
© DZone, Inc. | DZone.com

Apache Spark
By Ashwini Kuntamukkala

» How to Install Apache Spark

» How Apache Spark works

» Resilient Distributed Dataset

» RDD Persistence

» Shared Variables

» And much more...C
O

N
T
E
N
T
S

Ja
v

a
 E

n
t

E
r

p
r

is
E

 E
d

it
io

n
 7

Why apachE spark?

We live in an era of “Big Data” where data of various types are being
generated at an unprecedented pace, and this pace seems to be only
accelerating astronomically. This data can be categorized broadly into
transactional data, social media content (such as text, images, audio,
and video), and sensor feeds from instrumented devices.

But one may ask why it is important to pay any attention to it. The
reason being: “data is valuable because of the decisions it enables”.

Up until a few years ago, there were only a few companies with
the technology and money to invest in storing and mining huge
amounts of data to gain invaluable insights. However, everything
changed when Yahoo open sourced Apache Hadoop in 2009. It was
a disruptive change that lowered the bar on Big Data processing
considerably. As a result, many industries, such as Health care,
Infrastructure, Finance, Insurance, Telematics, Consumer, Retail,
Marketing, E-commerce, Media, Manufacturing, and Entertainment,
have since tremendously benefited from practical applications built
on Hadoop.

Apache Hadoop provides two major capabilities:

1. hdFs, a fault tolerant way to store vast amounts of data
inexpensively using horizontally scalable commodity hardware.

2. Map-reduce computing paradigm, which provide programming
constructs to mine data and derive insights.

Figure 1 illustrates how data are processed through a series of Map-
Reduce steps where output of a Map-Reduce step is input to the next
in a typical Hadoop job.

The intermediate results are stored on the disk, which means
that most Map-Reduce jobs are I/O bound, as opposed to being
computationally bound. This is not an issue for use cases such as
ETLs, data consolidation, and cleansing, where processing times are
not much of a concern, but there are other types of Big Data use
cases where processing time matters. These use cases are listed
below:

1. streaming data processing to perform near real-time
analysis. For example, clickstream data analysis to make video
recommendations, which enhances user engagement. We have
to trade-off between accuracy and processing time.

2. interactive querying of large datasets so a data scientist may
run ad-hoc queries on a data set.

Ge
t M

or
e

Re
fc

ar
dz

! V
is

it
 R

e
f

c
a

r
d

z
.c

o
m

BroUGht to yoU By:

204
a

p
a

c
h

E
 s

p
a

r
k

Figure 2 shows how Hadoop has grown into an ecosystem of several
technologies providing specialized tools catering to these use cases.

While we love the richness of choices among tools in the Hadoop
ecosystem, there are several challenges that make the ecosystem
cumbersome to use:

1. A different technology stack is required to solve each type
of use case, because some solutions are not reusable across
different use cases.

2. Proficiency in several technologies is required for productivity

3. Some technologies face version compatibility issues

4. It is unsuitable for faster data-sharing needs across parallel jobs.

FIguRe 1

FIguRe 2

FIguRe 3

http://www.dzone.com?refcardz
http://www.refcardz.com
http://mapr.com
http://mapr.com/sandbox

© DZone, Inc. | DZone.com

2 APACHE SPARK

These are the challenges that Apache Spark solves! Spark is a lightning
fast in-memory cluster-computing platform, which has unified approach
to solve Batch, Streaming, and Interactive use cases as shown in Figure 3

aBoUt apachE spark

Apache Spark is an open source, Hadoop-compatible, fast and
expressive cluster-computing platform. It was created at AMPLabs in
UC Berkeley as part of Berkeley Data Analytics Stack (BDAS). It has
emerged as a top level Apache project. Figure 4 shows the various
components of the current Apache Spark stack.

It provides five major benefits:

1. Lightning speed of computation because data are loaded in
distributed memory (RAM) over a cluster of machines. Data can
be quickly transformed iteratively and cached on demand for
subsequent usage. It has been noted that Apache Spark processes
data 100x faster than Hadoop Map Reduce when all the data fits
in memory and 10x faster when some data spills over onto disk
because of insufficient memory.

2. highly accessible through standard APIs built in Java, Scala,
Python, or SQL (for interactive queries), and a rich set of machine
learning libraries available out of the box.

3. compatibility with the existing Hadoop v1 (SIMR) and 2.x (YARN)
ecosystems so companies can leverage their existing infrastructure.

