
Diagnostics

• Assumption: y ∼ N(Xβ, σ2In).

• Error: assumed to be iid ∼ N(0, σ2).

• Model: assumed to be linear, i.e., Ey = Xβ.

• Unusual observations

• We will use both graphical and numerical tools for diagnosis.
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Diagnostics: Finding Unusual Observations

Why we discuss unusual observations first?

Least squares regression is very sensitive to individual data points. (Yes, this is

why we need to discuss robust regression procedures later.)

It is possible the inference, p-values, parameter estimation, CI’s are all driven

by a single data point.
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Types of Unusual Observations

• High leverage points: We’ll define some measure called “leverage” which

quantifies how far a data point is from the center of the whole sample.

Points with a large value of leverage are flagged as the high leverage

points. High leverage points could be “good” or “bad”.

• Outliers: data point that does not fit the model as the other data points.

We will introduce a formal testing procedure to identify outliers.
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• High influential points: How does each individual observation affect the

estimation of the model?

Sometimes, the estimated parameters and other related statistics (such as

R2) depend heavily on one observation, in the sense that if that

observation were removed, the result of the analysis would change.

We will define some measure, “Cook’s distance”, to quantify the

aforementioned change for each data point and data points with large

value of Cook’s distance are called high influential points.
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Leverages

• The diagonal elements of H,

hi = Hii,

are called leverages and are very useful diagnostics.

• hi gives a measure (invariant under any affine transformation of X) of

how far the i-th observation is from the center of the data (in the

X-space). This measure also arises in our discussion on the width of CI

and standard error of prediction/estimation at xi.
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• For simple regression,

hi =
1

n
+

(xi − x̄)2∑
i(xi − x̄)2

.

• In general

hi = xti(X
tX)−1xi

=
1

n
+

1

n− 1
(zi − z̄)tΣ̂−1(zi − z̄) (1)

where Σ̂(p−1)×(p−1) = 1
n−1

∑n
i=1(zi − z̄)(zi − z̄)t is the sample covariance

of the (p− 1) predictor variables. The 2nd term in the right hand side of

(1) is the so-called Mahalanobis distance from zi to the data center z̄.
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The following two properties of H

tr(H) = p, H = HHT

imply that
∑
i hi = p and

∑
j H

2
ij = hi.

∑
j

H2
ij = H2

ii +
∑
j 6=i

H2
ij = h2i +

∑
j 6=i

H2
ij = hi

=⇒
∑
j 6=i

H2
ij = hi(1− hi) =⇒ hi(1− hi) > 0

Properties of hi:

0 < hi < 1,
∑
i

hi = p.
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Recall ŷ = Hy, that is,

ŷ1

· · ·

ŷi

· · ·

ŷn


=



Hi1 · · · Hn1

· · · · · · · · ·

Hi1 · · · Hin

· · · · · · · · ·

Hn1 · · · Hnn





y1

· · ·

yi

· · ·

yn



ŷi = H11y1 + · · ·+Hiiyi + · · ·+Hinyn

= H11y1 + · · ·+ hiyi + · · ·+Hinyn
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• The LS fit ŷi is a linear combination of the n data points,

ŷi = hiyi +
∑
j 6=i

Hijyj , i.e. hi =
dŷi
dyi

• When hi is large (close to 1), ŷi relies heavily on yi (instead of using the

information from other data points), therefore ŷi will be “forced” to be

close to the observed yi. Consequently, the variance for the residual ri will

be small, and the variance for the fit ŷi will be large (since the fit from

another data set would be quite different),

var[ŷi] = σ2hi, var[ri] = σ2(1− hi).
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High-Leverage Points

high-leverage points: since
∑
i hi = p, a rule-of-thumb is that observations

with leverages more than 2p/n should be flagged as high-leverage points and

should be examined closely.

Good high-leverage points: points are from the model as the rest sample, but

with an xi value that is far away from the sample mean. What’re the

advantages of including good high-leverage points?

Bad high-leverage points: do not follow the pattern suggested by the rest of

the data; the LS fitting would change a lot if we remove this point.
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Standardize Residuals ri’s

Residuals ri = yi − ŷi does NOT have a constant variance. So they need to be

standardized. There are two versions:

• Standardized residuals r∗i : internally standardized; does not follow t nor

normal distribution.

