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Why apachE spark?

We live in an era of “Big Data” where data of various types are being 
generated at an unprecedented pace, and this pace seems to be only 
accelerating astronomically. This data can be categorized broadly into 
transactional data, social media content (such as text, images, audio, 
and video), and sensor feeds from instrumented devices.

But one may ask why it is important to pay any attention to it. The 
reason being:  “data is valuable because of the decisions it enables”.

Up until a few years ago, there were only a few companies with 
the technology and money to invest in storing and mining huge 
amounts of data to gain invaluable insights. However, everything 
changed when Yahoo open sourced Apache Hadoop in 2009. It was 
a disruptive change that lowered the bar on Big Data processing 
considerably. As a result, many industries, such as Health care, 
Infrastructure, Finance, Insurance, Telematics, Consumer, Retail, 
Marketing, E-commerce, Media, Manufacturing, and Entertainment, 
have since tremendously benefited from practical applications built 
on Hadoop.

Apache Hadoop provides two major capabilities:

1. hdFs, a fault tolerant way to store vast amounts of data 
inexpensively using horizontally scalable commodity hardware.

2. Map-reduce computing paradigm, which provide programming 
constructs to mine data and derive insights.

Figure 1 illustrates how data are processed through a series of Map-
Reduce steps where output of a Map-Reduce step is input to the next 
in a typical Hadoop job. 

The intermediate results are stored on the disk, which means 
that most Map-Reduce jobs are I/O bound, as opposed to being 
computationally bound. This is not an issue for use cases such as 
ETLs, data consolidation, and cleansing, where processing times are 
not much of a concern, but there are other types of Big Data use 
cases where processing time matters. These use cases are listed 
below: 

1. streaming data processing to perform near real-time 
analysis. For example, clickstream data analysis to make video 
recommendations, which enhances user engagement. We have 
to trade-off between accuracy and processing time.   

2. interactive querying of large datasets so a data scientist may 
run ad-hoc queries on a data set.
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Figure 2 shows how Hadoop has grown into an ecosystem of several 
technologies providing specialized tools catering to these use cases.

While we love the richness of choices among tools in the Hadoop 
ecosystem, there are several challenges that make the ecosystem 
cumbersome to use: 

1. A different technology stack is required to solve each type 
of use case, because some solutions are not reusable across 
different use cases.

2. Proficiency in several technologies is required for productivity

3. Some technologies face version compatibility issues 

4. It is unsuitable for faster data-sharing needs across parallel jobs.
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These are the challenges that Apache Spark solves! Spark is a lightning 
fast in-memory cluster-computing platform, which has unified approach 
to solve Batch, Streaming, and Interactive use cases as shown in Figure 3 

aBoUt apachE spark

Apache Spark is an open source, Hadoop-compatible, fast and 
expressive cluster-computing platform. It was created at AMPLabs in 
UC Berkeley as part of Berkeley Data Analytics Stack (BDAS). It has 
emerged as a top level Apache project. Figure 4 shows the various 
components of the current Apache Spark stack.

It provides five major benefits:

1.  Lightning speed of computation because data are loaded in 
distributed memory (RAM) over a cluster of machines. Data can 
be quickly transformed iteratively and cached on demand for 
subsequent usage. It has been noted that Apache Spark processes 
data 100x faster than Hadoop Map Reduce when all the data fits 
in memory and 10x faster when some data spills over onto disk 
because of insufficient memory.  
 
 
 
 
 
 
 
 
 
 

2. highly accessible through standard APIs built in Java, Scala, 
Python, or SQL (for interactive queries), and a rich set of machine 
learning libraries available out of the box.

3. compatibility with the existing Hadoop v1 (SIMR) and 2.x (YARN) 
ecosystems so companies can leverage their existing infrastructure.  
 
 

4. convenient download and installation processes. Convenient shell 
(REPL: Read-Eval-Print-Loop) to interactively learn the APIs.