4. convenient download and installation processes. Convenient shell
(REPL: Read-Eval-Print-Loop) to interactively learn the APIs.

5. Enhanced productivity due to high level constructs that keep the
focus on content of computation.

Also, Spark is implemented in Scala, which means that the code is very
succinct.

hoW to instaLL apachE spark

The following table lists a few important links and prerequisites:

current Release 1.0.1 @ http://d3kbcqa49mib13.cloudfront.
net/spark-1.0.1.tgz

Downloads Page https://spark.apache.org/downloads.html

JDK Version (Required) 1.6 or higher

Scala Version (Required) 2.10 or higher

Python (optional) [2.6, 3.0)

Simple Build Tool (Required) http://www.scala-sbt.org

Development Version git clone git://github.com/apache/
spark.git

Building Instructions https://spark.apache.org/docs/latest/
building-with-maven.html

maven 3.0 or higher

As shown in Figure 6, Apache Spark can be configured to run
standalone, or on Hadoop V1 SIMR, or on Hadoop 2 YARN/Mesos.
Apache Spark requires moderate skills in Java, Scala or Python. Here
we will see how to install and run Apache Spark in the standalone
configuration.

1. Install JDK 1.6+, Scala 2.10+, Python [2.6,3) and sbt

2. Download Apache Spark 1.0.1 Release

3. Untar & Unzip spark-1.0.1.tgz in a specified directory

akuntamukkala@localhost~/Downloads$ pwd
/Users/akuntamukkala/Downloads
akuntamukkala@localhost~/Downloads$ tar -zxvf spark-
1.0.1.tgz -C /Users/akuntamukkala/spark

4. Go to the directory from #4 and run sbt to build Apache Spark

akuntamukkala@localhost~/spark/spark-1.0.1$ pwd
/Users/akuntamukkala/spark/spark-1.0.1
akuntamukkala@localhost~/spark/spark-1.0.1$ sbt/sbt
assembly

5. Launch Apache Spark standalone REPL

For Scala, use:
/Users/akuntamukkala/spark/spark-1.0.1/bin/spark-shell

For Python, use: /Users/akuntamukkala/spark/spark-1.0.1/bin/
pyspark

6. Go to SparkUI @ http://localhost:4040

hoW apachE spark Works

Spark engine provides a way to process data in distributed memory over
a cluster of machines. Figure 7 shows a logical diagram of how a typical
Spark job processes information.

FIguRe 4

FIguRe 5

FIguRe 6

FIguRe 7

http://www.dzone.com?refcardz
http://d3kbcqa49mib13.cloudfront.net/spark-1.0.1.tgz
http://d3kbcqa49mib13.cloudfront.net/spark-1.0.1.tgz
https://spark.apache.org/downloads.html
http://www.scala-sbt.org
https://spark.apache.org/docs/latest/building-with-maven.html
https://spark.apache.org/docs/latest/building-with-maven.html
http://localhost:4040
http://mapr.com

© DZone, Inc. | DZone.com

3 APACHE SPARK

Figure 8 shows how Apache Spark executes a job on a cluster

The Master controls how data is partitioned, and it takes advantage of
data locality while keeping track of all the distributed data computation
on the Slave machines. If a certain Slave machine is unavailable, the data
on that machine is reconstructed on other available machine(s). “Master”
is currently a single point of failure, but it will be fixed in upcoming
releases.

rEsiLiEnt distriBUtEd datasEt

The core concept in apache spark is the resilient distributed dataset
(RDD). It is an immutable distributed collection of data, which is
partitioned across machines in a cluster. It facilitates two types of
operations: transformation and action. A transformation is an operation
such as filter(), map(), or union() on an RDD that yields another RDD.
An action is an operation such as count(), first(), take(n), or collect()
that triggers a computation, returns a value back to the Master, or writes
to a stable storage system. Transformations are lazily evaluated, in that
they don’t run until an action warrants it. Spark Master/Driver remembers
the transformations applied to an RDD, so if a partition is lost (say a slave
machine goes down), that partition can easily be reconstructed on some
other machine in the cluster. That is why is it called “Resilient.”

Figure 9 shows how transformations are lazily evaluated:

Let’s understand this conceptually by using the following example:
Say we want to find the 5 most commonly used words in a text file. A
possible solution is depicted in Figure 10.