• Studentized residuals ti: externally standardized; follows t distribution; will

be used in our outlier test.

Residuals are very useful diagnostics. Some recommend using some

standardized version of the residual instead of the raw residual ri in all

diagnostic plots.
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Difference between e and r

• Both are normally distributed, but

e ∼ Nn
(
0, σ2In

)
, r ∼ Nn

(
0, σ2(In −H)

)
,

where H is the projection/hat matrix.

• The errors ei’s have equal variance and are independent, while the

residuals, ri’s have unequal variance and are correlated.

• Ee = Er = 0. But ∑
ei 6= 0,

∑
i

ri = 0

(by default, we assume an intercept is included in the model).
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Standerdized Residuals

Since ri ∼ N(0, (1− hi)σ2), consider a standardization of the residual

r∗i =
ri

σ̂
√

1− hi
, i = 1, . . . , n.

•
∑
i r
∗
i is no longer zero.

• Each ri isn’t distributed as student’s t distribution, since ri isn’t

independent of σ̂.

• As an approximation, we can view r∗i ’s iid N(0, 1), although they are not

normally distributed and they are slightly correlated.
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Studentized Residuals

• The studentized residuals are based on the idea of leave one out (also

known as jackknife).

• Here is the idea: run a regression model on the (n− 1) samples with the

i-th sample (xi, yi) removed. Denote the leave-one-out estimates of the

regression coefficient and error variance by β̂(i) and σ̂(i), where the

notation (i) means “excluding the i-th observation.”

• Then, check the discrepancy between yi and ŷ(i) = xtiβ̂(i).
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• Define the studentized residuals as

ti =
yi − ŷ(i)

σ̂(i)
[
1 + xti(X

t
(i)X(i))−1xi

]1/2 =
ri

σ̂(i)
√

1− hi

which follows tn−p−1 if yi ∼ N(xTi β, σ
2).

The last equality above is not trivial (you can find the proof in the

Appendix). One can also show that r∗i and ti are monotone transformation

of each other.
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• Nice part of leave-one-out: to calculate these leave-one-out estimates,

such as β̂(i) and σ̂(i), we don’t need to run the model n times. Check

some equalities in the Appendix.

• Masking: what if we have two observations which are close, then removing

one does not give us an honest estimate of its prediction error since it has

a twin brother still in the data? We can leave-two-out, or in general

leave-k-out.
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An Outlier Test

• Outliers are observations that do not fit the model, but Ourliers 6=

Observations with large residuals.

• To check outliers, we should not look at the residuals, but the

leave-one-out prediction error, i.e., the studentized residuals.

• Under H0, ti ∼ tn−p−1. So we can use t-test to test whether the i-th

observation is an outlier or not.
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• Generally, we would want to perform this outlier test for all n observations,

doing the tests one at a time. Simply performing the test on the largest

observed residuals would be an example of data snooping, unless somehow

these cases were identified before data collection.

• In order to be certain that the overall type I error rate is no greater than

α, Bonferroni correction may be used. When doing so, each case would be

tested at level α/n.
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What to do with outliers?

• Delete them.

• But points should not be routinely deleted simply because they do not fit

the model. No data snooping.

• Outliers, as well as other unusual observations discussed here, often flag

potential problems of the current model. Instead of dropping them,

maybe, try a new alternative model. (Outliers are normal points that

haven’t found their distribution yet.)
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Bonferroni Correction

Suppose we are testing m hypotheses simultaneously. For each test, we use

significant level α. That is, the chance of making type I error is α. Suppose we

want to control the overall type I error rate (for all m tests) to be 95%, then

we should set the individual significant level to be α = 5%/m.

P(No type I error for all m tests)

= 1− P(make a type I error for test 1 OR for test 2 ... OR for test m)

≥ 1−mα.
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Influential Observations

• Observations whose removal greatly affects the analysis are called

influential observations

• Define the Cook’s distance, as an influence measure of the i-th sample

Di =
‖Xβ̂ −Xβ̂(i)‖2

pσ̂2
=
‖ŷ − ŷ(i)‖2

pσ̂2

=
(r∗i )2

p

( hi
1− hi

)
,

which indicates that high influential points are either outliers (large |r∗i |) or

high-leverage points (large hi) or both.

