Generalized Least Squares (GLS)

- What if the errors are not iid? E.g., $\mathbf{e} \sim \mathsf{N}_n(\mathbf{0}, \Sigma)$.
- Σ known (an ideal case for us to get some insight).
- Σ unknown (e.g., regression with time series data).
- Examples and R code.

GLS: Σ Known

- Assume $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{e}$ and $\mathbf{e} \sim \mathsf{N}_n(\mathbf{0}, \Sigma)$.
- Transform this problem back to OLS. Write $\Sigma = SS^T$ where we assume S^{-1} exists, then

$$S^{-1}\mathbf{y} = S^{-1}\left(\mathbf{X}\boldsymbol{\beta} + \mathbf{e}\right)$$
$$\mathbf{y}^{*} = \mathbf{X}^{*}\boldsymbol{\beta} + \mathbf{e}^{*}$$
$$\mathbf{e}^{*} \sim \mathsf{N}\left(S^{-1}\mathbf{0}, S^{-1}\Sigma(S^{-1})^{T}\right) = \mathsf{N}\left(\mathbf{0}, \mathbf{I}\right).$$

• Now we can solve β using OLS,

$$y^* = X^* \beta + e^*, \quad y^* = S^{-1} y, \ X^* = S^{-1} X$$

$$\hat{\boldsymbol{\beta}} = \left[(\mathbf{X}^*)^T \mathbf{X}^* \right]^{-1} (\mathbf{X}^*)^T \mathbf{y}^*$$
$$= (\mathbf{X}^T (S^{-1})^T S^{-1} \mathbf{X})^{-1} \mathbf{X}^T (S^{-1})^T S^{-1} \mathbf{y}$$
$$= (\mathbf{X}^T \mathbf{\Sigma}^{-1} \mathbf{X})^{-1} \mathbf{X}^T \mathbf{\Sigma}^{-1} \mathbf{y}.$$

• Note that the solution $\hat{\boldsymbol{\beta}}$ minimizes

$$\|\mathbf{y}^* - \mathbf{X}^*\boldsymbol{\beta}\|^2 = (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^T \boldsymbol{\Sigma}^{-1} (\mathbf{y} - \mathbf{X}\boldsymbol{\beta}).$$

• Suppose Σ is a diagonal matrix of unequal error variances:

$$\Sigma = \operatorname{diag}(\sigma_1^2, \sigma_2^2, \dots, \sigma_n^2).$$

• The GLS estimate of β minimizes

$$(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^T \Sigma^{-1} (\mathbf{y} - \mathbf{X}\boldsymbol{\beta}) = \sum_{i=1}^n \frac{(y_i - \mathbf{x}_i^T \boldsymbol{\beta})^2}{\sigma_i^2},$$

known as the Weighted LS (WLS).

• Errors are weighted proportional to $1/\sigma_i^2$: smaller weights for samples with larger variances.

Suppose we have collected multiple obs at x_i, (x_i, y_{i1}, y_{i2}, ..., y_{ini}).
 Let y_i denote the average of the n_i obs. Since

$$\sum_{j=1}^{n_i} (y_{ij} - \mathbf{x}_i^T \boldsymbol{\beta})^2 = n_i (y_i - \mathbf{x}_i^T \boldsymbol{\beta})^2 + \sum_{j=1}^{n_i} (y_{ij} - y_i)^2,$$

it is enough to include one sample, (\mathbf{x}_i, y_i) , in the data. But Var $(y_i) = \sigma^2/n_i$, not σ^2 . So we should use WLS:

$$\min_{\boldsymbol{\beta}} \sum_{i=1}^{n} n_i (y_i - \mathbf{x}_i^T \boldsymbol{\beta})^2.$$

• R command: $lm(\ldots, weights = n_i)$.

