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The QR decomposition

How is the LS estimate β̂ solved in R? Denote the QR decomposition (also called the
QR factorization) of X as

Xn×p = Qn×pRp×p

where Q is an orthogonal matrix (i.e., QtQ = Ip) and R is an upper triangular matrix, i.e.,
all the entries in R below the diagonal are equal to 0. Then

β̂ = (XtX)−1Xty

(XtX)−1 = (RtR)−1 = R−1(Rt)−1

β̂ = R−1Qy

Rβ̂ = Qy

The last equation, Rβ̂ = Qy, can be solved pretty easily via backsolving since R is an
upper triangular matrix.

One methods for computing the QR decomposition is the Gram-Schmidt algorithm.
Let’s work with a matrix

An×p =
[
a1 | a2 | · · · | ap

]
,

where aj denotes the jth column of A. Then

• e1 = a1, q1 = e1
‖e1‖

• e2 = a2 − (at
2q1)q1, q2 = e2

‖e2‖

• · · ·

• ek+1 = ak+1 −
∑k

j=1(at
jqj)qj , qk+1 = ek+1

‖ek+1‖

The resulting QR decomposition is

A =
[
a1 | a2 | · · · |ap

]
=
[
q1 | · · · | qp

]
R = QR.

It is each to check that R is an upper triangular matrix.

Partial regression coefficients

Consider a multiple linear regression model with 4 predictors and an intercept

Y = β0 + β1X1 + β2X2 + β3X3 + β4X4 + err.

The LS estimate β̂k describes the partial correlation between Y and Xk adjusted for the
other predictors. Mathematically, the LS estimate β̂k is what we could get if we

• first regress Y onto all other predictors except Xk, denote the the corresponding
residuals as a new variable Y ∗;
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• regress Xk onto all other predictors except Xk, denote the corresponding residuals as
a new variable X∗k ;

• then fit a simple linear regression model with Y ∗ as the response and X∗k as the
predictor.

> fullmodel=lm(sr~pop15+pop75+dpi+ddpi, data=savings)

> round(summary(fullmodel)$coef, dig=3)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 28.566 7.355 3.884 0.000

pop15 -0.461 0.145 -3.189 0.003

pop75 -1.691 1.084 -1.561 0.126

dpi 0.000 0.001 -0.362 0.719

ddpi 0.410 0.196 2.088 0.042

> new.y=lm(sr~pop15+pop75+dpi, data=savings)$res

> new.ddpi = lm(ddpi~pop15+pop75+dpi, data=savings)$res

> parmodel=lm(new.y ~ new.ddpi)

> round(summary(parmodel)$coef, dig=3)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.00 0.521 0.000 1.000

new.ddpi 0.41 0.190 2.157 0.036

Note that although the estimated coefficients agree, the standard error and p-value for
the corresponding t-test are different. This is because the sample size is miscounted in
the 2nd regression: the sample size shouldn’t be n, but n− 4 since both the regressor
Y ∗ and the predictor X∗k are in an n−4 subspace which is orthogonal to the intercept
and the other 3 predictors.

> sd=summary(parmodel)$coef[2,2]*sqrt(48/45) # correct std. error

> sd

[1] 0.1961971

> 2*(1-pt(abs(summary(parmodel)$coef[2,1]/sd), 45)) # correct p-value

[1] 0.04247114

Since the t-test for βk is testing the effect of Xk adjusted for the other predictors, it
is not surprising to see the equivalence of the t-test and the F -test of comparing the
full model to the model including all predictors except Xk.

Sequential analysis of variance (ANOVA)

When adding a new predictor to a regression model, we can evaluate its relevance/effect
by the improved RSS. When there are multiple predictors, we can carry out this comparison
in a sequential way: first compare the RSS from the model with X1 to the RSS from the
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null model (with only the intercept), then compare the RSS from the model with both X1

and X2 to the RSS from the model with X1 only, and so on. That’s what the R command
anova would return you.

> rss = sum((sr-mean(sr))^2)

> model1 = lm(sr~pop15)

> rss = c(sum(model1$res^2), rss)

> model2 = lm(sr~pop15+pop75)

> rss = c(sum(model2$res^2), rss)

> model3 = lm(sr~pop15+pop75+dpi)

> rss = c(sum(model3$res^2), rss)

> model4 = lm(sr~pop15+pop75+dpi+ddpi)

> rss = c(sum(model4$res^2), rss)

> rss

[1] 650.7130 713.7670 726.1680 779.5107 983.6283

> round(diff(rss), dig=2)

[1] 63.05 12.40 53.34 204.12

> anova(fullmodel)

Analysis of Variance Table

Response: sr

Df Sum Sq Mean Sq F value Pr(>F)

pop15 1 204.12 204.118 14.1157 0.0004922 ***

pop75 1 53.34 53.343 3.6889 0.0611255 .

dpi 1 12.40 12.401 0.8576 0.3593551

ddpi 1 63.05 63.054 4.3605 0.0424711 *

Residuals 45 650.71 14.460

> anova(lm(sr~ddpi+pop15+pop75+dpi))

Analysis of Variance Table

Response: sr

Df Sum Sq Mean Sq F value Pr(>F)

ddpi 1 91.37 91.374 6.3190 0.0155920 *

pop15 1 191.70 191.702 13.2571 0.0006984 ***

pop75 1 47.95 47.946 3.3157 0.0752748 .

dpi 1 1.89 1.893 0.1309 0.7191732

Residuals 45 650.71 14.460

Of course, order matters: the importance of ddpi as the 1st variable entering the model
wouldn’t be expected to be the same as the last variable entering the model.
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We have already seen that evaluating the effect of a single predictor is a difficult problem,
since its effect depends on what else are included in the model. Later in this semester we
will learn how to select an optimal subset of variables.

Errors in Predictors

Let X be the observed design matrix of dimension n× p where the 1st column contains
only 1’s and the remaining (p−1) columns correspond to the (p−1) non-intercept covariates
(predictors). In many cases it’s quite possible that there are substantial measurement errors
involved. Let X̃ denote the “true” value of the predictors, and consider the model

X = X̃ + D,

where D is a matrix of errors of the same dimension as X. When an intercept is in the
model, the first column of D would contain only 0’s. The remaining elements of D could
represent rounding errors or measurment errors.

Let dt
i denote the row of D corresponding to the i-th case (so di is a p× 1 vector). We

assume that di and dj are statistically independent for i 6= j. In addition, we assume that

E[di] = 0, Cov(di) = S = diag(s2i )p
i=1,

where s21 = 0 (apparently, no measurement error for the intercept).
Suppose the problem of interest is to estimate β in the model

y = X̃β + e.

We would like to estimate β with (X̃tX̃)−1X̃ty. However, we observe X instead of X̃.
Instead, we have

β̂ = (XtX)−1Xty. (1)

When the predictors are measured with error, the LS estimator β̂ obtained in (1) is no
longer unbiased. The bias is given by (Hodges and Moore, 1972)

E[β̂]− β = −(n− p− 1)(X̃tX̃)−1Sβ.

With a given dataset, this can be approximated by

E[β̂]− β ≈ −(n− p− 1)(X̃tX̃)−1Sβ̂.

In the special case of estimating the slope in simple linear regression, the approximation is

E[β̂1] ≈ β1

[
1− s21∑n

i=1(xi − x̄)2/(n− 2)

]
.

4