5. Enhanced productivity due to high level constructs that keep the 
focus on content of computation.

Also, Spark is implemented in Scala, which means that the code is very 
succinct.

hoW to instaLL apachE spark

The following table lists a few important links and prerequisites:

current Release 1.0.1 @ http://d3kbcqa49mib13.cloudfront.
net/spark-1.0.1.tgz

Downloads Page https://spark.apache.org/downloads.html

JDK Version (Required) 1.6 or higher

Scala Version (Required) 2.10 or higher

Python (optional) [2.6, 3.0)

Simple Build Tool (Required) http://www.scala-sbt.org

Development Version git clone git://github.com/apache/
spark.git

Building Instructions https://spark.apache.org/docs/latest/
building-with-maven.html

maven 3.0 or higher

As shown in Figure 6, Apache Spark can be configured to run 
standalone, or on Hadoop V1 SIMR, or on Hadoop 2 YARN/Mesos. 
Apache Spark requires moderate skills in Java, Scala or Python. Here 
we will see how to install and run Apache Spark in the standalone 
configuration. 

1. Install JDK 1.6+, Scala 2.10+, Python [2.6,3) and sbt 

2. Download Apache Spark 1.0.1 Release

3. Untar & Unzip spark-1.0.1.tgz in a specified directory 
 
akuntamukkala@localhost~/Downloads$ pwd 
/Users/akuntamukkala/Downloads 
akuntamukkala@localhost~/Downloads$ tar -zxvf spark-
1.0.1.tgz -C /Users/akuntamukkala/spark

4. Go to the directory from #4 and run sbt to build Apache Spark 
 
akuntamukkala@localhost~/spark/spark-1.0.1$ pwd 
/Users/akuntamukkala/spark/spark-1.0.1 
akuntamukkala@localhost~/spark/spark-1.0.1$ sbt/sbt 
assembly

5. Launch Apache Spark standalone REPL 
 
For Scala, use:  
/Users/akuntamukkala/spark/spark-1.0.1/bin/spark-shell  
 
For Python, use: /Users/akuntamukkala/spark/spark-1.0.1/bin/
pyspark

6. Go to SparkUI @ http://localhost:4040

hoW apachE spark Works 

Spark engine provides a way to process data in distributed memory over 
a cluster of machines. Figure 7 shows a logical diagram of how a typical 
Spark job processes information.
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Figure 8 shows how Apache Spark executes a job on a cluster 

The Master controls how data is partitioned, and it takes advantage of 
data locality while keeping track of all the distributed data computation 
on the Slave machines. If a certain Slave machine is unavailable, the data 
on that machine is reconstructed on other available machine(s). “Master” 
is currently a single point of failure, but it will be fixed in upcoming 
releases. 

rEsiLiEnt distriBUtEd datasEt 

The core concept in apache spark is the resilient distributed dataset 
(RDD). It is an immutable distributed collection of data, which is 
partitioned across machines in a cluster. It facilitates two types of 
operations: transformation and action. A transformation is an operation 
such as filter(), map(), or union() on an RDD that yields another RDD. 
An action is an operation such as count(), first(), take(n), or collect() 
that triggers a computation, returns a value back to the Master, or writes 
to a stable storage system. Transformations are lazily evaluated, in that 
they don’t run until an action warrants it. Spark Master/Driver remembers 
the transformations applied to an RDD, so if a partition is lost (say a slave 
machine goes down), that partition can easily be reconstructed on some 
other machine in the cluster.  That is why is it called “Resilient.”  

Figure 9 shows how transformations are lazily evaluated:

Let’s understand this conceptually by using the following example: 
Say we want to find the 5 most commonly used words in a text file. A 
possible solution is depicted in Figure 10.

The following code snippets show how we can do this in Scala using 
Spark Scala REPL shell: 

scala> val hamlet =  
sc.textFile(“/Users/akuntamukkala/temp/gutenburg.txt”)
hamlet: org.apache.spark.rdd.RDD[String] = MappedRDD[1] at 
textFile at <console>:12
 
In the above command, we read the file and create an RDD of strings. 
Each entry represents a line in the file. 

scala> val topWordCount = hamlet.flatMap(str=>str.split(“ “)).
filter(!_.isEmpty).map(word=>(word,1)).reduceByKey(_+_).map{case 
(word, count) => (count, word)}.sortByKey(false) 
topWordCount: org.apache.spark.rdd.RDD[(Int, String)] = 
MapPartitionsRDD[10] at sortByKey at <console>:14

1. The above commands shows how simple it is to chain the 
transformations and actions using succinct Scala API. We split each 
line into words using hamlet.flatMap(str=>str.split(“ “)).

