Welcome to Stat 425!

e Personnel
— Instructor: Liang, Feng (OH: Tuesday, noon-1pm)
— TA: Huang, Xichen

e Websites: Piazza and Compass and my page

e Homework
— When, where and how to submit your homework
— No late submissions will be accepted

— You get 100% for homework, if finish no less than 85% of all the

assignments
— Grading policy

e [wo Exams, One Project, No Final Exam


https://piazza.com/illinois/fall2016/stat4251gr/home
https://compass2g.illinois.edu/webapps/login/
https://publish.illinois.edu/liangf/teaching/stat-425/

Communication

e For questions related to homework /lectures, please post your question on

Piazza. By default, you are anonymous to your classmates, but not to the

Instructor.

e |f you want to send email to my lllinois account, please

1.

2.

Write from your lllinois email account (so | would know who you are)

Start your subject line with the course number, e.g., " [stat425] cannot

attend exam I” (since I'm teaching two courses this semester)
Sign with your full name

Don't send unexpected attachments.



What You’ll Learn

Let's first take a look of the final project in the past years.
e Fall 2015: Bike rental forcasting
e Fall 2014: Walmart store sales forecasting
e Fall 2013: Champaign-Urbana housing data

e Fall 2012: Titanic disaster data



e Regression analysis is used to explain the dependence between a response

variable Y and one or more explanatory variables X1, Xo,... X,

e In regression analysis, we assume
ElY | Xl,...,X,p] :g(Xl,...,Xp),

where g could be a linear or non-linear function of the p covariates. The
task is to estimate g based on data: {y;, Zi1, ..., Tip}i .

e Two major goals of regression:
— Prediction

— Exploration



e Take the Zillow data as an example. Here are the questions we would hope

to answer by analyzing the data
— What would be the fair market price of a house?

— Which of the variables Size (sqft), # Bathrooms, Age, Location has

the largest estimated effect on Price?
— Is it worth adding an additional bathroom?

— ldentify, given this data set, the best deal for the buyer and the best

deal for the seller.



Type of Regression Models

e \We begin with linear regression, which models the mean function as a

linear combination of the X;’s:
E[Y] — 50 + Ble + BZXQ + -+ 5po-

— Linear models (Y, X's: numerical);
— Analysis of variance models (Y: numerical; Xj's: categorical);

— Analysis of covariance models (Y: numerical; Xj's:

categorical /numerical);
e Generalized linear models (Y: categorical);
e Mixed effects models (data are correlated);

e Nonparametric regression models (g is a smoothed curve).



Course Overview

1. Linear regression
e Simple linear regression
e Multiple linear regression
e Regression diagnostics
e Transformation and variable selection

e Experimental design and ANOVA
2. Generalized linear regression
3. Nonparametric regression

4. Linear models with mixed effects



General Expectations

Finish the reading assignments
Review the notes

Get familiar with R

Feedback and questions

Finish homework independently

You can discuss homework problems with other students but should

write your answers independently using your own words.



Prerequisites

You should be comfortable with the following jargons/concepts (Check the
posted Prerequisite_Stat425.pdf)

e CDF, pdf, density functions, expectations, variance, independence,

conditional distributions:

e likelihood functions, random samples, estimator, mean-squared error,

hypothesis testing, p-value, confidence interval,

e vector, matrix, matrix multiplication, matrix transpose, inverse of a matrix,

full rank.



Useful Distributions

Refresh your memory on the following distributions: Normal, Student t, and F

distribution.
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The Univariate Normal Distribution

Y ~ N(p,0?), E(Y) = u,Var(Y) = 02, with pdf

p(y) = \/2;76Xp{—<y2_05)2}-

Z ~ N(0,1): the standard normal rv. ®(z) denotes its CDF.

O(—2)=1—P(2), z>0.
Linear transformations of normals are still normal. Y ~ N(p, o?), then
1
aY +b~ N(ap+b,a*0?), =(Y —pu)~ N(0,1).
o

Linear combinations of normal rv's are normal? Not true in general, but

true for almost all cases we'll encounter in 425.
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The Multivariate Normal Distribution

o let Z=(41,...,2Z,) where Z;'s are iid ~ N(0,1) rv's. Then Z follows a
multivariate normal distribution, denoted by N, (0,1,), with pdf

n

f(z> — ﬁ \/12?6_%2 — (27571/2 exp{ - %ZZZQ}

1=1
1 1,
— (27T)n/2 eXp{ — iz Z},

and moment generating function

M(t) = Elexp{t'Z}] = exp {%ttt},

and mean and covariance
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e Y has a multivariate normal distribution with mean g and covariance %,

denoted by N, (u, ) if its moment generating function is

1
My (t) = exp {ttu + 5ttZt}.

Why don't we define Y via its pdf? (It may not exist.)
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e Recall the definition of the covariance matrix for a random vector Y. Any
covariance matrix > should be symmetric and positive semi-definite (psd),

where psd means

atYa > 0.

This is because

0< Var(atY) — a'Ya.
Any symmetric psd matrix has a spectral decomposition
> =T*AT, A = diag(\;)1,

and T',,«,, is a orthonormal matrix, i.e., TT* =1,,.
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e If X\, >0, ie, Xis of full rank, then || > 0 and X! exists.

