An example on Predicate Logic inference for the class.

Jason

June 9, 2016

1 The setting

We will give a very simplistic setting with just two implications that attempt to describe when somebody becomes fit. Table 1 details all propositional logic rules that we can use on ground predicates (or ground statements corresponding to combinations of those ground predicates) and table 2 outlines the "lifted" versions of modus ponens and modus tollens that predicate logic uses.

Modus Ponens	Modus Tollens	Disjunctive addition	Conjunctive addition	Conjunctive Simplification
p	$\neg q$	p	p,q	$p \wedge q$
$p \Rightarrow q$	$p \Rightarrow q$	$\therefore p \lor q$	$\therefore p \land q$	$\therefore p, q$
$\therefore q$	$\therefore \neg p$			
Disjunctive syllogism	Hypothetical syllogism	Unit Resolution	Resolution	
$p \lor q$	$p \Rightarrow q$	$p \lor q$	$p \lor q$	
$\neg p$	$q \Rightarrow r$	$\neg q$	$\neg q \lor z$	
$\therefore q$	$\therefore p \Rightarrow r$	$\therefore p$	$p \lor z$	

Table 1: Propositional Logic inference rules we can use.

Universal Modus Ponens	Universal Modus Tollens

$(\forall x \in D)P(x) \Rightarrow Q(x)$	$(\forall x \in D)P(x) \Rightarrow Q(x)$
$P(A)$ for some $A \in D$	$\neg Q(A)$ for some $A \in D$
Q(A)	$\neg P(A)$

Table 2: Predicate Logic inference rules we can use.

2 Predicates

Table 3 describes the predicates that we will use.

Predicate	Meaning
Eats(p,m)	Person p eats in mode m (Healthily or Unhealthily)
Vegetarian(p)	Person p is a vegetarian.
Exercises(p)	Person p exercises.
Fit(p)	Person p is fit.

Table 3: The predicates we will use when translating English language statements to Predicate Logic statements.

3 Knowledge base

3.1 In English

(i) Everybody who eats healthily and exercises is fit.

(ii) If somebody is a vegetarian, this means that they eat healthily.

3.2 In Predicate Logic

(The students should be doing this.)

- (i) $(\forall p) Eats(p, Healthily) \land Exercises(p) \Rightarrow Fit(p)$
- (ii) $(\forall p) Vegetarian(p) \Rightarrow Eats(p, Healthily)$

4 The input and the derivation goal

Given the statement "Mary is a vegetarian who exercises", we want to derive that she is fit.

5 The proof

5.1 Formulation of input and derivation goal

We translate the input into predicate logic to get:

$Vegetarian(Mary) \land Exercises(Mary)$ ((1))
--	-----	---

Our goal is to derive Fit(Mary).

5.2 Derivation steps

By conjunctive simplification on (1), we can derive

Vegetarian(Mary) (2)	2)	1

and

Exercises(Mary).	(3	3)	
------------------	----	----	--

By Universal Modus Ponens between (ii) and (2), we can derive

Eats(Mary, Healthily)	(4)	

By conjunctive addition between (4) and (3), we can derive:

$$Eats(Mary, Healthily) \land Exercises(Mary) \tag{5}$$

Finally, by Universal Modus Ponens between (i) and (5) we can derive Fit(Mary), which is our desired conclusion. This concludes our proof.