• A rule-of-thumb: observations with Di ≥ 1 are highly influential.
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Summary

• High-leverage points: hi = Hii > 2p/n. High-leverage points are far away

from the center of the data (in terms of the Mahalanobis distance).

var[ŷi] = σ2hi, var[ri] = σ2(1− hi).

• Outliers: we remove the i-th point, run LS on the remaining (n− 1) data

points, and then form a PI at xi; if PI covers yi, then the i-th point is

NOT an outlier.

• High influential points: Cook’s distance Di > 1.

Di =
‖Xβ̂ −Xβ̂(i)‖2

pσ̂2
=

(r∗i )2

p

( hi
1− hi

)
,

which indicates that high influential points are either outliers or

high-leverage points or both.
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Diagnostics: Checking Error Assumptions

• Non-constant variance

• Assessing normality

• Correlated errors

• Graphical tools: residual plots, QQ-plots

”The importance of producing and analyzing plots as a standard part of

statistical analysis cannot be overemphasized.” from Weisberg (1980).

• Remedies: transformation, GLS, nonlinear regression.
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Residual Plots

• Plot the (studentized) residuals ri (or ri) against the fitted value ŷi.

• Plot the (studentized) residuals ri (or ri) against each predictor xi.

• Plot the (studentized) residuals ri (or ri) against some index variable such

as time or case number.

• Look for systemic patterns (non-constant variance, nonlinearity) and large

absolute values of residuals.
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Non-constant Variance

• Check residual plots.

• A less rigorous but quick way: lm(abs(res) ∼ fitted-value)

• A formal test: Breusch-Pagan Test (bptest in package lmtest)

• Remedy: transformation.
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Variance Stabilizing Transformation

The goal is to find a transformation h(Y ) to achieve constant variance. The

method for finding these transformations is based on the following. Suppose h

is some smooth function. Then by Taylor’s Theorem,

h(Y ) = h(E[Y ]) + h′(E[Y ])(Y − E[Y ]) + · · · ,

where · · · denotes the remainder of this approximation, which is assumed to be

reasonably small with high probability (i.e, we’ll ignore it). Then

var[h(Y )] ≈ (h′(E[Y ]))2var(Y ).
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We want to choose the transformation h such that

var[h(Y )] ≈ (h′(E[Y ]))2var(Y )

is approximately a constant.

For example, suppose var(Y ) ∝ E[Y ], then

h′(z) =
1√
z
,−→ h(z) ∝

√
z.

As another example, suppose var(Y ) ∝ E[Y ]2, then

h′(z) =
1

z
, ,−→ h(z) = log z.
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•
√
Y , var(e) ∝ E[Y ]

Suitable for counts from the Poisson distribution.

• log Y or log(Y + 1), var(e) ∝ E[Y ]2

Suitable for data whose range of Y is very broad, e.g., from 1 to several

thousand; suitable for estimating percentage effect (Y ∝ XαC.)

• 1/Y or 1/(Y + 1), var(e) ∝ E[Y ]4

Suitable for data where Y measures the waiting time or survival time.

Taking reciprocals changes the scale from time (time per response) to rate

(response per unit time).
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Assessing Normality

Suppose we have a sample z1, z2, . . . , zn, and we wish to examine the

hypothesis that the z’s are a sample from a normal with mean µ and variance

σ2.

A standard graphical method for inspecting the normal assumption is QQ-plot.

1. Order the z’s: z(1) ≤ z(2) ≤ · · · ≤ z(n)

2. Compute ui = Φ−1( i
n+1 ), where Φ is the cdf of N(0, 1)

3. Plot z(i) against ui. If the z’s are normal, the plot should approximately

result in a line.

A more formal way: Shapiro-Wilk test.
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What to do if the normality assumption doesn’t hold?

• For short-tailed distributions, the consequences of non-normality are not

very serious.

