
Example: Cats Data

• Let’s look at the cats data, where the goal is to describe the relationship

between Hwt (heart weight) and Bwt (body weight). As a starting point,

we assume the relationship is linear.

• Data (yi, xi)
n
i=1, where yi, xi ∈ R.

• Apparently the data won’t be able to fit on a straight line. Assume

yi = β0 + β1xi + ei

(β0, β1) : unknown regression coefficients,

e′is : often assume to have mean 0 and variance σ2
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Overview for SLR (I)

• How to use LS to estimate (β0, β1)? We can obtain an explicit expression

for (β̂0, β̂1). There is a nice connection between the LS estimate of the

slope, β̂1, and sample correlation/variance of X and Y , which will help

you to remember the expression.

• Throughout we’ll pick up some jargons: fitted value, residual, RSS,

R-square (used to access the overall model fit).

• How would the LS fitting/inference be affected if the data, X and/or Y ,

are shifted and/or scaled (i.e., linear transformed)?

• SLR without the intercept: fit a regression line passing the origin.

• How to use R to carry out all the analysis and produce relevant graphs.
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Parameter Estimation by Least Squares

We would like to choose a line which is close to the data points. We measure

the closeness by squared errorsa.

Least Squares Estimation: find (β̂0, β̂1) that minimize the residual sum of

squares (RSS)

RSS =
n∑
i=1

(yi − β0 − β1xi)2.

To find the solution, we have

∂RSS

∂β0
= −2

∑
i

(yi − β0 − β1xi) = 0,

∂RSS

∂β1
= −2

∑
i

xi(yi − β0 − β1xi) = 0.

aWhy squared error? Why not absolute error?
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Re-arrange the equations,

β0n+ β1
∑

xi =
∑

yi, (1)

β0
∑

xi + β1
∑

x2i =
∑

xiyi. (2)

From (1), we have

β̂0 = ȳ − β̂1x̄.

Plug it back to (2),(
ȳ − β̂1x̄

)∑
xi + β1

∑
x2i =

∑
xiyi

β1
(∑

x2i −
∑

xix̄
)

=
∑

xiyi −
∑

xiȳ

β̂1 =

∑
xiyi −

∑
xiȳ∑

x2i −
∑
xix̄

=

∑
xi(yi − ȳ)∑
xi(xi − x̄)

.
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Some equalities (basically centering one side is the same as centering both

sides for cross-products):∑
i

(xi − x̄)(yi − ȳ) =
∑
i

xi(yi − ȳ) =
∑
i

(xi − x̄)yi.

So the LS estimates of (β0, β1) can be expressed as

β̂0 = ȳ − β̂1x̄,

β̂1 =
Sxy

Sxx
= rXY

(
Syy

Sxx

)1/2

,

where

Sxy =
∑

(xi − x̄)(yi − ȳ),

Sxx =
∑

(xi − x̄)2, Syy =
∑

(yi − ȳ)2,

rXY =
Sxy√

(Sxx)(Syy)
(the sample correlation).
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It is not surprising that the LS estimates are related to the sample correlation

between X and Y . Recall that SLR assumes the dependence between X and

Y is linear. Correlation is exactly the measure used to quantify the linear

dependence between two variablesa.

aIt is easy to construct an example, where Y depends on X via a nonlinear function

and their correlation is zero.
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Suppose we know the mean, variance of X and Y , and their correlation r.

What is your guess of y given x? It seems reasonable to guess the “unit-free,

location/scale invariant” version of Y by r times the “unit-free, location/scale

invariant” version of X, i.e.,

y − µy
σy

≈ rxy
x− µx
σx

.a

Replace the mean, variance and correlation by the corresponding sample

version:

y − ȳ√
Syy
≈ rxy

x− x̄√
Sxx

=⇒ y − ȳ ≈ rxy

√
Syy

Sxx
(x− x̄)

=⇒ y ≈

(
ȳ − rxy

√
Syy

Sxx
x̄

)
+

(
rxy

√
Syy

Sxx

)
x

aOf course, if you are given y and want to predict x, then you need to place rxy on the

y-side.
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Some jargons.

• Fitted value at xi or the prediction of yi: ŷi = β̂0 + β̂1xi.

• Residual at xi: ri = yi − ŷi. Note that the two equations on p6 imply that∑
i

ri = 0,
∑
i

rixi = 0.a

• RSS =
∑n
i=1 r

2
i .