Then the pdf of N,,(p, %) is given by

1) = G| 3 - WSy b
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Properties of Multivariate Normals

e Affine transformations of a normal vector are still normal:

Y ~N,(1,2) = Apixn Y +bmxt ~ Ny (Ap + b, AL AY).

e Marginals of a normal are still normal.

e Conditionals of a normal are still normal.
Yi|Ys ~ N, (,ul + Y1235 (Yo — p5), X171 — Z1222_21221)

e For multivariate normals, uncorrelated = independent.
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Distributions Related to Normals

Z; iid ~ N(0,1), then ZZ + .-+ Z2 ~ 2.
W ~x2, E(W) = n, Var(W) = 2n.
Z ~ N(0,1) and W ~ x2 are independent, then

Z
—— ~ t, (student t-dist).

VW

W1 ~ x2, Wa ~ x2. and they are independent, then

Wi

— ~ Fom.
Wy ’

Chi-square and Student ¢-dist have one df (degree of freedom) and F-dist

has two dfs.
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Basic Statistical Inference

Refresh your memory on basic statistical inference, such as
e point estimation: bias, unbiased, MSE;
e interval estimation: 95% Cl (confidence interval);

e hypothesis testing: significance level, type | error, type Il error, p-value.
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Consider the following example: Z1, ..., Z, iid ~ N(0,0?), where 6 and o>

are unknown.

e What's the MLE of 67 Is it unbiased? What's the MSE (mean-squared
error) of the MLE?

e What's the MLE of ¢2? Is it unbiased? If yes, find an unbiased one.

e How to test # = 1 against a two-sided alternative 8 # 17 How to calculate

the p-value?
e How to test § = 1 against a one-sided alternative H, : 6§ > 17

e How to construct a 95% confidence interval (Cl) for 67
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MLE

Suppose we collect n iid samples Z1, ..., Z, from N(6,02) where 0 is

unknown. First, write the likelihood function

Lik(6: Z1, . .., Zn) :ﬁ ! eXp(— (Z"_Q)Q).

The MLE of 6 is the one that maximizes the likelihood function (given data
Zl:n)

0 = arg max Lik(0) = arg max log Lik(#)
= argmax——z Z; — 0)* —argmmz
1 _
- (Zi+...Z)=7Z
n
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e Note that 6, as a function of the data (Z,...,Z,), is a random variable

1 .
EO=E—(Z1+---+Z,) =0, Var(f)=—.
n n

Under the iid normal assumption, we have § ~ N(0,2/n).

o Is 6 unbiased?

A

Bias(0) = E6 — 0.
e What's its MSE?
MSE(0) = E(d — 0)? = Bias® + Var(d).

Here, we have 0 bias, and therefore MSE(0) = o2 /n.
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If @ and o2 are unknown, you'll find that the MLE of 6 is the same as what we

derived before. Also we can find the MLE of o2:

a-r2n|e — g Z(ZZ - 2)2
i=1
Using the following equality
n n
YN (Zi—2)?=) 2} —nZ?
i=1 i=1
we can show that
— 1
E&?me = i 02,
n
that is 62, is biased. It is easy to obtain an unbiased one
2= L Sz -2
n—1< ’ '

What's the distribution of 52?7 6% ~ o0x%2_,/(n — 1)
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Hypothesis Testing

e Suppose we want to test
Hy:0=a, versus H,:0+#a.

e Construct a test statistic (which tend to take extreme values under H,)

0 —a

a

se(d)

Under Hy, the statistic follows T;, 1, i.e., student T" dist with (n — 1)

degree-of-freedom. P

aFor this normal example, se(8) = 62 /n.
PWhen the sample size n is large, the test statistic follows N(0, 1) approximately, even

if Z,;’s are not normally distributed.
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e Given the data, we can calculate the test statistic — suppose it's ty. Then
the p-value is defined to be 2 x the area under the 7},,_; dist more

extreme than the observed statistic ¢g.

That is, p-value = 2 x F'(|tg|), where F'is the CDF for T;,_.

e If p-value < the pre-specified significant level, say 5%, then we reject Hy

(small p-values are evidence against Hy).
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Confidence Intervals

e The (1 — «) confidence interval (Cl) for 6 is given by
(é — tff_/f)se(é), 0 + tfff?se(é)),

or we sometimes write it as

A

0 + tff‘_/12>se(é)

where tq(,ba_/f) is the (1 — «/2) percentile of T},_1.

25



e Suppose a = 5%. The 95% Cl (constructed) above is random (since it
depends on the data). We CAN say that this random interval covers 6
with probability 95%.

e Suppose given a data set, we calculate the Cl, which is (2.1,3.5). Then for

this particular interval, 95% is confidence, not chance.

We CANNOT say that this particular interval (2.1,3.5) covers 6 with
probability 95%.

This is because (2.1,3.5) is a fixed interval and 6 is a fixed number
(although it's unknown), so (2.1, 3.5) either covers # or not, and there is

no probability attached to (2.1, 3.5).
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So how should we interpret the 95% CI (2.1,3.5)7
e Based on the data, we are 95% confident that 8 is between 2.1 and 3.5.

e We do not know whether (2.1, 3.5) covers 6 or not, but we know: if we
were to repeat this process—collect samples from the same population and
calculate 95% Cl—many times, then about 95% of the resulting Cls will

cover the true 6.

e The interpretation | like is based on a nice duality between testing and CI.

The interval (2.1,3.5) contains a set of plausible values for 6, in the sense
that for any value 6y € (2.1,3.5), based on the data, we cannot reject the

null hypothesis Hy : 8 = 0, at the 5% significant level.
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