• A transformation of Y may solve the problem.

• Use other regression methods, such as robust regression (will be discussed

later).

• Still use LS, but be careful with the inference such as t-test and CI which

are based on the normality assumption. Instead make the inference based

on distribution-free methods such as bootstrap or permutation (will be

discussed later).
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Correlated Errors

• Plot residuals against time or other index such as case number.

• Use formal tests like the Durbin-Waston test ((dwtest in package lmtest)

• Remedies: use GLS (will be discussed later).
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Checking Structure Assumptions (Nonlinearity)

• How do we check whether the assumption Ey = Xβ is correct?

• Lack-of-fit Test: when we have replicates. (will be discussed later)

• Partial regression plot

• Partial residual plot

• Remedies: transformation, nonlinear regression (will be discussed later)

32



Partial Regression Plot (Added Variable Plot)

• We want to know the relationship between response Y and a predictor Xk

after the effect of the other predictors has been removed.

• To remove the effect of the other predictors, run the following two

regression models

Y ∼ X1 + · · ·+Xi−1 +Xi+1 + . . . , (1)

Xi ∼ X1 + · · ·+Xi−1 +Xi+1 + . . . , (2)

ry = residuals from (1)

rXk = residuals from (2)

• Plot ry vs. rKk : For a valid model, then the added-variable plot should

produce points randomly scattered around a line through the origin with

slope β̂k. Also useful for high influential data points.
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Using Transformations to Overcome Nonlinearity

Examples of linearizing transformations:

• log Y vs logX

Suitable for E(Y ) = αXβ1

1 · · ·X
βp
p .

• log Y vs X

Suitable for E(Y ) = α exp{
∑
j Xjβj}.

• 1/Y vs X

Suitable for E(Y ) = 1
α+

∑
j Xjβj

.
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Box-Cox Transformation of the Y ’s

• Box and Cox (1964) suggested a family of transformations (for positive

response) designed to reduce nonnormality of the errors. In turns out that

in doing this, it often reduces nonlinearity as well.

• Suppose each yi > 0, and consider the following transformationa

gλ(y) =


yλ−1
λ , λ 6= 0

log y, λ = 0.

Choose λ that maximizes the likelihood of the data, under the normal

assumption

gλ(y) = Xβ + e, e ∼ Nn(0, σ2I).

aThe transformation for λ = 0 is justified because limλ→0
yλ−1
λ

= log y.
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• The maximum log-likelihood function for λ 6= 0 is

L(λ) = −n
2

log(RSSλ/n) + (λ− 1)
n∑
i=1

log(yi),

where RSSλ is the residual sum of squares when gλ(y) is the response, and

for λ = 0 is

L(0) = −n
2

log(RSS0/n)−
n∑
i=1

log(yi).

The 2nd term in these log-likelihood function corresponds to the Jacobian

of the transformation.

• Note that it doesn’t make sense to simply pick λ that maximizes RSSλ

since for each λ, the residual sum of squares are measured in a different

scale.
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• In R, we can graph L(λ) versus λ ∈ (−2, 2)a and then pick the maximizer

λ̂.

• It’s common to round λ̂ to a nearby value like

−1, −0.5, 0, 0.5, or 1,

then the transformation (defined by λ̂) is easier to interpret.

aThe method tends to work well for λ in this range.
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• To answer the question whether we really need the transformation gλ, we

can do a hypothesis testing (H0 : λ = 1) or equivalently construct a CI for

λ as followsa:

{λ : L(λ) > L(λ̂)− 1

2
χ2
1(1− α)}.

If this interval contains 1, then there is no strong evidence supporting the

transformation.

aThis is based on the result that 2(L(λ̂) − L(λ0)) ∼ χ2
1 under H0.
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Regression Diagnostics for MLR (Sheather chap 6)

• Any unusual patterns of the residuals? Plot standardized residuals vs fitted

values.

• Any unusual data points, such as high leverage points, high influential

points or outliers?

• Assess the effect of each predictor Xj on Y . Use added variable plot.

• Constant error variance (i.e., heteroscedasticity)?

• Collinearity of X’s, correlated errors (will be discussed later)
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