
Collinearity

• Consider a MLR model with a design matrix Xn×p including the intercept.

If each column of X is orthogonal to each other (i.e., the sample

correlation of any two predictors is equal to 0), then the LS problem is

greatly simplified.

β̂j =
[
(XtX)−1Xy

]
j

=
Xt
·jy

‖X·j‖2
,

where X·j denotes the j-th column of X. That is, the regression

coefficient for the j-th predictor does not depend on whether other

predictors are included in the model or not.
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• However, we often encounter problems in which many of the predictors are

highly correlated. In this case, the values and sampling variance of

regression coefficients can be highly dependent on the particular predictors

chosen for the model.

• If there exists a set of constants c1, . . . , cp (at least one of them is

non-zero), such that the corresponding linear combination of the columns

of X is zero, i.e.,
p∑

j=1

cjX·j = 0,

then the columns of X are called linearly dependent or exactly collinear.

That is, at least one column in the design matrix X can be expressed as a

linear combination of the other columns.
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When the columns of X are collinear,

1. (XtX)−1 does not exist;

2. the LS estimate β̂ is not unique, and

3. the corresponding linear model is not identifiable.

For example, suppose the 1st column of X is the intercept, and the 2nd

column of X is (2, 2, . . . , 2)t. Then if (β̂1, β̂2, β̂3, . . . )t is one LS estimate of β,

so is (β̂1 − c, β̂2 + c/2, β̂3, . . . )t where c is any real number.

3



(Approximate) Collinearity

• We generally do not need to worry about exact collinearitya , but

(approximate) collinearity. That is, at least one column X·j can be

approximated by the others,

X·k ≈ −
∑
j 6=k

cjX·j/ck.

A simple diagnostic for this is to obtain the regression of X·k on the

remaining predictors, and if the corresponding R2
k is close to 1, we would

diagnose approximate collinearity.

aR can detect it and also can fix it automatically.

4



Why is collinearity a problem?

• In a multiple regression Y = β0 + β1X1 + · · ·βpXp + e, the LS estimate

β̂k is unbiased with

var(β̂k) = σ2
( 1

1−R2
k

)( 1∑n
i=1(xik − x̄·k)2

)
,

where R2
k is the R-square from the regression of X·k on the remaining

predictors. When R2
k is close to 1, the variance of β̂k is large.

Consequently: 1) large MSE and 2) large p-value, i.e., we could miss a

significant variable.

• The quantity 1
1−R2

k
is called the k-th variance influential factor (VIF).
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• A global measure of collinearity is given by examining the eigenvalues of

XtX. A popular measure is the condition number of XtX, denoted by

κ = (largest eigenvalue/smallest eigenvalue)1/2.

An empirical rule for declaring collinearity is κ ≥ 30.

• Note that κ is not scale invariant, so we should standardize each column

of X (i.e., now each column of X has mean 0 and sample variance 1)

before calculating the condition number.
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Symptoms and Remedy

• Possible symptoms of collinearity: high pair-wise (sample) correlation

between predictors, high VIF, high condition number, R2 is relatively large

but none of the predictor is significant.

• What to do with collinearity? Remove some predictors.
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