

stripchart(coag ~ diet, vertical=TRUE, method="jitter")

> boxplot(coag ~ diet, outline=FALSE)
> stripchart(coag ~ diet, vertical=TRUE, add=TRUE, col="blue", pch=1, method="jitter")

Diagnostics

- Q-Q plot for residuals.
- Check outliers.
- Test for equal variance.

Levene's test: run regression abs(residual) $\sim X$, i.e., use abs(residuals) as the response in a new one-way ANOVA. If the p-value for the F-test is less than 1% level, then we conclude that there is no evidence of a non-constant variance.

```
> g = lm(coag ~ diet)
> summary(lm(abs(g$res) ~ diet))
```

Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|t|)$

(Intercept)	1.5000	0.7159	2.095	0.0491
*ietB	0.5000	0.9242	0.541	0.5945
dietC	-0.5000	0.9242	-0.541	0.5945
dietD	0.5000	0.8768	0.570	0.5748

Residual standard error: 1.432 on 20 df Multiple R-squared: 0.09559,
Adjusted R-squared: -0.04007
F-statistic: 0.7046 on 3 and 20 DF, p-value: 0.5604

Detecting the Difference among Groups

- Consider the one-way ANOVA model ${ }^{\text {a }}$

$$
y_{i j}=\alpha_{i}+e_{i j}, \quad e_{i j} \text { iid } \sim \mathrm{N}\left(0, \sigma^{2}\right) .
$$

- After detecting some difference among the groups using the F-test, interest centers on which groups or combinations of them are different.
${ }^{\text {a }}$ Here we use the parameterization which sets $\mu=0$.

There are two cases:

- Pairwise difference: $\alpha_{i}-\alpha_{j}$
- Contrasts: $\sum_{i=1}^{g} c_{i} \alpha_{i}, \quad \sum_{i} c_{i}=0$. (Of course, the pairwise diff is a special case of contrasts).

We'll focus on Cls for differences, which also tells us the corresponding testing result due to the duality between statistical tests and Cls.

Pairwise Comparisons

- α_{i} : unknown group mean

Estimate $\hat{\alpha}_{i}=\bar{y}_{i}$. with s.e. $\hat{\sigma} \sqrt{1 / n_{i}}$.

- $\alpha_{i}-\alpha_{j}$: unknown group difference

Estimate $\hat{\alpha}_{i}-\hat{\alpha}_{j}=\bar{y}_{i} .-\bar{y}_{j}$. with s.e. $\hat{\sigma} \sqrt{\frac{1}{n_{i}}+\frac{1}{n_{j}}}$.

- $(1-\alpha) \mathrm{Cl}$ for $\alpha_{i}-\alpha_{j}$

$$
\bar{y}_{i} .-\bar{y}_{j} . \pm t_{n-g}^{\alpha / 2} \hat{\sigma} \sqrt{\frac{1}{n_{i}}+\frac{1}{n_{j}}} .
$$

- The ordinary t-based CI (on the previous slide) is the Cl for just one comparison.
- Recall its interpretation (assume $\alpha=5 \%$):

The (random) Cl covers the true parameter $\alpha_{i}-\alpha_{j}$ with prob 95%. In other words, the chance of making an error (i.e., not covering the true difference) is controlled to be 5%.

- In practice we need to construct Cls for multiple pairwise differences, e.g., for the coagulation data, there are totally 6 pairwise comparisons
- If we construct $95 \% \mathrm{Cl}$ for each pairwise difference, then the chance of making an error is 5% for each Cl . However, the chance that at least one of the Cl does not cover the true difference (i.e., the family wise error rate) will be much bigger than 5%.
- We need to adjust for multiple comparisons. How?

Bonferroni Correction

- Suppose there are m pairwise comparisons. To control the family wise error rate to be α, we need to reduce the error rate for each individual comparison to be α / m.
- That is, we need to incase the significant level from $(1-\alpha)$ to be $(1-\alpha / m)$. For example, if $m=10$ and $\alpha=5 \%$, then we need to set the significant level for each individual comparison to be as high as 99.5%.
- Not applicable when m is large, since the Cls would be too wide (of little practical interest) due to the increase of the significant level.

Tukey's Honest Significant Difference (HSD)

- The Tukey's Cls for $\alpha_{i}-\alpha_{j}$ are

$$
\bar{y}_{i} .-\bar{y}_{j} . \pm q_{g, n-g}^{\alpha} \frac{\hat{\sigma}}{\sqrt{2}} \sqrt{\frac{1}{n_{i}}+\frac{1}{n_{j}}} .
$$

- Let X_{1}, \ldots, X_{m} be iid $\mathrm{N}\left(0, \sigma^{2}\right)$ and the following random variable

$$
\frac{\max _{i} X_{i}-\min _{j} X_{j}}{\hat{\sigma}} \sim q_{m, v}
$$

aka the studentized range distribution, where v is the df used in estimating σ.

- $q_{g, n-g}^{\alpha}$ is the $(1-\alpha)$ quantile of $q_{g, n-g}$.

