
Welcome to Stat 425!

• Personnel

– Instructor: Liang, Feng (OH: Tuesday, noon-1pm)

– TA: Huang, Xichen

• Websites: Piazza and Compass and my page

• Homework

– When, where and how to submit your homework

– No late submissions will be accepted

– You get 100% for homework, if finish no less than 85% of all the

assignments

– Grading policy

• Two Exams, One Project, No Final Exam
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https://piazza.com/illinois/fall2016/stat4251gr/home
https://compass2g.illinois.edu/webapps/login/
https://publish.illinois.edu/liangf/teaching/stat-425/


Communication

• For questions related to homework/lectures, please post your question on

Piazza. By default, you are anonymous to your classmates, but not to the

instructor.

• If you want to send email to my Illinois account, please

1. Write from your Illinois email account (so I would know who you are)

2. Start your subject line with the course number, e.g., ”[stat425] cannot

attend exam I” (since I’m teaching two courses this semester)

3. Sign with your full name

4. Don’t send unexpected attachments.
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What You’ll Learn

Let’s first take a look of the final project in the past years.

• Fall 2015: Bike rental forcasting

• Fall 2014: Walmart store sales forecasting

• Fall 2013: Champaign-Urbana housing data

• Fall 2012: Titanic disaster data
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• Regression analysis is used to explain the dependence between a response

variable Y and one or more explanatory variables X1, X2, . . . Xp.

• In regression analysis, we assume

E[Y | X1, . . . , Xp] = g(X1, . . . , Xp),

where g could be a linear or non-linear function of the p covariates. The

task is to estimate g based on data: {yi, xi1, . . . , xip}ni=1.

• Two major goals of regression:

– Prediction

– Exploration
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• Take the Zillow data as an example. Here are the questions we would hope

to answer by analyzing the data

– What would be the fair market price of a house?

– Which of the variables Size (sqft), # Bathrooms, Age, Location has

the largest estimated effect on Price?

– Is it worth adding an additional bathroom?

– Identify, given this data set, the best deal for the buyer and the best

deal for the seller.
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Type of Regression Models

• We begin with linear regression, which models the mean function as a

linear combination of the Xj ’s:

E[Y ] = β0 + β1X1 + β2X2 + · · ·+ βpXp.

– Linear models (Y,Xk’s: numerical);

– Analysis of variance models (Y : numerical; Xk’s: categorical);

– Analysis of covariance models (Y : numerical; Xk’s:

categorical/numerical);

• Generalized linear models (Y : categorical);

• Mixed effects models (data are correlated);

• Nonparametric regression models (g is a smoothed curve).
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Course Overview

1. Linear regression

• Simple linear regression

• Multiple linear regression

• Regression diagnostics

• Transformation and variable selection

• Experimental design and ANOVA

2. Generalized linear regression

3. Nonparametric regression

4. Linear models with mixed effects
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General Expectations

• Finish the reading assignments

• Review the notes

• Get familiar with R

• Feedback and questions

• Finish homework independently

You can discuss homework problems with other students but should

write your answers independently using your own words.
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Prerequisites

You should be comfortable with the following jargons/concepts (Check the

posted Prerequisite Stat425.pdf)

• CDF, pdf, density functions, expectations, variance, independence,

conditional distributions;

• likelihood functions, random samples, estimator, mean-squared error,

hypothesis testing, p-value, confidence interval,

• vector, matrix, matrix multiplication, matrix transpose, inverse of a matrix,

full rank.
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Useful Distributions

Refresh your memory on the following distributions: Normal, Student t, and F

distribution.
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The Univariate Normal Distribution

• Y ∼ N(µ, σ2), E(Y ) = µ,Var(Y ) = σ2, with pdf

p(y) =
1√

2πσ2
exp

{
− (y − µ)2

2σ2

}
.

• Z ∼ N(0, 1): the standard normal rv. Φ(z) denotes its CDF.

Φ(−z) = 1− Φ(z), z > 0.

• Linear transformations of normals are still normal. Y ∼ N(µ, σ2), then

aY + b ∼ N(aµ+ b, a2σ2),
1

σ
(Y − µ) ∼ N(0, 1).

