
Transformation of the X’s

Transformations like Box-cox, log, or square-root can be applied on predictors

too. In this section, we focus on the type of transformations of X’s which in

fact generates new predictors.

• Polynomials Regression

• Local Polynomials (Splines) Regression.

• From now on, assume we have only one predictor.
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Polynomials Regression

• Assume x ∈ R:

y = β0 + β1x+ · · ·+ βdx
d + err.

How to choose d?

• Forward approach: keep adding terms until the added term is not

significant.

• Backward approach: start with a large d, keep eliminating the insignificant

term starting with the highest order term.
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• Question: Suppose we’ve picked d, then should we test whether the other

terms, xj ’s with j = 1, . . . , d− 1, are significant or not?

Usually, we don’t test the significance of the lower-order terms. When we

decide to use a polynomial with degree d, by default, we include all the

lower-order terms in our model.

• Why? For regression analysis, we usually don’t want our results affected by

any location/scale change of the data. (What if the temperature is

recorded by F not C?) Suppose the data {yi, xi}ni=1 are generated by

yi = x2i + ei, ei ∼ N(0, σ2).

But the data are recorded as {yi, zi}ni=1 where zi = xi + 2, that is,

yi = (zi − 2)2 + ei = 4− 4zi + z2i + ei.

So the linear term could become significant if we shift the x values.
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• However, if you have a particular polynomial function in mind, e.g., the

data are collected to test a particular physics formula Y ≈ X2 + constant,

then you should test whether you can drop the linear term.

• Or if experts believe the relationship between Y and X should be

Y ≈ (X − 2)2, then you should check the R output for

lm(Y ~ X + I((X-2)^2))

to test whether you can drop the linear term and the intercept.
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Piece-Wise Polynomials

• If the true mean E(Y | X = x) = f(x) is too wiggly, we have to fit the

data using a high-order polynomial. But high-order polynomials are not

recommended in practice: results are not stable and difficult to interpret.

• Instead we’ll consider piece-wise polynomials: we divide the range of x into

several intervals, and within each interval f(x) is a low-order polynomial,

e.g., cubic or quadratic, but the polynomial coefficients change from

interval to interval; in addition we require overall f(x) is continuous up to

certain derivatives.
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Cubic Splines

• knots: a < ξ1 < ξ2 < · · · < ξm < b

• A function g defined on [a, b] is a cubic spline w.r.t knots {ξi}mi=1 if:

1) g is a cubic polynomial in each of the m+ 1 intervals,

g(x) = dix
3 + cix

2 + bix+ ai, x ∈ [ξi, ξi+1]

where i = 0 : m, ξ0 = a and ξm+1 = b;

2) g is continuous up to the 2nd derivative: since g is continuous up to

the 2nd derivative for any point inside an interval, it suffices to check

g(0,1,2)(ξ+i ) = g(0,1,2)(ξ−i ), i = 1 : m.
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• How many free parameters we need to represent g? m+ 4.

We need 4 parameters (d1, ci, bi, ai) for each of the (m+ 1) intervals, but

we also have 3 constraints at each of the m knots, so

4(m+ 1)− 3m = m+ 4.

7



Suppose the knots {ξi}mi=1 are given.

If g1(x) and g2(x) are two cubic splines, so is a1g1(x) + a2g2(x), where a1 and

a2 are two constants.

That is, for a set of given knots, the corresponding cubic splines form a linear

space (of functions) with dim (m+ 4).
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• A set of basis functions for cubic splines (wrt knots {ξi}mi=1) is given by

h0(x) = 1; h1(x) = x;

h2(x) = x2; h3(x) = x3;

hi+3(x) = (x− ξi)3+, i = 1, 2, . . . ,m.

• That is, any cubic spline f(x) can be uniquely expressed as

f(x) = β0 +
m+3∑
i=1

βjhj(x).

• Of course, there are many other choices of the basis functions. For

example, R uses the B-splines basis functions.
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Natural Cubic Splines (NCS)

• A cubic spline on [a, b] is a NCS if its second and third derivatives are zero

at a and b.

• That is, a NCS is linear in the two extreme intervals [a, ξ1] and [ξm, b].

Note that the linear function in two extreme intervals are totally

determined by their neighboring intervals.

• The degree of freedom of NCS’s with m knots is m.

• For a curve estimation problem with data (xi, yi)
n
i=1, if we put n knots at

the n data points (assumed to be unique), then we obtain a smooth curve

(using NCS) passing through all y’s.
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Regression Splines

• A basis expansion approach:

g(x) = β1h1(x) + β2h2(x) + · · ·+ βphp(x),

where p = m+ 4 for regression with cubic splines and p = m for NCS.

• Represent the model on the observed n data points using matrix notation,

β̂ = argmin
β
‖y − Fβ‖2,
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where

y1

y2

· · ·

yn


n×1

=



h1(x1) h2(x1) · · · hp(x1)

h1(x2) h2(x2) · · · hp(x2)

h1(xn) h2(xn) · · · hp(xn)


n×p


β1

· · ·

βp


p×1

• We can obtain the design matrix F by commands bs or ns in R, and then

call the regression function lm.

• Use K-fold CV to select the number of knots.
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Understand how R counts the degree-of-feedom.

• To generate a cubic spline basis for a given set of xi’s, you can use the

command bs.

• You can tell R the location of knots.

• Or you can tell R the df. Recall that a cubic spline with m knots has

m+ 4 df, so we need m = df− 4 knots. By default, R puts knots at the

1/(m+ 1), . . . ,m/(m+ 1) quantiles of x1:n.
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How R counts the df is a little confusing. The df in command bs actually

means the number of columns of the design matrix returned by bs . So if the

intercept is not included in the design matrix (which is the default), then the

df in command bs is equal to the real df minus 1.

So the following three design matrices (the first two are of n× 5 and the last

one is of n× 6) correspond to the same regression model with cubic splines of

df 6.

> bs(x, knots=quantile(x, c(1/3, 2/3)));

> bs(x, df=5);

> bs(x, df=6, intercept=TRUE);
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• To generate a NCS basis for a given set of xi’s, use the command ns.

• Recall that the linear functions in the two extreme intervals are totally

determined by the other cubic splines. So data points in the two extreme

intervals (i.e., outside the two boundary knots) are wasted since they do

not affect the fitting. Therefore, by default, R puts the two boundary knots

as the min and max of xi’s.

• You can tell R the location of knots, which are the interior knots. Recall

that a NCS with m knots has m df. So the df is equal to the number of

(interior) knots plus 2, where 2 means the two boundary knots.
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• Or you can tell R the df. If intercept = TRUE, then we need m = df− 2

knots, otherwise we need m = df− 1 knots. Again, by default, R puts

knots at the 1/(m+ 1), . . . ,m/(m+ 1) quantiles of x1:n.

• The following three design matrices (the first two are of n× 3 and the last

one is of n× 4) correspond to the same regression model with NCS of df 4.

> ns(x, knots=quantile(x, c(1/3, 2/3)));

> ns(x, df=3);

> ns(x, df=4, intercept=TRUE);
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