• The error variance is estimated by

σ̂2 =
1

n− 2
RSS =

1

n− 2

n∑
i=1

r2i .

The degree of freedom (df) of the residuals is n− 2. In general

df(residuals) = sample-size− number-of-parameters.

a
∑

i ri = 0 implies that the sample mean of ŷi is just ȳ.
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Goodness of Fit: R-square

Note the total variation (TSS) in y can be decomposed into the summation of

RSS and the total variation in the fitted value ŷ (FSS):∑
i

(yi − ȳ)2 =
∑
i

(yi − ŷi + ŷi − ȳ)2 =
∑
i

(ri + ŷi − ȳ)2

=
∑
i

r2i +
∑
i

(ŷi − ȳ)2 (3)

= RSS + FSS,

where the cross-product∑
i

ri(ŷi − ȳ) = β̂0
∑
i

ri + β̂1
∑
i

rixi − ȳ
∑
i

ri = 0.

Also note that the average of ŷi’s, ¯̂y, is the same as the average of yi; this is

true because the intercept is included in the model.
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A common measure on how well the model fits the data is the so-called

coefficient of determination or simply R-square:

R2 =

∑
(ŷi − ȳ)2∑
(yi − ȳ)2

=
FSS

TSS
=

TSS− RSS

TSS
= 1− RSS

TSS
.

For a given data set where TSS is fixed, so smaller the RSS, larger the R2.

We can also show that R2 = r2XY (see PP1).

R2 = Var(ŷ)
Var(y) measures how much variation in the original data yi’s is explained

or reduced by the LS fitting. If Y and X are strongly linear dependent, a linear

function of X can help to reduce the uncertainty (i.e., variation) of Y .
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How Affine Transformations on the Data Affect

Regression?

Suppose we have run a SLR model of Y on X.

• If we rescale the data yi by ỹi = ayi + b, and then regress ỹi on xi. How

would the LS estimates and R2 be affected?

• If we rescale the covariates xi by x̃i = axi + b, and then regress yi on x̃i.

How would the LS estimates and R2 be affected?

• If we regression X on Y instead, will the LS line be the same? How about

R2?
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Regression Through the Origin

Sometimes we want to fit a line with no intercept (regression through the

origin): yi ≈ β1xi. For example, xi denotes the intensity level of various

exercises and yi denotes the additional calories you burn with those exercises.

We can estimate β1 using the LS principle

min
β1

n∑
i=1

(yi − β1xi)2 =⇒ β̂1 =

∑
i xiyi∑
i x

2
i

.

The ordinary definition of R-square is no longer meaningful; you could have

RSS bigger than TSS, and therefore have a negative R-square, if you use

formula R2 = 1− RSS/TSS.
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The ordinary R-square measures the effect of X after removing the effect of

the intercept by centering both yi’s and ŷi’s. For regression models with no

intercept, we shouldn’t do the centering when computing R-square.

Let’s look at the following decomposition (slightly different from (3) )∑
i

y2i =
∑
i

(yi − ŷi + ŷi)
2 =

∑
i

(yi − ŷi)2 +
∑
i

ŷ2i .

Then define R-square for regression with no intercept as

R̃2 =

∑
i ŷ

2
i∑

i y
2
i

= 1− RSS∑
i y

2
i

.
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Remarks

• I want to emphasize here that (β̂0, β̂1, σ̂
2) are not the values of the true

parameters (β0, β1, σ
2), but estimates/estimators. This is why we put a

hat on those symbols. If we happen to collect another data set, their

values would be different; they are functions of the data, and therefore

they are random variables.

• Next we’ll 1) check the statistical properties (such as unbiasedness or

MSE) of those estimates, and 2) do some statistical inference under the

normal assumption.
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Overview for SLR (II)

• Regarding the statistical properties of the LS estimates, we first check the

properties of (β̂0, β̂1) as an estimate of the true coefficient vector (β0, β1).

• We’ll compute their mean, variance and covariance, and then show that

they are unbiased.

• We can also show that they achieve the smallest MSE among all unbiased

estimators, but we’ll show this result as a general result when discussing

MLR.

• Till this point, we only need to assume the 1st and 2nd moments of ei’s,

i.e., Eei = 0, Var(ei) = σ2, Cov(ei, ej) = 0, i 6= j.
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• For hypothesis testing and construct confidence/prediction intervals, we

need to derive the distribution of (β̂0, β̂1).