2. There may be words separated by more than one whitespace, 
which leads to words that are empty strings. So we need to filter 
those empty words using filter(!_.isEmpty).  

3. We map each word into a key value pair: map(word=>(word,1)). 

4. In order to aggregate the count, we need to invoke a reduce step 
using reduceByKey(_+_). The _+_ is a shorthand function to add 
values per key.  

5. We have words and their respective counts, but we need to sort by 
counts. In Apache Spark, we can only sort by key, not values. So, we 
need to reverse the (word, count) to (count, word) using map{case 
(word, count) => (count, word)}. 

6. We want the top 5 most commonly used words, so we need to sort 
the counts in a descending order using sortByKey(false). 
 
scala> topWordCount.take(5).foreach(x=>println(x)) 
(1044,the) 
(730,and) 
(679,of) 
(648,to) 
(511,I)

The above command contains.take(5) (an action operation, which 
triggers computation) and prints the top ten most commonly used 
words in the input text file: /Users/akuntamukkala/temp/gutenburg.txt.  

The same could be done in the Python shell also. 

RDD lineage can be tracked using a useful operation: toDebugString  
scala> topWordCount.toDebugString 
res8: String = MapPartitionsRDD[19] at sortByKey at <console>:14 
ShuffledRDD[18] at sortByKey at <console>:14  
     MappedRDD[17] at map at <console>:14 
      MapPartitionsRDD[16] at reduceByKey at <console>:14 
        ShuffledRDD[15] at reduceByKey at <console>:14 
          MapPartitionsRDD[14] at reduceByKey at <console>:14 
            MappedRDD[13] at map at <console>:14 
              FilteredRDD[12] at filter at <console>:14 
                FlatMappedRDD[11] at flatMap at <console>:14 
                  MappedRDD[1] at textFile at <console>:12 
                    HadoopRDD[0] at textFile at <console>:12  

 
commonly Used transformations:

TRAnSFoRmATIon & PuRPoSe exAmPle & ReSulT

filter(func) 
purpose: new RDD by selecting those 
data elements on which func  returns 
true

scala> val rdd = 
sc.parallelize(list(“ABc”,”BcD”,”DeF”))
scala> val filtered = rdd.filter(_.contains(“C”))
scala> filtered.collect()
result:
Array[String] = Array(ABc, BcD)

map(func)
purpose:  return new RDD by applying 
func on each data element

scala> val rdd=sc.parallelize(list(1,2,3,4,5))
scala> val times2 = rdd.map(_*2)
scala> times2.collect()
result:
Array[Int] = Array(2, 4, 6, 8, 10)
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flatMap(func)
purpose: Similar to map but func 
returns a Seq instead of a value. For 
example, mapping a sentence into a 
Seq of words

scala> val rdd=sc.parallelize(list(“Spark is 
awesome”,”It is fun”))
scala> val fm=rdd.flatMap(str=>str.split(“ “))
scala> fm.collect()
result:
Array[String] = Array(Spark, is, awesome, 
It, is, fun)

reduceByKey(func,[numTasks])
purpose: : To aggregate values of a 
key using a function. “numTasks” is an 
optional parameter to specify number 
of reduce tasks

scala> val word1=fm.map(word=>(word,1))
scala> val wrdCnt=word1.reduceByKey(_+_)
scala> wrdcnt.collect()
result:
Array[(String, Int)] = Array((is,2), (It,1), 
(awesome,1), (Spark,1), (fun,1))

groupByKey([numTasks])
purpose: To convert (K,V) to 
(K,Iterable<V>) 

scala> val cntWrd = wrdcnt.map{case (word, 
count) => (count, word)}
scala> cntWrd.groupByKey().collect()
result:
Array[(Int, Iterable[String])] = 
Array((1,ArrayBuffer(It, awesome, Spark, 
fun)), (2,ArrayBuffer(is)))

distinct([numTasks])
purpose: eliminate duplicates from 
RDD

scala> fm.distinct().collect()
result:
Array[String] = Array(is, It, awesome, Spark, 
fun)

commonly Used set operations

TRAnSFoRmATIon & 
PuRPoSe exAmPle & ReSulT

union() 
purpose: new RDD containing 
all elements from source RDD 
and argument.

