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Identities for the Leave-one-out LS estimates

To calculate these jackknife (or leave-one-out) LS estimates, such as β̂(i) and σ̂(i), we

don’t need to run the model n times. Using the Sherman-Morrison formula (a.k.a. Wood-

bury matrix identity), we have
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where r∗i = ri/(σ̂

√
1− hi) is the standardized residual for the ith sample.

The Leave-one-out Prediction Error

We provide an alternative proof for the leave-one-out prediction error
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1
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(yi − ŷi). (1)

Consider two regression models:

• Model I : the regression model on the n data points yn×1, where

ŷi = hiyi +
∑
j 6=i

Hijyj . (2)

• Model II : the regression model on a set of new data points y∗n×1, which are almost

the same as the original data y except the ith element,

y∗i = ŷ(i) = xt
iβ̂(i),
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where β̂(i) denotes the leave-one-out (leave the ith sample out) LS coefficient. Note

that the two regression models have the same projection matrix since their design

matrices are the same. We have
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where Hij ’s and hi are the same as the ones in (2).

We can show that the LS line for Model II passes the i-th sample, that is

ŷ∗i = y∗i = ŷ(i). (4)

Then (3) becomes
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Then you can get the conclusion (1) by re-arranging the terms above.

Proof for eq (4): Let α̂ denote the corresponding LS coefficient for Model II, that is,
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It is not difficult to show that β̂(i) the minimizer of the optimization above since it’ll make

the first term equal to zero and meanwhile minimize the 2nd term. So we have

β̂(i) = α̂.

So the LS fit for the ith sample (in Model II ) is

ŷ∗i = xt
iα̂ = xt

iβ̂(i) = ŷ(i).
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