
Generalized Least Squares (GLS)

• What if the errors are not iid? E.g., e ∼ Nn(0,Σ).

• Σ known (an ideal case for us to get some insight).

• Σ unknown (e.g., regression with time series data).

• Examples and R code.
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GLS: Σ Known

• Assume y = Xβ + e and e ∼ Nn(0,Σ).

• Transform this problem back to OLS. Write Σ = SST where we

assume S−1 exists, then

S−1y = S−1
(
Xβ + e

)
y∗ = X∗β + e∗

e∗ ∼ N
(
S−10, S−1Σ(S−1)T

)
= N

(
0, I
)
.
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• Now we can solve β using OLS,

y∗ = X∗β + e∗, y∗ = S−1y, X∗ = S−1X

β̂ =
[
(X∗)TX∗

]−1
(X∗)Ty∗

= (XT (S−1)TS−1X)−1XT (S−1)TS−1y

= (XTΣ−1X)−1XTΣ−1y.

• Note that the solution β̂ minimizes

‖y∗ −X∗β‖2 = (y −Xβ)TΣ−1(y −Xβ).
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• Suppose Σ is a diagonal matrix of unequal error variances:

Σ = diag(σ21, σ
2
2, . . . , σ

2
n).

• The GLS estimate of β minimizes

(y −Xβ)TΣ−1(y −Xβ) =
n∑

i=1

(yi − xT
i β)2

σ2i
,

known as the Weighted LS (WLS).

• Errors are weighted proportional to 1/σ2i : smaller weights for

samples with larger variances.
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• Suppose we have collected multiple obs at xi, (xi, yi1, yi2, . . . , yini).

Let yi denote the average of the ni obs. Since

ni∑
j=1

(yij − xT
i β)2 = ni(yi − xT

i β)2 +

ni∑
j=1

(yij − yi)2,

it is enough to include one sample, (xi, yi), in the data. But

Var(yi) = σ2/ni, not σ2. So we should use WLS:

min
β

n∑
i=1

ni(yi − xT
i β)2.

• R command: lm( ...., weights = ni).
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Justification via MLE

Model: y ∼ Nn

(
Xβ,Σ

)
.

log p(y | β,Σ)

= log

{
|Σ|−1/2

(2π)n/2
exp

[
− 1

2
(y −Xβ)TΣ−1(y −Xβ)

]}

= −1

2
(y −Xβ)TΣ−1(y −Xβ) + Constant

β̂mle = arg min
β

(y −Xβ)TΣ−1(y −Xβ).
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GLS: Σ Unknown

How about this iterative approach?

• Start with some initial guess of Σ;

• Use Σ to estimate β;

• Use residuals (since we’ve known β) to estimate Σ;

• Iterate until convergence.

Not a bad idea. However, it won’t work (actually no methods will work)

if we know (or assume) nothing about Σ: too many parameters in Σ

need to be estimated.
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Usually, based on the application, we can assume the correlation

structure, i.e., Σ, takes some particular form. Then, we can model Σ

(now it does not involve too many parameters) and β simultaneously

using likelihood based method. For example, for AR(1) times series,

Σ = σ2



1 ρ ρ2 ρ3 · · ·

ρ 1 ρ ρ2 · · ·

· · · · · · · · · · · · · · ·

ρn−1 ρn−2 · · · · · · 1


.

Use the nlme package in R.
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Testing for Lack of Fit

• How can we tell a model fits the data?

• If the model is correct then σ̂2 is an unbiased estimate of σ2. So we

can construct a test based on the ratio σ̂2/σ2.

• Two cases: σ2 known or unknown.
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Lack of Fit: σ2 Known

• H0: no lack of fit; Ha: lack of fit.

• Test statistic

σ̂2

σ2
=

RSS/(n− p)
σ2

∼
χ2
n−p

n− p
.

Lack of fit means the error variance σ̂2 is large, i.e., large test

statistic.

• Conclude that there is a lack of fit (i.e., Reject H0), if

(n− p) σ̂
2

σ2
≥ χ2

n−p(1− α).
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Lack of Fit: σ2 Unknown

• Get an estimate of σ2 based on a very big/general model. And then

derive the dist (under H0) of the ratio σ̂2LinearModel/σ̂
2
BigModel.

Basically we cast this problem as comparing two nested models.

• A general assumption (Ha): yi = f(xi) + err.

• H0: yi = xt
iβ + err.

• In order to operate this test, we need to have multiple obs at (at

least) some xi’s,

(xi, yi1, yi2, . . . , yini), i = 1 : m, n =
∑
i

ni.
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• H0 : yij = xT
i β + eij and eij iid ∼ N(0, σ2). RSS0 with df = n-p.

• Ha : yij = f(xi) + eij and eij iid ∼ N(0, σ2) where f is any func.

RSSa =
m∑
i=1

ni∑
j=1

(yij − ȳi·)2

with df = n−m =
∑

i(ni − 1).

• F -test

(RSS0 − RSSa)/(m− p)
RSSa/(n−m)

∼ Fm−p,n−m.
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