The following code snippets show how we can do this in Scala using
Spark Scala REPL shell:

scala> val hamlet =
sc.textFile(“/Users/akuntamukkala/temp/gutenburg.txt”)
hamlet: org.apache.spark.rdd.RDD[String] = MappedRDD[1] at
textFile at <console>:12

In the above command, we read the file and create an RDD of strings.
Each entry represents a line in the file.

scala> val topWordCount = hamlet.flatMap(str=>str.split(“ “)).
filter(!_.isEmpty).map(word=>(word,1)).reduceByKey(_+_).map{case
(word, count) => (count, word)}.sortByKey(false)
topWordCount: org.apache.spark.rdd.RDD[(Int, String)] =
MapPartitionsRDD[10] at sortByKey at <console>:14

1. The above commands shows how simple it is to chain the
transformations and actions using succinct Scala API. We split each
line into words using hamlet.flatMap(str=>str.split(“ “)).

2. There may be words separated by more than one whitespace,
which leads to words that are empty strings. So we need to filter
those empty words using filter(!_.isEmpty).

3. We map each word into a key value pair: map(word=>(word,1)).

4. In order to aggregate the count, we need to invoke a reduce step
using reduceByKey(_+_). The _+_ is a shorthand function to add
values per key.

5. We have words and their respective counts, but we need to sort by
counts. In Apache Spark, we can only sort by key, not values. So, we
need to reverse the (word, count) to (count, word) using map{case
(word, count) => (count, word)}.

6. We want the top 5 most commonly used words, so we need to sort
the counts in a descending order using sortByKey(false).

scala> topWordCount.take(5).foreach(x=>println(x))
(1044,the)
(730,and)
(679,of)
(648,to)
(511,I)

The above command contains.take(5) (an action operation, which
triggers computation) and prints the top ten most commonly used
words in the input text file: /Users/akuntamukkala/temp/gutenburg.txt.

The same could be done in the Python shell also.

RDD lineage can be tracked using a useful operation: toDebugString
scala> topWordCount.toDebugString
res8: String = MapPartitionsRDD[19] at sortByKey at <console>:14
ShuffledRDD[18] at sortByKey at <console>:14
 MappedRDD[17] at map at <console>:14
 MapPartitionsRDD[16] at reduceByKey at <console>:14
 ShuffledRDD[15] at reduceByKey at <console>:14
 MapPartitionsRDD[14] at reduceByKey at <console>:14
 MappedRDD[13] at map at <console>:14
 FilteredRDD[12] at filter at <console>:14
 FlatMappedRDD[11] at flatMap at <console>:14
 MappedRDD[1] at textFile at <console>:12
 HadoopRDD[0] at textFile at <console>:12

commonly Used transformations:

TRAnSFoRmATIon & PuRPoSe exAmPle & ReSulT

filter(func)
purpose: new RDD by selecting those
data elements on which func returns
true

scala> val rdd =
sc.parallelize(list(“ABc”,”BcD”,”DeF”))
scala> val filtered = rdd.filter(_.contains(“C”))
scala> filtered.collect()
result:
Array[String] = Array(ABc, BcD)

map(func)
purpose: return new RDD by applying
func on each data element

scala> val rdd=sc.parallelize(list(1,2,3,4,5))
scala> val times2 = rdd.map(_*2)
scala> times2.collect()
result:
Array[Int] = Array(2, 4, 6, 8, 10)

FIguRe 9

FIguRe 10

FIguRe 8

http://www.dzone.com?refcardz
http://mapr.com

© DZone, Inc. | DZone.com

4 APACHE SPARK

flatMap(func)
purpose: Similar to map but func
returns a Seq instead of a value. For
example, mapping a sentence into a
Seq of words

scala> val rdd=sc.parallelize(list(“Spark is
awesome”,”It is fun”))
scala> val fm=rdd.flatMap(str=>str.split(“ “))
scala> fm.collect()
result:
Array[String] = Array(Spark, is, awesome,
It, is, fun)

reduceByKey(func,[numTasks])
purpose: : To aggregate values of a
key using a function. “numTasks” is an
optional parameter to specify number
of reduce tasks

scala> val word1=fm.map(word=>(word,1))
scala> val wrdCnt=word1.reduceByKey(_+_)
scala> wrdcnt.collect()
result:
Array[(String, Int)] = Array((is,2), (It,1),
(awesome,1), (Spark,1), (fun,1))

groupByKey([numTasks])
purpose: To convert (K,V) to
(K,Iterable<V>)

scala> val cntWrd = wrdcnt.map{case (word,
count) => (count, word)}
scala> cntWrd.groupByKey().collect()
result:
Array[(Int, Iterable[String])] =
Array((1,ArrayBuffer(It, awesome, Spark,
fun)), (2,ArrayBuffer(is)))

distinct([numTasks])
purpose: eliminate duplicates from
RDD

scala> fm.distinct().collect()
result:
Array[String] = Array(is, It, awesome, Spark,
fun)

commonly Used set operations

TRAnSFoRmATIon &
PuRPoSe exAmPle & ReSulT

union()
purpose: new RDD containing
all elements from source RDD
and argument.

