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Transformation-Based Optimization

Basis for a series of optimizer frameworks: 
Exodus, Volcano, Cascades, Columbia, 
Colombia

Optimize an expression: look for all equivalent 
plans

• requires optimizing sub-expressions
• “memoize” results for later reuse

Produce logically equivalent expressions via 
rewrite

(then map them to physical plans and estimate their 
costs)
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Based on Algebraic Equivalences

Example:
P(u  v)  P(u)  P(v)
Need to know such equivalences are 

correct
Usually easiest to work from set-theoretic 

definition
P(r) = {t | t  r and P(t)}
r  s = {t | t  r and t  s}
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Expand Left Side

P(u  v) =
P({t1 | t1  u and t1  v}) =
{t2 | t2  {t1 | t1  u and t1  v} and 

P(t2)} =
{t2 | (t2  u and t2  v) and P(t2)}
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Expand Right Side

P(u)  P(v) =

{t1 | t1  u and P(t1)}  {t2 | t2  v 
and P(t2)} =

{t3 | t3  {t1 | t1  u and P(t1)} and 
t3  {t2 | t2  v and P(t2)}} =

{t3 | (t3  u and P(t3)) and 
(t3  v and P(t3))} = 
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Continuing ...

{t3 | (t3  u and P(t3)) and 
(t3  v and P(t3))} =      [simplify]

{t3 | t3  u and P(t3) and t3  v} =
[rearrange]

{t3 | (t3  u and t3  v) and P(t3)} = 
[change variable]

{t2 | (t2  u and t2  v) and P(t2)}
et voila!
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Equivalences Can Have Side Conditions

An equivalence may hold only under 
certain conditions

X(P(r))  P(X(r))
if mentioned(P)  X

mentioned(P) = set of attributes used 
in P

ABC(A>B(r))  A>B(ABC(r))  OK
BC(A>B (r))  A>B(BC(r))    not OK
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Rewriting Group-by

Initial translation usually puts group-
by above join
May be useful to move past

other operators

Move down:
makes one of the
join inputs smaller

Move up:
might make input to
group-by smaller

G[W,F]⋈
E1 E2

G[W,F]

⋈
E1

E2
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Select and Group-by

Consider the following 
starting expression
Find max # of economy 

seats for flights that 
use a 737

f.L,ME

u.A=737

⋈[f.L=u.L]

uses:u

G[f.L,u.A;ME=max(f.E)]

flights:f
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Do Selection Early

Is this okay?
Yes – the select applies 

to the grouping 
attributes, which are 
constant for a group

Want groups to pass in an 
all-or-nothing manner

f.L,ME

u.A=737⋈[f.L=u.L]

uses:u

G[f.L,u.A;ME=max(f.E)]

flights:f
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I’m Confused!

Paper* says you can move a 
select if the attributes 
it uses are functionally 
determined by the 
grouping attributes
Assume L  A on uses
Doesn’t seem right to me: u.A

isn’t visible above the group-
by

*Orthogonal Optimization of Subqueries and  
Aggregation

u.A=737

G[u.L;ME=max(f.E)]

u.A=737

G[u.L;ME=max(f.E)]
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Add an Attribute?

If we lift a selection 
above a Group-by, add 
the attribute to the 
grouping condition?

• Won’t create more groups 
if L  A.

• Will need to project away A 
at some point.

u.A=737

G[u.L;ME=max(f.E)]

u.A=737

G[u.L,u.A;ME=max(f.E)]
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Group-by and Join

u.A=737

⋈[f.L=u.L]

uses:u

G[f.L;SE=sum(f.E)]

flights:f

u.A=737

⋈[f.L=u.L]

uses:u

G[f.L;SE=sum(f.E)]

flights:f

OK? f.L, SE
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Side Conditions

Have r(R), s(S), P mentions X  R
Group-by through join okay if

1. X is in W: join columns of R included in 
grouping columns

2. W contains a key of s
3. F only uses columns of r

⋈[P]

G[W;F]

r s

⋈[P]

G[W;F]

r

s


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Why?

1. Can’t lose the join columns
2. Need to have only one s tuple per 

row of G[W;F]
Can relax for max and min

3. Only have r available
Transforming from right to left, 

conditions 1 and 3 come for free
Given that the initial expression is well 

formed
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Splitting a Group-by

Can do partial grouping (local group-
by), then a join, then rest of grouping

select u.A, min(f.E)

from flight as f, uses as u, 
capacity as c

where f.L = u.L and u.A = c.A 
and c.MXE > 100

group-by u.A
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c.MXE>100

⋈[f.L=u.L]

uses:u

G[u.A;min(f.E)]

flights:f ⋈[u.A=c.A]

capacity:c
c.MXE>100

⋈[f.L=u.L]

uses:u

G[u.A;min(E1)]

flights:f ⋈[u.A=c.A]

capacity:c

G[f.L;E1=min(f.E)]
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Min of Mins = Min of all

u.A  f.L f.E u.A  f.L  E1 u.A  min(E1)

737  115 65

737  115 70   737  115  65

737  115 75                  737  65

737   80 95   737   80  75

737   80 75
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Works for Sum, Too

u.A f.L f.E u.A f.L E1 u.A sum(E1)
737  115 65
737  115 70   737  115 210
737  115 75                  737 380
737   80 95   737   80 170
737   80 75

E1 = sum(f.E)

What about count?  Does count of counts = count of all?
What about average??
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Removing Sub-queries

