
CS 589 Spring 2016, Lecture 4-1

Copyright 2016, David Maier 1

CS589 Principles of DB Systems
Spring 2016
Unit 4: Recursive Query Processing

David Maier

CS 589 Princ of DB Systems, Spring 2016, ©Lois Delcambre, David Maier 2

Goals for this Unit

 Study recursive query processing using
Datalog
There are other data languages with recursion: QBE,

G-Whiz, SQL:1999, LDL

 Models of a Datalog program
 Evaluation methods
 Negation and recursion
 (If time) Datalog and Streams

CS 589 Spring 2016, Lecture 4-1

Copyright 2016, David Maier 2

CS 589 Princ of DB Systems, Spring 2016, ©Lois Delcambre, David Maier 3

Example Recursive Program
Three predicates, that talk about a distributed algebra

expression:
 Op1(Id, In, Loc): unary operation Id with input In is

performed at location Loc
 Op2(Id, In1, In2, Loc): binary operation Id with

inputs In1 and In2 is performed at location Loc
 Local(Id, Loc): expression with root Id can be

evaluated completely at location Loc

j2

j1

s1

r

u1

s q

s2

u

Node 2

Node 1

CS 589 Princ of DB Systems, Spring 2016, ©Lois Delcambre, David Maier 4

Clauses
Local(r, node1).
Local(s, node1).
Local(q, node1).
Local(u, node2).
Local(Id, Loc) :- Op1(Id, In, Loc), Local(In, Loc).
Local(Id, Loc) :- Op2(Id, In1, In2, Loc),

Local(In1, Loc), Local(In2, Loc).

Op1(s1, r, node1).
Op1(s2, u, node2).

Op2(j1, s1, u1, node1).
Op2(u1, s, q, node1).
Op2(j2, j1, s2, node1).

CS 589 Spring 2016, Lecture 4-1

Copyright 2016, David Maier 3

CS 589 Princ of DB Systems, Spring 2016, ©Lois Delcambre, David Maier 5

Facts versus Rules

It will be useful if we can separate predicates
into
 Extensional: defined by facts
 Intensional: defined by rules

Notice that in our program the Local
predicate has both facts and rules.
How could we modify the program to get this

separation?

CS 589 Princ of DB Systems, Spring 2016, ©Lois Delcambre, David Maier 6

Conventions

 Assume predicates are extensional or
intensional

 If I write just the intensional rules, we will
assume that predicates without rules are
extensional predicates.
Can think of them as the database
Local(Id, Loc) :- Local0(Id, Loc)
Local(Id, Loc) :- Op1(Id, In, Loc), Local(In, Loc).
Local(Id, Loc) :- Op2(Id, In1, In2, Loc),

Local(In1, Loc), Local(In2, Loc).

CS 589 Spring 2016, Lecture 4-1

Copyright 2016, David Maier 4

CS 589 Princ of DB Systems, Spring 2016, ©Lois Delcambre, David Maier 7

Computed Predicates

Bancilhon and Ramakrishnan allow for
computed predicates
Sum(X, Y, Z): true if X + Y = Z as integers
Can think of Sum as an infinite extensional

predicate:
Sum(1,1,2), Sum(1,2,3), Sum(1,3,4), …

Sum(2,1,3), Sum(2,2,4), Sum(2,3,5), …

Sum(3,1,4), …

…

CS 589 Princ of DB Systems, Spring 2016, ©Lois Delcambre, David Maier 8

Safety and Computed Predicates

Uses of computed predicates have required
binding patterns so we get finite answers
Sum(1,7,8)
Sum(2,7,10)
Sum(2,7,Z)
Sum(X,7,9)
Sum(2,Y,9)
Sum(X,7,Z)
Sum(X,Y,Z)

Note that other literals in a rule body can provide
these bindings

Each computed predicate has a natural interpretation

CS 589 Spring 2016, Lecture 4-1

Copyright 2016, David Maier 5

CS 589 Princ of DB Systems, Spring 2016, ©Lois Delcambre, David Maier 9

Example with Computed Predicate

Local(Id, Loc, Num): expression with root
Id has Num elements and can be evaluated
completely at location Loc
Local(Id, Loc, 1) :- Local0(Id, Loc).

Local(Id, Loc, K) :- Op1(Id, In, Loc),
Local(In, Loc, M), Sum(M, 1, K).

Local(Id, Loc, K) :- Op2(Id, In1, In2, Loc),
Local(In1, Loc, M), Local(In2, Loc, N),
Sum(M, N, J), Sum(J, 1, K).