Scala> val rdd1=sc.parallelize(list(‘A’,’B’))
scala> val rdd2=sc.parallelize(list(‘B’,’c’))
scala> rdd1.union(rdd2).collect()
result:
Array[char] = Array(A, B, B, c)

intersection()
purpose: new RDD containing
all elements from source RDD
and argument.

Scala> rdd1.intersection(rdd2).collect()
result:
Array[char] = Array(B)

cartesian()
purpose: new RDD cross
product of all elements from
source RDD and argument.

Scala> rdd1.cartesian(rdd2).collect()
result:
Array[(char, char)] = Array((A,B), (A,c), (B,B), (B,c))

subtract()
purpose: new RDD created
by removing data elements in
source RDD in common with
argument

scala> rdd1.subtract(rdd2).collect()
result:
Array[char] = Array(A)

join(RDD,[numTasks])
purpose: When invoked on
(K,V) and (K,W), this operation
creates a new RDD of (K,
(V,W))

scala> val personFruit = sc.parallelize(Seq((“Andy”,
“Apple”), (“Bob”, “Banana”), (“charlie”, “cherry”),
(“Andy”,”Apricot”)))
scala> val personSe = sc.parallelize(Seq((“Andy”,
“google”), (“Bob”, “Bing”), (“charlie”, “Yahoo”),
(“Bob”,”AltaVista”)))
scala> personFruit.join(personSe).collect()
result:
Array[(String, (String, String))] =
Array((Andy,(Apple,google)), (Andy,(Apricot,google)),
(charlie,(cherry,Yahoo)), (Bob,(Banana,Bing)),
(Bob,(Banana,AltaVista)))

cogroup(RDD,[numTasks])
purpose: To convert (K,V) to
(K,Iterable<V>)

scala> personFruit.cogroup(personSe).collect()
result:
Array[(String, (Iterable[String], Iterable[String]))]
= Array((Andy,(ArrayBuffer(Apple,
Apricot),ArrayBuffer(google))),
(Charlie,(ArrayBuffer(Cherry),ArrayBuffer(Yahoo))),
(Bob,(ArrayBuffer(Banana),ArrayBuffer(Bing,
AltaVista))))

For a more detailed list of transformations, please refer to:
http://spark.apache.org/docs/latest/programming-guide.
html#transformations

commonly Used actions

AcTIon & PuRPoSe exAmPle & ReSulT

count()
purpose: get the number of
data elements in the RDD

scala> val rdd = sc.parallelize(list(‘A’,’B’,’c’))
scala> rdd.count()
result:
long = 3

collect()
purpose: get all the data
elements in an RDD as an
array

scala> val rdd = sc.parallelize(list(‘A’,’B’,’c’))
scala> rdd.collect()
result:
Array[char] = Array(A, B, c)

reduce(func)
purpose: Aggregate the data
elements in an RDD using
this function which takes two
arguments and returns one

scala> val rdd = sc.parallelize(list(1,2,3,4))
scala> rdd.reduce(_+_)
result:
Int = 10

take (n)
purpose: : fetch first n
data elements in an RDD.
computed by driver program.

Scala> val rdd = sc.parallelize(list(1,2,3,4))
scala> rdd.take(2)
Result:
Array[Int] = Array(1, 2)

foreach(func)
purpose: execute function for
each data element in RDD.
usually used to update an
accumulator(discussed later)
or interacting with external
systems.