Recall how we derive the t-based Cl .

$$
\begin{gathered}
\frac{\bar{y}_{i} \cdot-\bar{y}_{j} .-\left(\alpha_{i}-\alpha_{j}\right)}{\hat{\sigma} \sqrt{\frac{1}{n_{i}}+\frac{1}{n_{j}}}} \sim t \text {-dist }(\mathrm{df}=n-g) \\
\mathbb{P}\left(\frac{\left|\bar{y}_{i .}-\bar{y}_{j} .-\left(\alpha_{i}-\alpha_{j}\right)\right|}{\hat{\sigma} \sqrt{\frac{1}{n_{i}}+\frac{1}{n_{j}}}} \leq t_{n-g}^{\alpha / 2}\right)=1-\alpha \\
\bar{y}_{i .}-\bar{y}_{j} . \pm t_{n-g}^{\alpha / 2} \hat{\sigma} \sqrt{\frac{1}{n_{i}}+\frac{1}{n_{j}}}
\end{gathered}
$$

Suppose $n_{i}=n_{j}=n_{0}$.

$$
\begin{aligned}
& \frac{\left|\bar{y}_{i} .-\bar{y}_{j .}-\left(\alpha_{i}-\alpha_{j}\right)\right|}{\hat{\sigma} \sqrt{\frac{1}{n_{0}}+\frac{1}{n_{0}}}} \\
&= \frac{1}{\hat{\sigma} \sqrt{2}}\left|\frac{\bar{y}_{i \cdot}-\alpha_{i}}{\sqrt{\frac{1}{n_{0}}}}-\frac{\bar{y}_{j} \cdot-\alpha_{j}}{\sqrt{\frac{1}{n_{0}}}}\right| \\
&= \frac{1}{\sqrt{2}} \frac{\left|X_{i}-X_{j}\right|}{\hat{\sigma}} \\
& X_{1}, \ldots, X_{g} \text { iid } \sim \mathrm{N}\left(0, \sigma^{2}\right)
\end{aligned}
$$

$$
\mathbb{P}\left(\frac{\left|\bar{y}_{i .}-\bar{y}_{j .}-\left(\alpha_{i}-\alpha_{j}\right)\right|}{\hat{\sigma} \sqrt{\frac{1}{n_{i}}+\frac{1}{n_{j}}}} \leq t_{n-g}^{\alpha / 2}\right)=1-\alpha
$$

max

$$
i, j=1, \ldots, g
$$

$$
\mathbb{P}\left(\frac{1}{\sqrt{2}} \max _{i, j} \frac{\left|X_{i}-X_{j}\right|}{\hat{\sigma}} \leq C\right)=1-\alpha
$$

> TukeyHSD (aov(coag~diet, coagulation)) Tukey multiple comparisons of means 95\% family-wise confidence level

Fit: aov(formula = coag ~ diet, data = coagulation)
\$diet

	diff	lwr	upr	p adj
B-A	5	0.7245544	9.275446	0.0183283
C-A	7	2.7245544	11.275446	0.0009577
D-A	0	-4.0560438	4.056044	1.0000000
C-B	2	-1.8240748	5.824075	0.4766005
D-B	-5	-8.5770944	-1.422906	0.0044114
D-C	-7	-10.5770944	-3.422906	0.0001268

Scheffé's Method for Contrasts

- A linear combination of the group means $\sum_{i=1}^{g} c_{i} \alpha_{i}$ is called a contrast if $\sum_{i} c_{i}=0$.
$-\alpha_{1}-\alpha_{2}: c_{1}=1, c_{2}=-1$, and other $c_{i}{ }^{\prime} s=0$.
$-\left(\alpha_{1}+\alpha_{2}\right) / 2-\alpha_{3}: c_{1}=c_{2}=1 / 2, c_{3}=-1$, and other c_{i} 's $=0$.
- The estimate of $\sum_{i=1}^{g} c_{i} \alpha_{i}$ is $\sum_{i=1}^{g} c_{i} \bar{y}_{i}$. with s.e. $\hat{\sigma} \sqrt{\sum_{i} c_{i}^{2} / n_{i}}$.
- The Scheffé's Cls are

$$
\sum_{i} c_{i} \bar{y}_{i} . \pm \sqrt{(g-1) F_{g-1, n-g}^{\alpha}} \hat{\sigma} \sqrt{\sum_{i} \frac{c_{i}^{2}}{n_{i}}} .
$$

$$
\frac{\left(\sum_{i} c_{i} \bar{y}_{i}-\sum_{i} c_{i} \alpha_{i}\right)^{2}}{\hat{\sigma}^{2}\left(\sum_{i} c_{i}^{2} / n_{i}\right)}
$$

$$
=\frac{\left[\sum_{i} c_{i}\left(\bar{y}_{i}-\alpha_{i}\right)\right]^{2} /\left(\sum_{i} c_{i}^{2} / n_{i}\right)}{\hat{\sigma}^{2}}
$$

$$
\leq \frac{\chi_{g-1}^{2}}{\chi_{n-g}^{2} /(n-g)}=(g-1) F_{g-1, n-g}
$$

A Summary

- One pairwise/contrast: The ordinary t-based Cl
- A small number of comparisons: Bonferroni Cls
- A large number of pairwise diffs: Tukey's Cls (adjusted for all possible pairwise comparisons)
- A large number of contrasts: Scheffé's Cls (adjusted for all possible contrasts)

How to decided between Bonferroni and Tukey's (or Scheffé's)? Just pick the approach giving your Cls of (overall) shorter length.