Justification via MLE

Model: $\mathbf{y} \sim \mathsf{N}_n(\mathbf{X}\boldsymbol{\beta}, \Sigma)$.

$$\log p(\mathbf{y} \mid \boldsymbol{\beta}, \boldsymbol{\Sigma})$$

$$= \log \left\{ \frac{|\boldsymbol{\Sigma}|^{-1/2}}{(2\pi)^{n/2}} \exp \left[-\frac{1}{2} (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^T \boldsymbol{\Sigma}^{-1} (\mathbf{y} - \mathbf{X}\boldsymbol{\beta}) \right] \right\}$$

$$= -\frac{1}{2} (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^T \boldsymbol{\Sigma}^{-1} (\mathbf{y} - \mathbf{X}\boldsymbol{\beta}) + \text{ Constant}$$

$$\hat{\boldsymbol{\beta}}_{\mathsf{mle}} = \arg\min_{\boldsymbol{\beta}} (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^T \Sigma^{-1} (\mathbf{y} - \mathbf{X}\boldsymbol{\beta}).$$

GLS: Σ **Unknown**

How about this iterative approach?

- Start with some initial guess of Σ ;
- Use Σ to estimate β ;
- Use residuals (since we've known β) to estimate Σ ;
- Iterate until convergence.

Not a bad idea. However, it won't work (actually no methods will work) if we know (or assume) nothing about Σ : too many parameters in Σ need to be estimated.

Usually, based on the application, we can assume the correlation structure, i.e., Σ , takes some particular form. Then, we can model Σ (now it does not involve too many parameters) and β simultaneously using likelihood based method. For example, for AR(1) times series,

$$\Sigma = \sigma^2 \begin{pmatrix} 1 & \rho & \rho^2 & \rho^3 & \cdots \\ \rho & 1 & \rho & \rho^2 & \cdots \\ \cdots & \cdots & \cdots & \cdots \\ \rho^{n-1} & \rho^{n-2} & \cdots & \cdots & 1 \end{pmatrix}$$

Use the nlme package in R.

Testing for Lack of Fit

- How can we tell a model fits the data?
- If the model is correct then $\hat{\sigma}^2$ is an unbiased estimate of σ^2 . So we can construct a test based on the ratio $\hat{\sigma}^2/\sigma^2$.
- Two cases: σ^2 known or unknown.

Lack of Fit: σ^2 Known

- H_0 : no lack of fit; H_a : lack of fit.
- Test statistic

$$\frac{\hat{\sigma}^2}{\sigma^2} = \frac{\mathsf{RSS}/(n-p)}{\sigma^2} \sim \frac{\chi^2_{n-p}}{n-p}$$

Lack of fit means the error variance $\hat{\sigma}^2$ is large, i.e., large test statistic.

• Conclude that there is a lack of fit (i.e., Reject H_0), if

$$(n-p)\frac{\hat{\sigma}^2}{\sigma^2} \ge \chi^2_{n-p}(1-\alpha).$$

Lack of Fit: σ^2 Unknown

- Get an estimate of σ^2 based on a very big/general model. And then derive the dist (under H_0) of the ratio $\hat{\sigma}^2_{\text{LinearModel}}/\hat{\sigma}^2_{\text{BigModel}}$. Basically we cast this problem as comparing two nested models.
- A general assumption (H_a) : $y_i = f(\mathbf{x}_i) + \text{err.}$

•
$$H_0: y_i = \mathbf{x}_i^t \boldsymbol{\beta} + \text{err.}$$

In order to operate this test, we need to have multiple obs at (at least) some x_i's,

$$(\mathbf{x}_i, y_{i1}, y_{i2}, \dots, y_{in_i}), \quad i = 1 : m, \quad n = \sum_i n_i.$$

•
$$H_0: y_{ij} = \mathbf{x}_i^T \boldsymbol{\beta} + e_{ij}$$
 and e_{ij} iid $\sim \mathsf{N}(0, \sigma^2)$. RSS_0 with $\mathsf{df} = \mathsf{n}-\mathsf{p}$.

• $H_a: y_{ij} = f(\mathbf{x}_i) + e_{ij}$ and e_{ij} iid $\sim N(0, \sigma^2)$ where f is any func.

$$\mathsf{RSS}_{a} = \sum_{i=1}^{m} \sum_{j=1}^{n_{i}} (y_{ij} - \bar{y}_{i.})^{2}$$

with
$$df = n - m = \sum_{i} (n_i - 1)$$
.

• F-test

$$\frac{(\mathsf{RSS}_0 - \mathsf{RSS}_a)/(m-p)}{\mathsf{RSS}_a/(n-m)} \sim F_{m-p,n-m}.$$