Scala> val rdd1=sc.parallelize(list(‘A’,’B’))
scala> val rdd2=sc.parallelize(list(‘B’,’c’))
scala> rdd1.union(rdd2).collect()
result:
Array[char] = Array(A, B, B, c)

intersection()
purpose: new RDD containing 
all elements from source RDD 
and argument.

Scala> rdd1.intersection(rdd2).collect()
result:
Array[char] = Array(B)

cartesian()
purpose: new RDD cross 
product of all elements from 
source RDD and argument.

Scala> rdd1.cartesian(rdd2).collect()
result:
Array[(char, char)] = Array((A,B), (A,c), (B,B), (B,c))

subtract()
purpose: new RDD created 
by removing data elements in 
source RDD in common with 
argument 

scala> rdd1.subtract(rdd2).collect()
result:
Array[char] = Array(A)

join(RDD,[numTasks])
purpose: When invoked on 
(K,V) and (K,W), this operation 
creates a new RDD of (K, 
(V,W))

scala> val personFruit = sc.parallelize(Seq((“Andy”, 
“Apple”), (“Bob”, “Banana”), (“charlie”, “cherry”), 
(“Andy”,”Apricot”)))
scala> val personSe = sc.parallelize(Seq((“Andy”, 
“google”), (“Bob”, “Bing”), (“charlie”, “Yahoo”), 
(“Bob”,”AltaVista”)))
scala> personFruit.join(personSe).collect()
result:
Array[(String, (String, String))] = 
Array((Andy,(Apple,google)), (Andy,(Apricot,google)), 
(charlie,(cherry,Yahoo)), (Bob,(Banana,Bing)), 
(Bob,(Banana,AltaVista)))

cogroup(RDD,[numTasks])
purpose: To convert (K,V) to 
(K,Iterable<V>) 

scala> personFruit.cogroup(personSe).collect()
result:
Array[(String, (Iterable[String], Iterable[String]))] 
= Array((Andy,(ArrayBuffer(Apple, 
Apricot),ArrayBuffer(google))), 
(Charlie,(ArrayBuffer(Cherry),ArrayBuffer(Yahoo))), 
(Bob,(ArrayBuffer(Banana),ArrayBuffer(Bing, 
AltaVista))))

For a more detailed list of transformations, please refer to:   
http://spark.apache.org/docs/latest/programming-guide.
html#transformations

commonly Used actions

AcTIon & PuRPoSe exAmPle & ReSulT

count()  
purpose: get the number of 
data elements in the RDD

scala> val rdd = sc.parallelize(list(‘A’,’B’,’c’))
scala> rdd.count()
result:
long = 3

collect()
purpose: get all the data 
elements in an RDD as an 
array

scala> val rdd = sc.parallelize(list(‘A’,’B’,’c’))
scala> rdd.collect()
result:
Array[char] = Array(A, B, c)

reduce(func)
purpose: Aggregate the data 
elements in an RDD using 
this function which takes two 
arguments and returns one

scala> val rdd = sc.parallelize(list(1,2,3,4))
scala> rdd.reduce(_+_)
result:
Int = 10

take (n)
purpose: : fetch first n 
data elements in an RDD. 
computed by driver program. 

Scala> val rdd = sc.parallelize(list(1,2,3,4))
scala> rdd.take(2)
Result:
Array[Int] = Array(1, 2)

foreach(func)
purpose: execute function for 
each data element in RDD. 
usually used to update an 
accumulator(discussed later) 
or interacting with external 
systems.

