Identities for the Leave-one-out LS estimates

To calculate these jackknife (or leave-one-out) LS estimates, such as $\hat{\boldsymbol{\beta}}_{(i)}$ and $\hat{\sigma}_{(i)}$, we don't need to run the model n times. Using the Sherman-Morrison formula (a.k.a. Woodbury matrix identity), we have

$$
\left[\mathbf{X}_{(i)}^{t} \mathbf{X}_{(i)}\right]^{-1}=\left(\mathbf{X}^{t} \mathbf{X}\right)^{-1}+\frac{\left(\mathbf{X}^{t} \mathbf{X}\right)^{-1} \mathbf{x}_{i} \mathbf{x}_{i}^{t}\left(\mathbf{X}^{t} \mathbf{X}\right)^{-1}}{1-h_{i}}
$$

Consequently,

$$
\begin{array}{ll}
\mathbf{x}_{i}^{t}\left(\mathbf{X}_{(i)}^{t} \mathbf{X}_{(i)}\right)^{-1} \mathbf{x}_{i}=\frac{h_{i}}{1-h_{i}} & \hat{\boldsymbol{\beta}}_{(i)}=\hat{\boldsymbol{\beta}}-\frac{\left(\mathbf{X}^{t} \mathbf{X}\right)^{-1} \mathbf{x}_{i} r_{i}}{1-h_{i}} \\
y_{i}-\hat{y}_{(i)}=\frac{1}{1-h_{i}}\left(y_{i}-\hat{y}_{i}\right), & \hat{\sigma}_{(i)}^{2}=\hat{\sigma}^{2} \frac{(n-p)-\left(r_{i}^{*}\right)^{2}}{n-p-1}
\end{array}
$$

$$
\begin{aligned}
\text { Jackknife Residual } t_{i} & =\frac{y_{i}-\hat{y}_{(i)}}{\hat{\sigma}_{(i)}\left[1+\mathbf{x}_{i}^{t}\left(\mathbf{X}_{(i)}^{t} \mathbf{X}_{(i)}\right)^{-1} \mathbf{x}_{i}\right]^{1 / 2}} \\
& =\frac{r_{i}}{\hat{\sigma}_{(i)} \sqrt{1-h_{i}}}=r_{i}^{*}\left[\frac{n-p-1}{n-p-\left(r_{i}^{*}\right)^{2}}\right]^{1 / 2} \\
\text { Cook's distance } D_{i} & =\frac{\left\|\mathbf{X} \hat{\boldsymbol{\beta}}-\mathbf{X} \hat{\boldsymbol{\beta}}_{(i)}\right\|^{2}}{p \hat{\sigma}^{2}}=\frac{\left(\hat{\boldsymbol{\beta}}-\hat{\boldsymbol{\beta}}_{(i)}\right)^{t}\left(\mathbf{X}^{t} \mathbf{X}\right)\left(\hat{\boldsymbol{\beta}}-\hat{\boldsymbol{\beta}}_{(i)}\right)}{p \hat{\sigma}^{2}} \\
& =\frac{r_{i}^{2}}{p \hat{\sigma}^{2}} \frac{h_{i}}{\left(1-h_{i}\right)^{2}}=\frac{\left(r_{i}^{*}\right)^{2}}{p}\left(\frac{h_{i}}{1-h_{i}}\right)
\end{aligned}
$$

where $r_{i}^{*}=r_{i} /\left(\hat{\sigma} \sqrt{1-h_{i}}\right)$ is the standardized residual for the i th sample.

The Leave-one-out Prediction Error

We provide an alternative proof for the leave-one-out prediction error

$$
\begin{equation*}
y_{i}-\hat{y}_{(i)}=\frac{1}{1-h_{i}}\left(y_{i}-\hat{y}_{i}\right) . \tag{1}
\end{equation*}
$$

Consider two regression models:

- Model I : the regression model on the n data points $\mathbf{y}_{n \times 1}$, where

$$
\begin{equation*}
\hat{y}_{i}=h_{i} y_{i}+\sum_{j \neq i} H_{i j} y_{j} . \tag{2}
\end{equation*}
$$

- Model II: the regression model on a set of new data points $\mathbf{y}_{n \times 1}^{*}$, which are almost the same as the original data \mathbf{y} except the i th element,

$$
y_{i}^{*}=\hat{y}_{(i)}=\mathbf{x}_{i}^{t} \hat{\boldsymbol{\beta}}_{(i)},
$$

where $\hat{\boldsymbol{\beta}}_{(i)}$ denotes the leave-one-out (leave the i th sample out) LS coefficient. Note that the two regression models have the same projection matrix since their design matrices are the same. We have

$$
\begin{equation*}
\hat{y}_{i}^{*}=h_{i} y_{i}^{*}+\sum_{j \neq i} H_{i j} y_{j}^{*}=h_{i} y_{i}^{*}+\sum_{j \neq i} H_{i j} y_{j} \tag{3}
\end{equation*}
$$

where $H_{i j}$'s and h_{i} are the same as the ones in (2).
We can show that the LS line for Model II passes the i-th sample, that is

$$
\begin{equation*}
\hat{y}_{i}^{*}=y_{i}^{*}=\hat{y}_{(i)} . \tag{4}
\end{equation*}
$$

Then (3) becomes

$$
\hat{y}_{(i)}=h_{i} \hat{y}_{(i)}+\sum_{j \neq i} H_{i j} y_{j}=h_{i} \hat{y}_{(i)}-h_{i} y_{i}+\sum_{j} H_{i j} y_{j}=h_{i} \hat{y}_{(i)}-h_{i} y_{i}+\hat{y}_{i} .
$$

Then you can get the conclusion (1) by re-arranging the terms above.

Proof for eq (4): Let $\hat{\boldsymbol{\alpha}}$ denote the corresponding LS coefficient for Model II, that is,

$$
\begin{aligned}
\hat{\boldsymbol{\alpha}} & =\arg \min _{\boldsymbol{\alpha}} \sum_{j=1}^{n}\left(y_{j}^{*}-\mathbf{x}_{j}^{t} \boldsymbol{\alpha}\right)^{2} \\
& =\arg \min _{\boldsymbol{\alpha}}\left[\left(\hat{y}_{(i)}-\mathbf{x}_{i}^{t} \boldsymbol{\alpha}\right)^{2}+\sum_{j \neq i}\left(y_{j}-\mathbf{x}_{j}^{t} \boldsymbol{\alpha}\right)^{2}\right]
\end{aligned}
$$

It is not difficult to show that $\hat{\boldsymbol{\beta}}_{(i)}$ the minimizer of the optimization above since it'll make the first term equal to zero and meanwhile minimize the 2 nd term. So we have

$$
\hat{\boldsymbol{\beta}}_{(i)}=\hat{\boldsymbol{\alpha}} .
$$

So the LS fit for the i th sample (in Model $I I$) is

$$
\hat{y}_{i}^{*}=\mathbf{x}_{i}^{t} \hat{\boldsymbol{\alpha}}=\mathbf{x}_{i}^{t} \hat{\boldsymbol{\beta}}_{(i)}=\hat{y}_{(i)} .
$$