Scala> val rdd = sc.parallelize(list(1,2,3,4))
scala> rdd.foreach(x=>println(“%s*10=%s”.
format(x,x*10)))
result:
1*10=10
4*10=40
3*10=30
2*10=20

first()
purpose: retrieves the first
data element in RDD. Similar
to take(1)

scala> val rdd = sc.parallelize(list(1,2,3,4))
scala> rdd.first()
result:
Int = 1

saveAsTextFile(path)
purpose: Writes the content
of RDD to a text file or a set of
text files to local file system/
HDFS

scala> val hamlet = sc.textFile(“/users/akuntamukkala/
temp/gutenburg.txt”)
scala> hamlet.filter(_.contains(“Shakespeare”)).
saveAsTextFile(“/users/akuntamukkala/temp/
filtered”)
result:
akuntamukkala@localhost~/temp/filtered$ ls
_SUCCESS part-00000 part-00001

For a more detailed list of actions, please refer to:
http://spark.apache.org/docs/latest/programming-guide.html#actions

rdd pErsistEncE

One of the key capabilities of Apache Spark is persisting/caching an
RDD in cluster memory. This speeds up iterative computation. The
following table shows the various options Spark provides:

SToRAge leVel PuRPoSe

MEMORY_ONLY
(Default level)

This option stores RDD in available cluster
memory as deserialized Java objects. Some
partitions may not be cached if there is not
enough cluster memory. Those partitions will
be recalculated on the fly as needed.

MEMORY_AND_DISK

This option stores RDD as deserialized
Java objects. If RDD does not fit in cluster
memory, then store those partitions on the
disk and read them as needed.

MEMORY_ONLY_SER

This options stores RDD as serialized Java
objects (one byte array per partition). This is
more cPu intensive but saves memory as it
is more space efficient. Some partitions may
not be cached. Those will be recalculated on
the fly as needed.

MEMORY_ONLY_DISK_SER This option is same as above except that disk
is used when memory is not sufficient.

DISC_ONLY This option stores the RDD only on the disk

MEMORY_ONLY_2, MEMORY_AND_
DISK_2, etc.

Same as other levels but partitions are
replicated on 2 slave nodes

http://www.dzone.com?refcardz
http://spark.apache.org/docs/latest/programming-guide.html#transformations
http://spark.apache.org/docs/latest/programming-guide.html#actions
http://mapr.com

© DZone, Inc. | DZone.com

5 APACHE SPARK

The above storage levels can be accessed by using the persist()
operation on an RDD. The cache() operation is a convenient way of
specifying the MEMORY_ONLY option

For a more detailed list of persistence options, please refer to:

http://spark.apache.org/docs/latest/programming-guide.html#rdd-
persistence

Spark uses the Least Recently Used (LRU) algorithm to remove old,
unused, cached RDDs to reclaim memory. It also provides a convenient
unpersist() operation to force removal of cached/persisted RDDs.

sharEd variaBLEs

accUMULators
Spark provides a very handy way to avoid mutable counters and counter
synchronization issues by providing accumulators. The accumulators are
initialized on a Spark context with a default value. These accumulators
are available on Slave nodes, but Slave nodes can’t read them. Their only
purpose is to fetch atomic updates and forward them to Master. Master is
the only one that can read and compute the aggregate of all updates. For
example, say we want to find the number of statements in a log file of log
level ‘error’…

akuntamukkala@localhost~/temp$ cat output.log
error
warning
info
trace
error
info
info
scala> val nErrors=sc.accumulator(0.0)
scala> val logs = sc.textFile(“/Users/akuntamukkala/temp/output.
log”)
scala> logs.filter(_.contains(“error”)).foreach(x=>nErrors+=1)
scala> nErrors.value
Result: Int = 2

Broadcast variaBLEs
It is common to perform join operations on RDDs to consolidate data by
a certain key. In such cases, it is quite possible to have large datasets sent
around to slave nodes that host the partitions to be joined. This presents
a huge performance bottleneck, as network I/O is 100 times slower than
RAM access. In order to mitigate this issue, Spark provides broadcast
variables, which, as the name suggests, are broadcasted to slave nodes.
The RDD operations on the nodes can quickly access the broadcast
variable value. For example, say we want to calculate the shipping cost
of all line items in a file. We have a static look-up table that specifies cost
per shipping type. This look-up table can be a broadcast variable.

akuntamukkala@localhost~/temp$ cat packagesToShip.txt
ground
express
media
priority
priority
ground
express
media
scala> val map = sc.parallelize(Seq((“ground”,1),(“med”,2),
(“priority”,5),(“express”,10))).collect().toMap
map: scala.collection.immutable.Map[String,Int] = Map(ground ->
1, media -> 2, priority -> 5, express -> 10)
scala> val bcMailRates = sc.broadcast(map)

In the above command, we create a broadcast variable, a map containing
cost by class of service.

scala> val pts = sc.textFile(“/Users/akuntamukkala/temp/
packagesToShip.txt”)
scala> pts.map(shipType=>(shipType,1)).reduceByKey(_+_).
map{case (shipType,nPackages)=>(shipType,nPackages*bcMailRates.
value(shipType))}.collect()

In the above command we calculate shipping cost by looking up mailing
rates from broadcast variable.