Scala> val rdd = sc.parallelize(list(1,2,3,4))
scala> rdd.foreach(x=>println(“%s*10=%s”.
format(x,x*10)))
result:
1*10=10
4*10=40
3*10=30
2*10=20

first()
purpose: retrieves the first 
data element in RDD. Similar 
to take(1)

scala> val rdd = sc.parallelize(list(1,2,3,4))
scala> rdd.first()
result:
Int = 1

saveAsTextFile(path)
purpose: Writes the content 
of RDD to a text file or a set of 
text files to local file system/
HDFS

scala> val hamlet = sc.textFile(“/users/akuntamukkala/
temp/gutenburg.txt”)
scala> hamlet.filter(_.contains(“Shakespeare”)).
saveAsTextFile(“/users/akuntamukkala/temp/
filtered”)
result:
akuntamukkala@localhost~/temp/filtered$ ls
_SUCCESS part-00000 part-00001

For a more detailed list of actions, please refer to:    
http://spark.apache.org/docs/latest/programming-guide.html#actions

rdd pErsistEncE

One of the key capabilities of Apache Spark is persisting/caching an 
RDD in cluster memory. This speeds up iterative computation. The 
following table shows the various options Spark provides: 

SToRAge leVel PuRPoSe

MEMORY_ONLY 
(Default level)

This option stores RDD in available cluster 
memory as deserialized Java objects. Some 
partitions may not be cached if there is not 
enough cluster memory. Those partitions will 
be recalculated on the fly as needed.  

MEMORY_AND_DISK 

This option stores RDD as deserialized 
Java objects. If RDD does not fit in cluster 
memory, then store those partitions on the 
disk and read them as needed.

MEMORY_ONLY_SER

This options stores RDD as serialized Java 
objects (one byte array per partition). This is 
more cPu intensive but saves memory as it 
is more space efficient.  Some partitions may 
not be cached. Those will be recalculated on 
the fly as needed.

MEMORY_ONLY_DISK_SER This option is same as above except that disk 
is used when memory is not sufficient.

DISC_ONLY This option stores the RDD only on the disk

MEMORY_ONLY_2, MEMORY_AND_
DISK_2, etc.

Same as other levels but partitions are 
replicated on 2 slave nodes

http://www.dzone.com?refcardz
http://spark.apache.org/docs/latest/programming-guide.html#transformations
http://spark.apache.org/docs/latest/programming-guide.html#actions
http://mapr.com
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The above storage levels can be accessed by using the persist() 
operation on an RDD. The cache() operation is a convenient way of 
specifying the MEMORY_ONLY option

For a more detailed list of persistence options, please refer to:

http://spark.apache.org/docs/latest/programming-guide.html#rdd-
persistence

Spark uses the Least Recently Used (LRU) algorithm to remove old, 
unused, cached RDDs to reclaim memory. It also provides a convenient 
unpersist() operation to force removal of cached/persisted RDDs. 

sharEd variaBLEs

accUMULators
Spark provides a very handy way to avoid mutable counters and counter 
synchronization issues by providing accumulators. The accumulators are 
initialized on a Spark context with a default value. These accumulators 
are available on Slave nodes, but Slave nodes can’t read them. Their only 
purpose is to fetch atomic updates and forward them to Master. Master is 
the only one that can read and compute the aggregate of all updates. For 
example, say we want to find the number of statements in a log file of log 
level ‘error’… 
 
akuntamukkala@localhost~/temp$ cat output.log 
error 
warning 
info 
trace 
error 
info 
info 
scala> val nErrors=sc.accumulator(0.0) 
scala> val logs = sc.textFile(“/Users/akuntamukkala/temp/output.
log”) 
scala> logs.filter(_.contains(“error”)).foreach(x=>nErrors+=1) 
scala> nErrors.value 
Result: Int = 2

Broadcast variaBLEs
It is common to perform join operations on RDDs to consolidate data by 
a certain key. In such cases, it is quite possible to have large datasets sent 
around to slave nodes that host the partitions to be joined. This presents 
a huge performance bottleneck, as network I/O is 100 times slower than 
RAM access. In order to mitigate this issue, Spark provides broadcast 
variables, which, as the name suggests, are broadcasted to slave nodes. 
The RDD operations on the nodes can quickly access the broadcast 
variable value. For example, say we want to calculate the shipping cost 
of all line items in a file. We have a static look-up table that specifies cost 
per shipping type. This look-up table can be a broadcast variable.  