• We’ll make iid normal assumptions on ei’s, and will use t-dist in testing

and interval estimation.

Of course we could stick to the original weaker assumption on just the 1st

and 2nd moments, and then call CLT to approximate the distribution of

(β̂0, β̂1), as well as some test statistics, by normals, when the sample size

n is large enough.

• In most other stat courses, we use uppercase letters for random variables

and lowercase for their observed values. However, in stat425, sometimes

the uppercase letters are reserved for matrices, so I’ll use lowercase letters

for random variables as well. Whether a lowercase letter is a rv or a

constant is usually clear from the context, but feel free to ask whenever

you are confused.
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Properties of LS Estimates

Assume: yi = β0 + β1xi + ei, and

E[ei] = 0, Cov(ei, ej) = σ2δij , (4)

where δij = 1, if i = j and 0, otherwise. The assumption (4) on the 1st and

2nd moments of the error term leads to the following assumption on the 1st

and 2nd moments of Y conditioning on X:

E[yi | xi] = β0 + β1xi, Cov[yi, yj | xi, xj ] = σ2δij ,

where δij = 1 if i = j and 0 if i 6= j.

In stat425, the statistical assumption is on the conditional distribution of Y

given X. So when we evaluate expectations, only yi’s are random and xi’s are

treated as given, non-random constants.
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LS estimates are unbiased.

β̂1 =
∑
i

(xi − x̄)

Sxx
yi =

∑
i

ciyi,
∑
i

ci = 0

Eβ̂1 =
∑
i

ciEyi =
∑
i

ci(β0 + β1xi) = β1

(∑
i

cixi

)
= β1

β̂0 = ȳ − β̂1x̄

Eβ̂0 =
( 1

n

∑
i

Eyi
)
− x̄ · Eβ̂1 = β0 + β1x̄− β1x̄ = β0
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MSE of the LS estimates (since they are unbiased, MSE = Var).

Var(β̂1) = Var
(∑

i

ciyi
)

= σ2
∑

c2i = σ2 1

Sxx
.

Var(β̂0) = σ2
( 1

n
+

x̄2

Sxx

)
.a

Both MSEs reciprocally depend on Sxx. So to reduce the error, we should only

include kittens and overweight cats?

aWe can write β̂0 = ȳ −
∑

i ciyix̄ =
∑

i

(
1
n
− cix̄

)
yi.
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Normal Assumptions

Assume: yi = β0 + β1xi + ei, and

ei iid ∼ N(0, σ2), or equivalently, yi indep. ∼ N(β0 + β1xi, σ
2).

• The mean function is linear: E(yi) = β0 + β1xi.

• Errors ei’s are independent; data yi’s are independent.

• Errors ei’s have homogeneous variance: Var(ei) = σ2, and so are data yi’s.

• Each ei is normally distributed and each yi is normally distributed.

• Note that each ei is normal + independence, so they are jointly normal.

Consequently yi’s are jointly normal, and so are any linear combinations of

yi’s, which is an important result that will be used later in our inference.
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Distributions of the LS estimates

• β̂0 and β̂1 are jointly normally distributed with

Eβ̂1 = β1, Var(β̂1) = σ2 1

Sxx

Eβ̂0 = β0, Var(β̂0) = σ2
( 1

n
+

x̄2

Sxx

)
Cov(β̂0, β̂1) = −σ2 x̄

Sxx
.

• RSS ∼ σ2χ2
n−2 and therefore

Eσ̂2 =
E RSS

n− 2
= σ2.

• (β̂0, β̂1) and RSS are independent (which will be proved for MLR later).
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Hypothesis Testing

• Test H0 : β1 = c versus Ha : β1 6= c

• The test statistic

t =
β̂1 − c
se(β̂1)

=
β̂1 − c
σ̂/
√

Sxx
∼ Tn−2 under H0.

• p-value = 2 × the area under the Tn−2 dist more extreme than the

observed statistic t.

• The p-value returned by the R command lm is for the test with

H0 : β1 = 0.
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F -test and ANOVA

An alternative way to test β1 = 0 is based on the F -test. Recall the following

decomposition of the variance: TSS = FSS + RSS.