Array[(String, Int)] = Array((priority,10), (express,20),
(media,4), (ground,2))
scala> val shippingCost=sc.accumulator(0.0)
scala> pts.map(x=>(x,1)).reduceByKey(_+_).map{case
(x,y)=>(x,y*bcMailRates.value(x))}.foreach(v=>shippingCost+=v._2)
scala> shippingCost.value
Result: Double = 36.0

In the above command we use accumulator to calculate total cost to ship.
The following presentation provides more information:

http://ampcamp.berkeley.edu/wp-content/uploads/2012/06/matei-
zaharia-amp-camp-2012-advanced-spark.pdf

spark sQL

Spark SQL provides a convenient way to run interactive queries over
large data sets using Spark Engine, using a special type of RDD called
SchemaRDD. SchemaRDDs can be created from existing RDDs or other
external data formats such as Parquet files, JSON data or by running
HQL on Hive. SchemaRDD is similar to a table in RDBMS. Once data are
in SchemaRDD, the Spark engine will unify it with batch and streaming
use cases. Spark SQL provides two types of contexts: SQLContext &
HiveContext that extend SparkContext functionality.

SQLContext provides access to a simple SQL parser whereas
HiveContext provides access to HiveQL parser. HiveContext enables
enterprises to leverage their existing Hive infrastructure.

Let’s see a simple example using SQLContext.

Say we have the following ‘|’ delimited file containing customer data:

John Smith|38|M|201 East Heading Way #2203,Irving, TX,75063
Liana Dole|22|F|1023 West Feeder Rd, Plano,TX,75093
Craig Wolf|34|M|75942 Border Trail,Fort Worth,TX,75108
John Ledger|28|M|203 Galaxy Way,Paris, TX,75461
Joe Graham|40|M|5023 Silicon Rd,London,TX,76854

Define Scala case class to represent each row:

case class Customer(name:String,age:Int,gender:String,address:
String)

The following code snippet shows how to create SQLContext using
SparkContext, read the input file, convert each line into a record in
SchemaRDD and then query in simple SQL to find male consumers
under the age of 30:

val sparkConf = new SparkConf().setAppName(“Customers”)
val sc = new SparkContext(sparkConf)
val sqlContext = new SQLContext(sc)
val r = sc.textFile(“/Users/akuntamukkala/temp/customers.txt”)
val records = r.map(_.split(‘|’))
val c = records.map(r=>Customer(r(0),r(1).trim.toInt,r(2),r(3)))
c.registerAsTable(“customers”)

sqlContext.sql(“select * from customers where gender=’M’ and
age < 30”).collect().foreach(println)
Result:
[John Ledger,28,M,203 Galaxy Way,Paris, TX,75461]

For more practical examples using SQL & HiveQL, please refer to the
following links:

https://spark.apache.org/docs/latest/sql-programming-guide.html
https://databricks-training.s3.amazonaws.com/data-exploration-using-
spark-sql.html

http://www.dzone.com?refcardz
http://spark.apache.org/docs/latest/programming-guide.html#rdd-persistence
http://spark.apache.org/docs/latest/programming-guide.html#rdd-persistence
http://ampcamp.berkeley.edu/wp-content/uploads/2012/06/matei-zaharia-amp-camp-2012-advanced-spark.pdf
https://spark.apache.org/docs/latest/sql-programming-guide.html
https://databricks-training.s3.amazonaws.com/data-exploration-using-spark-sql.html
https://databricks-training.s3.amazonaws.com/data-exploration-using-spark-sql.html
http://mapr.com

© DZone, Inc. | DZone.com

6 APACHE SPARK

spark strEaMinG

Spark Streaming provides a scalable, fault tolerant, efficient way of
processing streaming data using Spark’s simple programming model.
It converts streaming data into “micro” batches, which enable Spark’s
batch programming model to be applied in Streaming use cases. This
unified programming model makes it easy to combine batch and
interactive data processing with streaming. Figure 10 shows how Spark
Streaming can be used to analyze data feeds from multitudes of data
sources.