• Linear combinations of normal rv’s are normal? Not true in general, but

true for almost all cases we’ll encounter in 425.
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The Multivariate Normal Distribution

• Let Z = (Z1, . . . , Zn) where Zi’s are iid ∼ N(0, 1) rv’s. Then Z follows a

multivariate normal distribution, denoted by Nn(0, In), with pdf

f(z) =
n∏
i=1

1√
2π
e−z

2
i =

1

(2π)n/2
exp

{
− 1

2

n∑
i=1

z2i

}
=

1

(2π)n/2
exp

{
− 1

2
ztz
}
,

and moment generating function

M(t) = E[exp{ttZ}] = exp
{1

2
ttt
}
,

and mean and covariance

E(Z) = 0, Cov(Z) = In.
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• Y has a multivariate normal distribution with mean µ and covariance Σ,

denoted by Nn(µ,Σ) if its moment generating function is

MY (t) = exp
{
ttµ +

1

2
ttΣt

}
.

Why don’t we define Y via its pdf? (It may not exist.)
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• Recall the definition of the covariance matrix for a random vector Y. Any

covariance matrix Σ should be symmetric and positive semi-definite (psd),

where psd means

atΣa ≥ 0.

This is because

0 ≤ Var(atY) = atΣa.

Any symmetric psd matrix has a spectral decomposition

Σ = ΓtΛΓ, Λ = diag(λi)
n
i=1,

and Γn×n is a orthonormal matrix, i.e., ΓΓt = In.
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• If λn > 0, i.e., Σ is of full rank, then |Σ| > 0 and Σ−1 exists.

Then the pdf of Nn(µ,Σ) is given by

f(y) =
1

(2π)n/2|Σ|1/2
exp

{
−1

2
(y − µ)tΣ−1(y − µ)

}
.
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Properties of Multivariate Normals

• Affine transformations of a normal vector are still normal:

Y ∼ Nn(µ,Σ) =⇒ Am×nY + bm×1 ∼ Nm(Aµ + b, AΣAt).

• Marginals of a normal are still normal.

• Conditionals of a normal are still normal.

Y1|Y2 ∼ Nm
(
µ1 + Σ12Σ−1

22 (Y2 − µ2),Σ11 − Σ12Σ−1
22 Σ21

)
• For multivariate normals, uncorrelated = independent.
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Distributions Related to Normals

• Zi iid ∼ N(0, 1), then Z2
1 + · · ·+ Z2

n ∼ χ2
n.

W ∼ χ2
n, E(W ) = n, Var(W ) = 2n.

• Z ∼ N(0, 1) and W ∼ χ2
n are independent, then

Z√
W
∼ tn (student t-dist).

• W1 ∼ χ2
n, W2 ∼ χ2

m and they are independent, then

W1

W2
∼ Fn,m.

• Chi-square and Student t-dist have one df (degree of freedom) and F-dist

has two dfs.
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Basic Statistical Inference

Refresh your memory on basic statistical inference, such as

• point estimation: bias, unbiased, MSE;

• interval estimation: 95% CI (confidence interval);

• hypothesis testing: significance level, type I error, type II error, p-value.

18



Consider the following example: Z1, . . . , Zn iid ∼ N(θ, σ2), where θ and σ2

are unknown.

• What’s the MLE of θ? Is it unbiased? What’s the MSE (mean-squared

error) of the MLE?

• What’s the MLE of σ2? Is it unbiased? If yes, find an unbiased one.

• How to test θ = 1 against a two-sided alternative θ 6= 1? How to calculate

the p-value?

• How to test θ = 1 against a one-sided alternative Ha : θ > 1?

• How to construct a 95% confidence interval (CI) for θ?
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MLE

Suppose we collect n iid samples Z1, . . . , Zn from N(θ, σ2) where θ is

unknown. First, write the likelihood function

Lik(θ;Z1, . . . , Zn) =

n∏
i=1

1√
2πσ2

exp
(
− (Zi − θ)2

2σ2

)
.