akuntamukkala@localhost~/temp$ cat packagesToShip.txt
ground
express
media
priority
priority
ground
express
media
scala> val map = sc.parallelize(Seq((“ground”,1),(“med”,2), 
(“priority”,5),(“express”,10))).collect().toMap
map: scala.collection.immutable.Map[String,Int] = Map(ground -> 
1, media -> 2, priority -> 5, express -> 10)
scala> val bcMailRates = sc.broadcast(map)

In the above command, we create a broadcast variable, a map containing 
cost by class of service.

scala> val pts = sc.textFile(“/Users/akuntamukkala/temp/
packagesToShip.txt”) 
scala> pts.map(shipType=>(shipType,1)).reduceByKey(_+_).
map{case (shipType,nPackages)=>(shipType,nPackages*bcMailRates.
value(shipType))}.collect()

In the above command we calculate shipping cost by looking up mailing 
rates from broadcast variable. 

Array[(String, Int)] = Array((priority,10), (express,20), 
(media,4), (ground,2))
scala> val shippingCost=sc.accumulator(0.0)
scala> pts.map(x=>(x,1)).reduceByKey(_+_).map{case 
(x,y)=>(x,y*bcMailRates.value(x))}.foreach(v=>shippingCost+=v._2)
scala> shippingCost.value
Result: Double = 36.0

In the above command we use accumulator to calculate total cost to ship. 
The following presentation provides more information: 

http://ampcamp.berkeley.edu/wp-content/uploads/2012/06/matei-
zaharia-amp-camp-2012-advanced-spark.pdf

spark sQL

Spark SQL provides a convenient way to run interactive queries over 
large data sets using Spark Engine, using a special type of RDD called 
SchemaRDD. SchemaRDDs can be created from existing RDDs or other 
external data formats such as Parquet files, JSON data or by running 
HQL on Hive. SchemaRDD is similar to a table in RDBMS. Once data are 
in SchemaRDD, the Spark engine will unify it with batch and streaming 
use cases. Spark SQL provides two types of contexts: SQLContext & 
HiveContext that extend SparkContext functionality.

SQLContext provides access to a simple SQL parser whereas 
HiveContext provides access to HiveQL parser. HiveContext enables 
enterprises to leverage their existing Hive infrastructure. 

Let’s see a simple example using SQLContext.

Say we have the following ‘|’ delimited file containing customer data:

John Smith|38|M|201 East Heading Way #2203,Irving, TX,75063 
Liana Dole|22|F|1023 West Feeder Rd, Plano,TX,75093 
Craig Wolf|34|M|75942 Border Trail,Fort Worth,TX,75108 
John Ledger|28|M|203 Galaxy Way,Paris, TX,75461 
Joe Graham|40|M|5023 Silicon Rd,London,TX,76854

Define Scala case class to represent each row: 
 
case class Customer(name:String,age:Int,gender:String,address: 
String)

The following code snippet shows how to create SQLContext using 
SparkContext, read the input file, convert each line into a record in 
SchemaRDD and then query in simple SQL to find male consumers 
under the age of 30:

val sparkConf = new SparkConf().setAppName(“Customers”) 
val sc = new SparkContext(sparkConf) 
val sqlContext = new SQLContext(sc) 
val r = sc.textFile(“/Users/akuntamukkala/temp/customers.txt”) 
val records = r.map(_.split(‘|’)) 
val c = records.map(r=>Customer(r(0),r(1).trim.toInt,r(2),r(3))) 
c.registerAsTable(“customers”)

sqlContext.sql(“select * from customers where gender=’M’ and 
age < 30”).collect().foreach(println)  
Result: 
[John Ledger,28,M,203 Galaxy Way,Paris, TX,75461]