The core abstraction in Spark Streaming is Discretized Stream
(DStream). DStream is a sequence of RDDs. Each RDD contains data
received in a configurable interval of time. Figure 12 shows how Spark
Streaming creates a DStream by converting incoming data into a
sequence of RDDs. Each RDD contains streaming data received every 2
seconds as defined by interval length. This can be as small as ½ second,
so latency for processing time can be under 1 second.

Spark Streaming also provides sophisticated window operators, which
help with running efficient computation on a collection of RDDs in
a rolling window of time. DStream exposes an API, which contains
operators (transformations and output operators) that are applied on
constituent RDDs. Let’s try and understand this using a simple example
given in Spark Streaming download. Say, you want to find the trending
hash tags in your Twitter stream. Please refer to the following example to
find the complete code snippet:

spark-1.0.1/examples/src/main/scala/org/apache/spark/examples/
streaming/TwitterPopularTags.scala
val sparkConf = new SparkConf().setAppName(“TwitterPopularTags”)
val ssc = new StreamingContext(sparkConf, Seconds(2))
val stream = TwitterUtils.createStream(ssc, None, filters)

The above snippet is setting up Spark Streaming Context. Spark
Streaming will create an RDD in DStream containing Tweets retrieved
every two seconds.

val hashTags = stream.flatMap(status => status.getText.split(“
“).filter(_.startsWith(“#”)))

The above snippet converts the Tweets into a sequence of words, then
filters only those beginning with a #.

val topCounts60 = hashTags.map((_, 1)).reduceByKeyAndWindow(_
+ _, Seconds(60)).map{case (topic, count) => (count, topic)}.
transform(_.sortByKey(false))

The above snippet shows how to calculate a rolling aggregate of the
number of times a hashtag was mentioned in a window of 60 seconds.

topCounts60.foreachRDD(rdd => {
 val topList = rdd.take(10)
 println(“\nPopular topics in last 60 seconds (%s
 total):”.format(rdd.count()))
 topList.foreach{case (count, tag) => println(“%s (%s
 tweets)”.format(tag, count))}
})

The above snippet shows how to extract the top ten trending Tweets
and then print them out.
ssc.start()
The above snippet instructs the Spark Streaming Context to start
retrieving Tweets. Let’s look at a few popular operations. Assume that
we are reading streaming text from a socket:

val lines = ssc.socketTextStream(“localhost”, 9999,
StorageLevel.MEMORY_AND_DISK_SER)

TRAnSFoRmATIon &
PuRPoSe exAmPle & ReSulT

map(func)
purpose: create a new DStream
by applying this function to all
constituent RDDS in DStream

lines.map(x=>x.toInt*10).print()

prompt>nc –lk
9999
12
34

output:
120
340

flatMap(func)
purpose: Same as map, but the
mapping function can output zero
or more items

lines.flatMap(_.split(“ “)).print()

prompt>nc –lk
9999
Spark is fun

output:
Spark
is
fun

count()
purpose: create a DStream of RDDs
containing a count of the number
of data elements

lines.flatMap(_.split(“ “)).count()

prompt>nc –lk
9999
say
hello
to
spark

output:
4

reduce(func)
purpose: Same as count, but
instead of count, the value is
derived by applying the function

lines.map(x=>x.toInt).reduce(_+_).
print()

prompt>nc –lk
9999
1
3
5
7

output:
16

countByValue()
purpose: Same as map, but the
mapping function can output zero
or more items

lines.countByValue().print()

prompt>nc –lk
9999
spark
spark
is
fun
fun

output:
(is,1)
(spark,2)
(fun,2)

reduceByKey(func,[numTasks])

val words = lines.flatMap(_.split(“
“))
val wordCounts = words.map(x =>
(x, 1)).reduceByKey(_+_)
wordCounts.print()

prompt>nc –lk
9999
spark is fun
fun
fun

output:
(is,1)
(spark,1)
(fun,3)

The following example shows how Apache Spark combines Spark batch with Spark
Streaming. This is a powerful capability for an all-in-one technology stack. In this
example, we read a file containing brand names and filter those streaming data sets
that contain any of the brand names in the file.