The MLE of θ is the one that maximizes the likelihood function (given data

Z1:n)

θ̂ = arg max
θ

Lik(θ) = arg max
θ

log Lik(θ)

= arg max
θ
− 1

2σ2

n∑
i=1

(Zi − θ)2 = arg min
θ

n∑
i=1

(Zi − θ)2

=
1

n
(Z1 + . . . Zn) = Z̄·
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• Note that θ̂, as a function of the data (Z1, . . . , Zn), is a random variable

Eθ̂ = E
1

n
(Z1 + · · ·+ Zn) = θ, Var(θ̂) =

σ2

n
.

Under the iid normal assumption, we have θ̂ ∼ N(θ, σ2/n).

• Is θ̂ unbiased?

Bias(θ̂) = Eθ̂ − θ.

• What’s its MSE?

MSE(θ̂) = E(θ̂ − θ)2 = Bias2 + Var(θ̂).

Here, we have 0 bias, and therefore MSE(θ̂) = σ2/n.
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If θ and σ2 are unknown, you’ll find that the MLE of θ is the same as what we

derived before. Also we can find the MLE of σ2:

σ̂2
mle =

1

n

n∑
i=1

(Zi − Z̄)2

Using the following equality

n∑
i=1

(Zi − Z̄)2 =

n∑
i=1

Z2
i − nZ̄2,

we can show that

Eσ̂2
mle =

n− 1

n
σ2,

that is σ̂2
mle is biased. It is easy to obtain an unbiased one

σ̂2 =
1

n− 1

n∑
i=1

(Zi − Z̄)2.

What’s the distribution of σ̂2? σ̂2 ∼ σ2χ2
n−1/(n− 1)
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Hypothesis Testing

• Suppose we want to test

H0 : θ = a, versus Ha : θ 6= a.

• Construct a test statistic (which tend to take extreme values under Ha)

θ̂ − a
se(θ̂)

.a

Under H0, the statistic follows Tn−1, i.e., student T dist with (n− 1)

degree-of-freedom. b

aFor this normal example, se(θ) = σ̂2/n.
bWhen the sample size n is large, the test statistic follows N(0, 1) approximately, even

if Zi’s are not normally distributed.
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• Given the data, we can calculate the test statistic – suppose it’s t0. Then

the p-value is defined to be 2 × the area under the Tn−1 dist more

extreme than the observed statistic t0.

That is, p-value = 2× F (|t0|), where F is the CDF for Tn−1.

• If p-value < the pre-specified significant level, say 5%, then we reject H0

(small p-values are evidence against H0).
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Confidence Intervals

• The (1− α) confidence interval (CI) for θ is given by(
θ̂ − t

(α/2)
n−1 se(θ̂), θ̂ + t

(α/2)
n−1 se(θ̂)

)
,

or we sometimes write it as

θ̂ ± t
(α/2)
n−1 se(θ̂)

where t
(α/2)
n−1 is the (1− α/2) percentile of Tn−1.
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• Suppose α = 5%. The 95% CI (constructed) above is random (since it

depends on the data). We CAN say that this random interval covers θ

with probability 95%.

• Suppose given a data set, we calculate the CI, which is (2.1, 3.5). Then for

this particular interval, 95% is confidence, not chance.

We CANNOT say that this particular interval (2.1, 3.5) covers θ with

probability 95%.

This is because (2.1, 3.5) is a fixed interval and θ is a fixed number

(although it’s unknown), so (2.1, 3.5) either covers θ or not, and there is

no probability attached to (2.1, 3.5).
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So how should we interpret the 95% CI (2.1, 3.5)?

• Based on the data, we are 95% confident that θ is between 2.1 and 3.5.

• We do not know whether (2.1, 3.5) covers θ or not, but we know: if we

were to repeat this process—collect samples from the same population and

calculate 95% CI—many times, then about 95% of the resulting CIs will

cover the true θ.

• The interpretation I like is based on a nice duality between testing and CI.

The interval (2.1, 3.5) contains a set of plausible values for θ, in the sense

that for any value θ0 ∈ (2.1, 3.5), based on the data, we cannot reject the

null hypothesis H0 : θ = θ0 at the 5% significant level.
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