For more practical examples using SQL & HiveQL, please refer to the 
following links:

https://spark.apache.org/docs/latest/sql-programming-guide.html 
https://databricks-training.s3.amazonaws.com/data-exploration-using-
spark-sql.html

http://www.dzone.com?refcardz
http://spark.apache.org/docs/latest/programming-guide.html#rdd-persistence
http://spark.apache.org/docs/latest/programming-guide.html#rdd-persistence
http://ampcamp.berkeley.edu/wp-content/uploads/2012/06/matei-zaharia-amp-camp-2012-advanced-spark.pdf
https://spark.apache.org/docs/latest/sql-programming-guide.html
https://databricks-training.s3.amazonaws.com/data-exploration-using-spark-sql.html
https://databricks-training.s3.amazonaws.com/data-exploration-using-spark-sql.html
http://mapr.com
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spark strEaMinG

Spark Streaming provides a scalable, fault tolerant, efficient way of 
processing streaming data using Spark’s simple programming model. 
It converts streaming data into “micro” batches, which enable Spark’s 
batch programming model to be applied in Streaming use cases. This 
unified programming model makes it easy to combine batch and 
interactive data processing with streaming. Figure 10 shows how Spark 
Streaming can be used to analyze data feeds from multitudes of data 
sources. 

 
 
The core abstraction in Spark Streaming is Discretized Stream 
(DStream). DStream is a sequence of RDDs. Each RDD contains data 
received in a configurable interval of time.  Figure 12 shows how Spark 
Streaming creates a DStream by converting incoming data into a 
sequence of RDDs. Each RDD contains streaming data received every 2 
seconds as defined by interval length. This can be as small as ½ second, 
so latency for processing time can be under 1 second.  

Spark Streaming also provides sophisticated window operators, which 
help with running efficient computation on a collection of RDDs in 
a rolling window of time. DStream exposes an API, which contains 
operators (transformations and output operators) that are applied on 
constituent RDDs. Let’s try and understand this using a simple example 
given in Spark Streaming download. Say, you want to find the trending 
hash tags in your Twitter stream. Please refer to the following example to 
find the complete code snippet:

spark-1.0.1/examples/src/main/scala/org/apache/spark/examples/
streaming/TwitterPopularTags.scala
val sparkConf = new SparkConf().setAppName(“TwitterPopularTags”)
val ssc = new StreamingContext(sparkConf, Seconds(2))
val stream = TwitterUtils.createStream(ssc, None, filters)

The above snippet is setting up Spark Streaming Context. Spark 
Streaming will create an RDD in DStream containing Tweets retrieved 
every two seconds.

val hashTags = stream.flatMap(status => status.getText.split(“ 
“).filter(_.startsWith(“#”)))

The above snippet converts the Tweets into a sequence of words, then 
filters only those beginning with a #.  

val topCounts60 = hashTags.map((_, 1)).reduceByKeyAndWindow(_ 
+ _, Seconds(60)).map{case (topic, count) => (count, topic)}.
transform(_.sortByKey(false))

The above snippet shows how to calculate a rolling aggregate of the 
number of times a hashtag was mentioned in a window of 60 seconds.

topCounts60.foreachRDD(rdd => { 
  val topList = rdd.take(10)
  println(“\nPopular topics in last 60 seconds (%s   
      total):”.format(rdd.count()))
  topList.foreach{case (count, tag) => println(“%s (%s     
      tweets)”.format(tag, count))}
})

The above snippet shows how to extract the top ten trending Tweets 
and then print them out.  
ssc.start()
The above snippet instructs the Spark Streaming Context to start 
retrieving Tweets.  Let’s look at a few popular operations. Assume that 
we are reading streaming text from a socket:

val lines = ssc.socketTextStream(“localhost”, 9999, 
StorageLevel.MEMORY_AND_DISK_SER)

