 2014,

2016

David Maier & Lois Delcambre

Principles of Database Systems

David Maier 37Unit 4: Notes 2Unit 3: Notes 2

Also for Selection and Join Predicates

Interpret predicates as a selectivity:
% of tuples (or tuple pairs) expected
to satisfy the condition

System R
sel(A=5) = 10%
sel(A<5) = 50%

Principles of Database Systems

David Maier 38Unit 4: Notes 2

These Interpretations Make Use of Each Other

cost
op[P](E1,E2)

statistics
op[P](E1,E2)

properties
op[P](E1,E2)

sel(P)

stats
E1

stats
E2

cost
E1

cost
E2

props
E1

props
E2

CS 589, Principles of Database Systems, Lecture 3-2

20
© 2002, 2004, 2006, 2008, 2011, 2014,

2016

David Maier & Lois Delcambre

Principles of Database Systems

David Maier 39Unit 4: Notes 2

Histogram Example (on Attribute A)

r(AB)

30≤A≤65(r(AB))

0

10000

20000

30000

0-20 20-40 40-60 60-80 80-100

0

10000

20000

30000

0-20 20-40 40-60 60-80 80-100

Principles of Database Systems

David Maier 40Unit 4: Notes 2

s(AB)

30≤A≤65(r(AB))  s

0

10000

20000

30000

0-20 20-40 40-60 60-80 80-100

0

10000

20000

30000

0-20 20-40 40-60 60-80 80-100

CS 589, Principles of Database Systems, Lecture 3-2

21
© 2002, 2004, 2006, 2008, 2011, 2014,

2016

David Maier & Lois Delcambre

Principles of Database Systems

David Maier 41Unit 4: Notes 2

u(AC)

(30≤A≤65(r(AB))  s) ⋈ u

0

10000

20000

30000

0-20 20-40 40-60 60-80 80-100

0

10000

20000

30000

0-20 20-40 40-60 60-80 80-100