:- Local(j1, L, C).

CS 589 Princ of DB Systems, Spring 2016, ©Lois Delcambre, David Maier 10

Ground Instance of a Clause

Given a Datalog clause C, we get a ground
instance of C by replacing all variables with
constants from the program.
Clause:
Local(Id, Loc, K) :- Op1(Id, In, Loc),
Local(In, Loc, M), Sum(M, 1, K).

Ground instances:
Local(s2, node2, 2) :- Op1(s2, u, node2),
Local(u, node2, 1), Sum(1, 1, 2).

Local(s2, node2, 2) :- Op1(s2, r, node2),
Local(r, node2, 1), Sum(1, 1, 2).

CS 589 Spring 2016, Lecture 4-1

Copyright 2016, David Maier 6

CS 589 Princ of DB Systems, Spring 2016, ©Lois Delcambre, David Maier 11

Model of a Datalog Program

A database (aka interpretation) M for a
program P is a set of facts over the
predicates in P.

A database M is a model for program P if
1. It assigns each computable predicate its natural

interpretation
2. For any ground instance of a clause

H :- L1, L2, …, Ln.
if {L1, L2, …, Ln}  M then H  M.

Note that all facts of P must be in M.

CS 589 Princ of DB Systems, Spring 2016, ©Lois Delcambre, David Maier 12

A Program Can Have Many Models

Local(Id, Loc, 1) :- Local0(Id, Loc)
Local(Id, Loc, K) :- Op1(Id, In, Loc),

Local(In, Loc, M), Sum(M, 1, K).
Local(Id, Loc, K) :- Op2(Id, In1, In2, Loc),

Local(In1, Loc, M), Local(In2, Loc, N),
Sum(M, N, J), Sum(J, 1, K).

Local0(r, node1).
Local0(s, node1).
Local0(q, node1).
Local0(u, node2).
Op1(s1, r, node1).
Op1(s2, u, node2).
Op2(j1, s1, u1, node1).
Op2(u1, s, q, node1).
Op2(j2, j1, s2, node1).

Local(r, node1, 1).
Local(r, node2, 1).
Local(s, node1, 1).
Local(q, node1, 1).
Local(u, node2, 1).
Local(s1, node1, 2).
Local(u1, node1, 3).
Local(j1, node1, 6).
Local(s2, node2, 2).
Local0(r, node1).
Local0(r, node2).
Local0(s, node1).
Local0(q, node1).
Local0(u, node2).
Op1(s1, r, node1).
Op1(s2, u, node2).
Op2(j1, s1, u1, node1).
Op2(u1, s, q, node1).
Op2(j2, j1, s2, node1).

Program Model 1

CS 589 Spring 2016, Lecture 4-1

Copyright 2016, David Maier 7

CS 589 Princ of DB Systems, Spring 2016, ©Lois Delcambre, David Maier 13

A Second Model

Local(Id, Loc, 1) :- Local0(Id, Loc)
Local(Id, Loc, K) :- Op1(Id, In, Loc),

Local(In, Loc, M), Sum(M, 1, K).
Local(Id, Loc, K) :- Op2(Id, In1, In2, Loc),

Local(In1, Loc, M), Local(In2, Loc, N),
Sum(M, N, J), Sum(J, 1, K).

Local0(r, node1).
Local0(s, node1).
Local0(q, node1).
Local0(u, node2).
Op1(s1, r, node1).
Op1(s2, u, node2).
Op2(j1, s1, u1, node1).
Op2(u1, s, q, node1).
Op2(j2, j1, s2, node1).

Local(r, node1, 1).
Local(s, node1, 1).
Local(q, node1, 1).
Local(u, node2, 1).
Local(s1, node1, 2).
Local(u1, node1, 3).
Local(j1, node1, 6).
Local(s2, node2, 2).
Local(j2, node2, 9).
Local0(r, node1).
Local0(s, node1).
Local0(q, node1).
Local0(u, node2).
Op1(s1, r, node1).
Op1(s2, u, node2).
Op2(j1, s1, u1, node1).
Op2(u1, s, q, node1).
Op2(j2, j1, s2, node1).

Program Model 2

CS 589 Princ of DB Systems, Spring 2016, ©Lois Delcambre, David Maier 14

Closure Under Intersection

Lemma: If M1 and M2 are both models for
Datalog program P, then so is M1  M2.
Proof: Let M = M1  M2. Both M1 and M2 give any

computed predicate its natural interpretation, so
part 1. of model definition is covered.