We introduced “apply” to translate 
subqueries

select u.A

from uses as u

where 20 >    [BA]

(select avg(f.B)  [as BA]

from flights as f

where f.L = u.L)
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u.A

20>BA

A

uses:u G1[BA=avg(f.B)]

u.L=f.L

flights:f
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Apply Options

Can have a direct (for-loop) 
implementation of apply as a physical 
operator

But it is also possible to remove apply 
via rewriting

Strategy:
Use push-down transforms that move apply 

towards bottom of expression tree
Until its right input no longer depends on the 

left input
Then, convert apply to a join
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Example: Apply through Scalar Group-by

r A G1[F](e(x))  G[r.*,F](r ALOJ e(x))
ALOJ keeps every tuple t in r, even if 

e(t) is empty
need it because G1 always produces a row
r ALOJ e(x) =
r LOJ (DE(r) A e(x))
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u.A

20>BA

A

uses:u G1[BA=avg(f.B)]

u.L=f.L

flights:f

u.A

20>BA

ALOJ

uses:u

G [u.*;BA=avg(f.B)]

u.L=f.L

flights:f
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Example: Apply-to-Join Conversion

r ALOJ P(e)  r  LOJ[P]  e
if e does not depend on r

(okay for P to depend on r)

Can think of apply as a “catalyst”: used 
in transforming algebra, but doesn’t 
show up in the end product
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u.A

20>BA

ALOJ

uses:u

G [u.*;BA=avg(f.B)]

u.L=f.L

flights:f

u.A

20>BA

uses:u

G [u.*;BA=avg(f.B)]

flights:f

LOJ[u.L=f.L]
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What Was I Lying About?

Not all query plans are created equal
They differ in physical properties

• sort order
• distribution
• compression

Some physical operators need inputs 
with certain properties in order to 
work correctly
Sort-merge join: needs inputs sorted on 

attributes in an equality join condition
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Physical Properties Can Affect Cost

Union, project might be faster on 
compressed inputs
Fewer bytes to deal with
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Physical Properties and Optimization

Because of differing physical 
properties, cheapest sub-plan might 
not be best choice in overall plan.
consider join of r, s and u

filescan
r(AB)

hash-⋈
filescan
s(BC)

cost=550

A-sorted B-sorted

A-sorted

filescan
s(BC)

hash-⋈
filescan
r(AB)

cost=700

B-sorted A-sorted

B-sorted
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Now Join with u(BD)

The more expensive sub-plan might 
allow a cheaper join with u(BD)

filescan
r(AB)

hash-⋈
filescan
s(BC)

cost=550

A-sorted B-sorted

A-sorted

hash-⋈
filescan
u(BD)

B-sorted

A-sorted

cost=60cost=60

local cost=660
total cost=1270
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merge-⋈
filescan
u(BD)

B-sorted

B-sorted

cost=60cost=60

local cost=300
total cost=1060

filescan
s(BC)

hash-⋈
filescan
r(AB)

cost=700

B-sorted A-sorted

B-sorted
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So, Do We Forget the Optimality Principle?

No – it still holds, relative to plans 
with the same physical properties.

So – need to keep best plan for each 
physical property
For example, dynamic programming approach 

keeps the best plan for each collection of 
physical properties

no order
guarantees A-sorted B-sorted550 550 700

hash-⋈
r s

hash-⋈
r s

hash-⋈
s r
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Do We Need Plans for Every Possible Property?

Probably not. For example, System R 
only keeps best plans for each 
interesting order (sort orders that 
might be useful in rest of query)
• attributes in a join predicate
• grouping attributes in an aggregate
• order-by clause in original query
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Can Enforce Properties

Even if a sub-plan 
doesn’t produce a 
particular physical 
property, usually 
possible to modify 
output to do so.
Enforcer: physical operator 

that enforces a physical 
property, but is a “no-op” 
at the logical level

Usually incurs some costfilescan
r(AB)

hash-⋈
filescan
s(BC)

A-sorted C-sorted

sort[B]

B-sorted

A-sorted
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Mapping Logical to Physical

Not a one-to-one correspondence 
generally between logical and physical 
operators
• Can have several physical ops that 

correspond to a given logical op
join: nested-loops join, index-
nested-loops join, hash join, 
merge join

• One physical op might implement several 
logical ops

Have flags on hash join for regular 
join, outer-join, semi-join
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• One physical op might 
translate a tree of 
logical ops ⋈

 



hash-join(join-pred, pre-left,
pre-right, post-pred)
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Cost Estimation

Can view operators under alternative 
interpretations
Normal view

• A>B: relation  relation
Alternative interpretations

Properties
• A>B: order  order, FDs  FDs

Stats
• A>B: column histogram  column histogram

Costs
• A>B: CPU secs  CPU secs
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Also for Selection and Join Predicates

Interpret predicates as a selectivity: 
% of tuples (or tuple pairs) expected 
to satisfy the condition

System R
sel(A=5) = 10%
sel(A<5) = 50%
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These Interpretations Make Use of Each Other

cost
op[P](E1,E2)

statistics
op[P](E1,E2)

properties
op[P](E1,E2)

sel(P)

stats
E1

stats
E2

cost
E1

cost
E2

props
E1

props
E2
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Histogram Example (on Attribute A)

r(AB)

30≤A≤65(r(AB))
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s(AB)

30≤A≤65(r(AB))  s
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u(AC)

(30≤A≤65(r(AB))  s) ⋈ u
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