Sum of Squares Expression df

TSS
∑
i(yi − ȳ)2 n− 1

FSS
∑
i(ŷi − ȳ)2 1

RSS
∑
i(yi − ŷi)2 n− 2

If β1 6= 0, we would expect a large amount of variation in Y is explained by the

regression model, i.e., FSS is large. But how large is large? For the cats data,

if we measure Hwt by kg, FSS will be much smaller, but whether Bwt is a good

predictor for Hwt shouldn’t be affected by the scale of Hwt.
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Source df SS MS F

Regression 1 FSS FSS/1 MS(reg)/MS(err)

Error n− 2 RSS RSS/(n− 2)

Total n− 1 TSS

Under H0 : β1 = 0, the F -test statistic (scale-invariant)

F =
MS(reg)

MS(err)
=

FSS

RSS/(n− 2)
∼ F1,n−2.

It can be shown that the F -test statistic is equal to the square of the t-test

statistic (for testing β1 = 0) and their p-values (for testing β1 = 0) are the

same. So they are essentially the same test; in other words, you can ignore the

F -test in the R output for SLR.
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Estimation/Prediction at A New Case

The LS line can be used to obtain values of the response (Y∗) for given values

of the predictor (X = x∗). There are two variants of this problem. a

1. Estimation of the mean response at x∗, i.e., we aim to estimate

β0 + β1x∗

2. Prediction of an outcome Y ∗ that we might observe at x∗, where

Y∗ ∼ N(β0 + β1x∗, σ
2)

Point estimation and prediction are the same, i.e., the fitted value at x∗

β̂0 + β̂1x∗.

a“estimation” is associate with a parameter which takes a fixed but unknown value

(i.e., not random); “prediction” is associated with a random variable.
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However accuracy for estimation and the one for prediction are different. Here

we measure accuracy by the averaged squared discrepancy between the point

estimation/prediction and their target.

• estimation, the target is β0 − β1x∗, and

E(β̂0 + β̂1x∗ − β0 − β1x∗)2

= Var(β̂0 + β̂1x∗)

= Var(β̂0) + (x∗)
2Var(β̂1) + 2x∗Cov(β̂0, β̂1)

= σ2
( 1

n
+

(x∗ − x̄)2

Sxx

)
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• For prediction, the target is Y∗ = β0 + β1x∗ + e∗ where e∗ ∼ N(0, σ2) and

e∗, as the error incurred with a new sample Y∗, is independent of the

previous n data points, i.e., independent of (β̂0, β̂1).

E(β̂0 + β̂1x∗ − Y∗)2

= E(β̂0 + β̂1x∗ − β0 − β1x∗ − e∗)2

= E(β̂0 + β̂1x∗ − β0 − β1x∗)2 + E(e∗)
2

= σ2
(

1 +
1

n
+

(x∗ − x̄)2

Sxx

)
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Error for Estimation = σ2
( 1

n
+

(x∗ − x̄)2

Sxx

)
Error for Prediction = σ2

(
1 +

1

n
+

(x∗ − x̄)2

Sxx

)
• Errors are not the same at all x∗: smaller when x∗ is near x̄.

• Error for prediction is larger.

There are two sources of uncertainty when doing prediction at x∗: 1) one

is from the n sample points (xi, yi)
n
i=1, which is used to estimate the LS

line, and 2) one is from the random error e∗ ∼ N(0, σ2), which is the error

we couldn’t avoid if we knew (β0, β1). There is why even when the sample

size n goes to infinity, we can have the estimation error go to 0 but not

the prediction error.
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• The (1− α) confidence interval (CI) for β0 + β1x∗

β̂0 + β̂1x∗ ± t
(α/2)
n−2 σ̂

√
1

n
+

(x∗ − x̄)2

Sxx

• The (1− α) prediction interval (PI) for y∗

β̂0 + β̂1x∗ ± t
(α/2)
n−2 σ̂

√
1 +

1

n
+

(x∗ − x̄)2

Sxx

Here we replace σ, which is usually unknown, by its estimate

σ̂ =
√

RSS/(n− 2).
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Association/Correlation vs Causation

• The statement “X causes Y ” means that changing the value of X will

change the distribution of Y. When X causes Y , X and Y will be

associated but the reverse is not, in general, true. Association does not

necessarily imply causation.

• If the data are from a randomized study, then the causal interpretation is

correct.

• If the data are from a observational study, then the association

interpretation is correct.
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