TRAnSFoRmATIon & 
PuRPoSe exAmPle & ReSulT

map(func) 
purpose: create a new DStream 
by applying this function to all 
constituent RDDS in DStream

lines.map(x=>x.toInt*10).print()

prompt>nc –lk 
9999 
12
34

output:
120
340

flatMap(func)
purpose: Same as map, but  the 
mapping function can output zero 
or more items

lines.flatMap(_.split(“ “)).print()

prompt>nc –lk 
9999 
Spark is fun

output:
Spark
is
fun

count() 
purpose: create a DStream of RDDs 
containing a count of  the number 
of data elements   

lines.flatMap(_.split(“ “)).count()

prompt>nc –lk 
9999
say    
hello
to 
spark

output:
4

reduce(func)
purpose: Same as count, but 
instead of count, the value is 
derived by applying the function

lines.map(x=>x.toInt).reduce(_+_).
print()

prompt>nc –lk 
9999
1
3
5
7

output:
16

countByValue()
purpose: Same as map, but  the 
mapping function can output zero 
or more items

lines.countByValue().print()

prompt>nc –lk 
9999
spark 
spark
is
fun 
fun

output:
(is,1)
(spark,2)
(fun,2)

reduceByKey(func,[numTasks])

val words = lines.flatMap(_.split(“ 
“))
val wordCounts = words.map(x => 
(x, 1)).reduceByKey(_+_)
wordCounts.print()

prompt>nc –lk 
9999
spark is fun
fun
fun

output: 
(is,1)
(spark,1)
(fun,3)

The following example shows how Apache Spark combines Spark batch with Spark 
Streaming. This is a powerful capability for an all-in-one technology stack. In this 
example, we read a file containing brand names and filter those streaming data sets 
that contain any of the brand names in the file.  
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transform(func)
purpose: creates a new DStream 
by applying RDD->RDD 
transformation to all RDDs in 
DStream.

brandnames.txt 
coke
nike
sprite
reebok

val sparkConf = new SparkConf().
setAppName(“NetworkWordCount”) 
val sc = new SparkContext(sparkConf)
val ssc = new StreamingContext(sc, 
Seconds(10))
val lines = ssc.
socketTextStream(“localhost” 9999, 
StorageLevel.MEMORY_AND_DISK_SER)
val brands = sc.textFile(“/Users/
akuntamukkala/temp/brandNames.txt”)
lines.transform(rdd=> {
        rdd.intersection(brands)
}).print()

prompt>nc –lk 
9999
msft
apple
nike
sprite
ibm

output: 
sprite
nike

updateStateByKey(func)
purpose: creates a new DStream 
where the value of each key 
is updated by applying given 
function.

Please refer to the Statefulnetworkcount 
example in Spark Streaming.

This helps with computing a running aggregate 
of the total number of times a word has 
occurred.

common Window operations

TRAnSFoRmATIon & 
PuRPoSe exAmPle & ReSulT

window(windowlength, 
slideInterval)
purpose: Returns a new DStream 
computed from windowed batches 
of source DStream

val win = lines.
window(Seconds(30),Seconds(10));
win.foreachRDD(rdd => {
   rdd.foreach(x=>println(x+ “ “))
})

prompt>nc –lk 9999
10 (0th second)
20 (10 seconds later)
30 (20 seconds later)
40 (30 seconds later)

output:
10 
10 20
20 10 30
20 30 40 (drops 10) 

countByWindow(windowlength, 
slideInterval) 
purpose: Returns a new sliding 
window count of elements in a steam

lines.countByWindow(Seconds(30), 
Seconds(10)).print()

prompt>nc –lk 9999
10 (0th second)
20 (10 seconds later)
30 (20 seconds later)
40 (30 seconds later)

output:
1
2
3
3 

For additional transformation operators, please refer to:  
http://spark.apache.org/docs/latest/streaming-programming-guide.
html#transformations

Spark Streaming has powerful output operators. We already saw 
foreachRDD() in above example. For others, please refer to:  
http://spark.apache.org/docs/latest/streaming-programming-guide.
html#output-operations

additionaL rEsoUrcEs

• Wikipedia article (good):  
http://en.wikipedia.org/wiki/Apache_Spark

• Launching a Spark cluster on EC2:  
http://ampcamp.berkeley.edu/exercises-strata-conf-2013/launching-
a-cluster.html

• Quick start:  
https://spark.apache.org/docs/1.0.1/quick-start.html

• The Spark platform provides MLLib(machine learning) and 
GraphX(graph algorithms). The following links provide more 
information:

• https://spark.apache.org/docs/latest/mllib-guide.html

• https://spark.apache.org/docs/1.0.1/graphx-programming-guide.html