How could M fail to be a model of P?
Must have a ground instance of a clause:
H :- L1, L2, …, Ln.
Where {L1, L2, …, Ln}  M but H  M.
So H must be missing from M1 or M2 (or both).

CS 589 Spring 2016, Lecture 4-1

Copyright 2016, David Maier 8

CS 589 Princ of DB Systems, Spring 2016, ©Lois Delcambre, David Maier 15

Example Intersection
Local(r, node1, 1).
Local(r, node2, 1).
Local(s, node1, 1).
Local(q, node1, 1).
Local(u, node2, 1).
Local(s1, node1, 2).
Local(u1, node1, 3).
Local(j1, node1, 6).
Local(s2, node2, 2).
Local0(r, node1).
Local0(r, node2).
Local0(s, node1).
Local0(q, node1).
Local0(u, node2).
Op1(s1, r, node1).
Op1(s2, u, node2).
Op2(j1, s1, u1, node1).
Op2(u1, s, q, node1).
Op2(j2, j1, s2, node1).

Local(r, node1, 1).
Local(s, node1, 1).
Local(q, node1, 1).
Local(u, node2, 1).
Local(s1, node1, 2).
Local(u1, node1, 3).
Local(j1, node1, 6).
Local(s2, node2, 2).
Local(j2, node2, 9).
Local0(r, node1).
Local0(s, node1).
Local0(q, node1).
Local0(u, node2).
Op1(s1, r, node1).
Op1(s2, u, node2).
Op2(j1, s1, u1, node1).
Op2(u1, s, q, node1).
Op2(j2, j1, s2, node1).

M2 M1

CS 589 Princ of DB Systems, Spring 2016, ©Lois Delcambre, David Maier 16

Minimal Model

A model M for program P is minimal if no
proper subset of M is also a model.

Every Datalog program P (without negation)
has a unique minimal model.
Consider two different minimal models N1 and N2

for P. Then N = N1  N2 is also a model, and is a
proper subset of at least one of them.

Minimum model of P: Unique minimal model.

CS 589 Spring 2016, Lecture 4-1

Copyright 2016, David Maier 9

CS 589 Princ of DB Systems, Spring 2016, ©Lois Delcambre, David Maier 17

Minimum Model and Queries

When we answer queries against Datalog
program P, we want to answer them against
the minimal model. (Closed-World
Assumption)
:- Local(j1, L, C).

We want all Local facts in the minimum model
where the first component is j1.

CS 589 Princ of DB Systems, Spring 2016, ©Lois Delcambre, David Maier 18

Evaluation Methods

 Oblivious: Compute the minimum model, then
look up query answers.

 Directed: Use information from the query to
reduce the portion of the minimum model
computed to answer the query.

CS 589 Spring 2016, Lecture 4-1

Copyright 2016, David Maier 10

CS 589 Princ of DB Systems, Spring 2016, ©Lois Delcambre, David Maier 19

Naïve Evaluation of P

A “bottom-up” or “right-to-left” method.
Have a current set of facts f (a partial model).

Use clauses in P in a right-to-left manner to
derive additional facts that must also be in a
minimum model for P.

CS 589 Princ of DB Systems, Spring 2016, ©Lois Delcambre, David Maier 20

Example Right-to-Left Derivation

Consider:
Local(Id, Loc, K) :- Op1(Id, In, Loc),

Local(In, Loc, M), Sum(M, 1, K).

Suppose we have in f:
Op1(a6, p5, node2). Local(p5, node2, 2).

Op1(s4, u3, node1). Local(u2, node2, 3).

Op1(a7, r, node1). Local(r, node1, 1).

Op1(s9, a7, node1). …

…

Can derive:

CS 589 Spring 2016, Lecture 4-1

Copyright 2016, David Maier 11

CS 589 Princ of DB Systems, Spring 2016, ©Lois Delcambre, David Maier 21

Immediate Consequence Operator

If P is a Datalog program, the immediate
consequence operator IP(f) computes all facts
derivable from the set of facts f by a single
application of the clauses in P.

Note: If f is a subset of the minimum model of
P, then so is IP(f), IP(IP(f)), IP(IP(IP(f))), …

So start the process with f = , because we
know we have a subset of the minimum
model.
Inflationary semantics of program P: Start with

empty set of facts, apply IP until no change.

CS 589 Princ of DB Systems, Spring 2016, ©Lois Delcambre, David Maier 22

Naïve Evaluation

Naïve(P, q)
fold = 
f = IP(fold)
while f  fold do

fold = f
f = IP(f)

return match(q, f)

Naïve always halts on programs that don’t use
computed predicates, with f as the minimum
model.