FIguRe 12

FIguRe 11

http://www.dzone.com?refcardz

© DZone, Inc. | DZone.com

7 APACHE SPARK

ABOUT THE AUTHOR RECOMMENDED BOOK
Ashwini Kuntamukkala is a Software Architect focusing on Big Data and NoSQL
initiatives. He has over 10 years of experience in leading and implementing enterprise
grade solutions in pharmacy, health care and travel industries. He is enthusiastic about
open source, cloud, and mobile development. At SciSpike, a development and consulting
firm, he makes clients successful in adopting best enterprise software development and
governance practices through consulting, training and software development services.

This book introduces Spark, an open source cluster computing system
that makes data analytics fast to run and fast to write. You’ll learn how to
run programs faster, using primitives for in-memory cluster computing.
With Spark, your job can load data into memory and query it repeatedly
much quicker than with disk-based systems like Hadoop MapReduce.

BUY NOW

BROWSE OUR COLLECTION OF 250+ FREE RESOURCES, INCLUDING:
RESEARCH GUIDES: Unbiased insight from leading tech experts
REFCARDZ: Library of 200+ reference cards covering the latest tech topics
COMMUNITIES: Share links, author articles, and engage with other tech experts

JOIN NOW
DZone, Inc.
150 Preston Executive Dr.
Suite 201
Cary, NC 27513
888.678.0399
919.678.0300

Refcardz Feedback Welcome

refcardz@dzone.com
Sponsorship Opportunities

sales@dzone.com
Copyright © 2014 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

Version 1.0 $7.95

DZone communities deliver over 6 million pages each month to more than 3.3 million software
developers, architects and decision makers. DZone offers something for everyone, including
news, tutorials, cheat sheets, research guides, feature articles, source code and more.

"DZone is a developer's dream," says PC Magazine.

transform(func)
purpose: creates a new DStream
by applying RDD->RDD
transformation to all RDDs in
DStream.

brandnames.txt
coke
nike
sprite
reebok

val sparkConf = new SparkConf().
setAppName(“NetworkWordCount”)
val sc = new SparkContext(sparkConf)
val ssc = new StreamingContext(sc,
Seconds(10))
val lines = ssc.
socketTextStream(“localhost” 9999,
StorageLevel.MEMORY_AND_DISK_SER)
val brands = sc.textFile(“/Users/
akuntamukkala/temp/brandNames.txt”)
lines.transform(rdd=> {
 rdd.intersection(brands)
}).print()

prompt>nc –lk
9999
msft
apple
nike
sprite
ibm

output:
sprite
nike

updateStateByKey(func)
purpose: creates a new DStream
where the value of each key
is updated by applying given
function.

Please refer to the Statefulnetworkcount
example in Spark Streaming.

This helps with computing a running aggregate
of the total number of times a word has
occurred.

common Window operations

TRAnSFoRmATIon &
PuRPoSe exAmPle & ReSulT

window(windowlength,
slideInterval)
purpose: Returns a new DStream
computed from windowed batches
of source DStream

val win = lines.
window(Seconds(30),Seconds(10));
win.foreachRDD(rdd => {
 rdd.foreach(x=>println(x+ “ “))
})

prompt>nc –lk 9999
10 (0th second)
20 (10 seconds later)
30 (20 seconds later)
40 (30 seconds later)

output:
10
10 20
20 10 30
20 30 40 (drops 10)

countByWindow(windowlength,
slideInterval)
purpose: Returns a new sliding
window count of elements in a steam

lines.countByWindow(Seconds(30),
Seconds(10)).print()

prompt>nc –lk 9999
10 (0th second)
20 (10 seconds later)
30 (20 seconds later)
40 (30 seconds later)

output:
1
2
3
3

For additional transformation operators, please refer to:
http://spark.apache.org/docs/latest/streaming-programming-guide.
html#transformations

Spark Streaming has powerful output operators. We already saw
foreachRDD() in above example. For others, please refer to:
http://spark.apache.org/docs/latest/streaming-programming-guide.
html#output-operations

additionaL rEsoUrcEs

• Wikipedia article (good):
http://en.wikipedia.org/wiki/Apache_Spark

• Launching a Spark cluster on EC2:
http://ampcamp.berkeley.edu/exercises-strata-conf-2013/launching-
a-cluster.html

• Quick start:
https://spark.apache.org/docs/1.0.1/quick-start.html

• The Spark platform provides MLLib(machine learning) and
GraphX(graph algorithms). The following links provide more
information:

• https://spark.apache.org/docs/latest/mllib-guide.html

• https://spark.apache.org/docs/1.0.1/graphx-programming-guide.html

