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Identities for the Leave-one-out LS estimates

To calculate these jackknife (or leave-one-out) LS estimates, such as B(i) and 6;), we
don’t need to run the model n times. Using the Sherman-Morrison formula (a.k.a. Wood-

bury matrix identity), we have
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Cook’s distance D; =

where 77 = 1;/(6+/1 — h;) is the standardized residual for the ith sample.

The Leave-one-out Prediction Error

We provide an alternative proof for the leave-one-out prediction error
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Consider two regression models:

e Model I: the regression model on the n data points y,x1, where

Gi = hiyi + > Hijy;. (2)
J#i

e Model II: the regression model on a set of new data points y . ;, which are almost

the same as the original data y except the ith element,

vi = i) = XiB;
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where ,B(Z») denotes the leave-one-out (leave the ith sample out) LS coefficient. Note
that the two regression models have the same projection matrix since their design
matrices are the same. We have

0 = hiy; + Y Higy; = hiyi + Y Hijyj, (3)
i#i i#i

where H;;’s and h; are the same as the ones in (2).
We can show that the LS line for Model II passes the i-th sample, that is
Ui =i = Ug)- (4)
Then (3) becomes
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Then you can get the conclusion (1) by re-arranging the terms above.

Proof for eq (4): Let & denote the corresponding LS coefficient for Model II, that is,
a = arg mlnz — x )
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It is not difficult to show that B(i) the minimizer of the optimization above since it’ll make
the first term equal to zero and meanwhile minimize the 2nd term. So we have

B =o
So the LS fit for the ith sample (in Model II) is

Ui = Xﬁa = XtB(i) = :Q(i)~



