Two-Way ANOVA

- Two factors ${ }^{\text {a }} X_{1}$ has I levels and X_{2} has J levels.
- Data $y_{i j l}$ can be displayed in a two-way table with I rows and J columns. The (i, j) th cell contains $n_{i j}$ obs

$$
y_{i j 1}, \ldots, y_{i j n_{i j}} .
$$

- A balanced design has $n_{i j}=m$.

[^0]
Possible Models

- The interaction model (the most general model) $\mathcal{M}_{R \times C}$

$$
y_{i j l}=\mu+\alpha_{i}+\beta_{j}+\gamma_{i j}+e_{i j l} .
$$

- The additive model \mathcal{M}_{R+C}

$$
y_{i j l}=\mu+\alpha_{i}+\beta_{j}+e_{i j l} .
$$

- The row-effect model $\mathcal{M}_{R} \quad y_{i j l}=\mu+\alpha_{i}+e_{i j l}$.
- The column-effect model $\mathcal{M}_{C} \quad y_{i j l}=\mu+\beta_{j}+e_{i j l}$.
- The intercept-only model $\mathcal{M}_{0} \quad y_{i j l}=\mu+e_{i j l}$.

The LS Estimates

- We can write the (element-wise) models in matrix form.
- Yes, some are over-parameterized. There are multiple ways to reduce parameters, .e.g., we can remove some columns. But no matter which approach we take, the resulting LS estimates should be the same.
- $\mathcal{M}_{R \times C} \quad \hat{y}_{i j l}=\bar{y}_{i j}$.
- $\mathcal{M}_{R+C} \quad \hat{y}_{i j l}=\bar{y}_{i . .}+\bar{y}_{. j .}-\bar{y}_{. . .}$回
- $\mathcal{M}_{R} \quad \hat{y}_{i j l}=\bar{y}_{i}$.
- $M_{C} \quad \hat{y}_{i j l}=\bar{y} \cdot j$.
- $M_{0} \quad \hat{y}_{i j l}=\bar{y} .$.
${ }^{\text {a}}$ This is true only for balanced design. For unbalanced design, the LS for \mathcal{M}_{R+C} does not have a closed-form expression.

Which model to pick?

- Recall the partial F-test for comparing two nested models:
H_{0} : a smaller model with p_{0} coefficients
H_{a} : a large model with p_{a} coefficients

$$
\begin{aligned}
F & =\frac{\left(\mathrm{RSS}_{0}-\mathrm{RSS}_{a}\right) /\left(p_{a}-p_{0}\right)}{\hat{\sigma}_{a}^{2}} \\
& \sim F_{p_{a}-p_{0}, n-p_{a}} \text { under the null. }
\end{aligned}
$$

- Suppose we are comparing three nested models:

$$
\mathcal{M}_{1} \subset \mathcal{M}_{2} \subset \mathcal{M}_{3} \text { with } \operatorname{dim} p_{1}<p_{2}<p_{3}
$$

- We make our decision through the following path:

1) Compare \mathcal{M}_{2} vs \mathcal{M}_{3}. If \mathcal{M}_{3} is selected, stop;
2) otherwise, compare \mathcal{M}_{1} vs \mathcal{M}_{2}.

- When calculating the F-stat at step 2 , we could use $\hat{\sigma}^{2}$ from \mathcal{M}_{2}, i.e., the F-test $\sim F_{p_{2}-p_{1}, n-p_{2}}$ or we could calculate the two F-stats simultaneously using $\hat{\sigma}^{2}$ from \mathcal{M}_{3} (the largest model), so the F-test for the comparison at step 2 would be $F_{p_{2}-p_{1}, n-p_{3}}$.
- Back to the two-way ANOVA model. Due to the hierarchical structure, we make our decision through the following path:

1) Compare $\mathcal{M}_{R \times C}$ vs \mathcal{M}_{R+C}. If select the interaction model, stop; otherwise, go to the next step.
2) Pick one among the remaining four models,

$$
\mathcal{M}_{R+C}, \quad \mathcal{M}_{R}, \quad \mathcal{M}_{C}, \quad \mathcal{M}_{0}
$$

depending on whether the row or column effect is significant.
Step 2 is much easier for the balanced design.

The Balanced Design ($n_{i j}=m>1$)

	$\mathrm{SS}(\mathrm{Sum} \operatorname{Sq})$	df
Interaction	$\operatorname{RSS}\left(\mathcal{M}_{R+C}\right)-\operatorname{RSS}\left(\mathcal{M}_{R \times C}\right)$	$(I-1)(J-1)$
Row	$\operatorname{RSS}\left(\mathcal{M}_{0}\right)-\operatorname{RSS}\left(\mathcal{M}_{R}\right)$	$I-1$
Col	$\operatorname{RSS}\left(\mathcal{M}_{0}\right)-\operatorname{RSS}\left(\mathcal{M}_{C}\right)$	$J-1$
Err	$\operatorname{RSS}\left(\mathcal{M}_{R \times C}\right)$	$n-I J$

Three F-tests: $\mathrm{SS} / \mathrm{df}$ is the numerator, and the dominator is $\mathrm{SS} / \mathrm{df}$, i.e., $\hat{\sigma}^{2}$ from the interaction model

$$
\hat{\sigma}^{2}=\frac{\operatorname{RSS}\left(\mathcal{M}_{R \times C}\right)}{(m-1) I J} .
$$

Selected Model	Interaction	Row	Col
$\mathcal{M}_{R \times C}$	Sig	-	-
\mathcal{M}_{R+C}	No	Sig	Sig
\mathcal{M}_{R}	No	Sig	No
\mathcal{M}_{C}	No	No	Sig
\mathcal{M}_{0}	No	No	No

The Balanced Design ($n_{i j}=m=1$)

- Only one observation in each cell, so we cannot fit the interaction model.
- $\operatorname{RSS}\left(\mathcal{M}_{R \times C}\right)=0$, i.e., the corresponding error variance is 0 .
- Then consider \mathcal{M}_{R+C}, instead of $\mathcal{M}_{R \times C}$, to be the largest model. All the F-tests are the same except that the interaction model is not a candidate model.

The Unbalanced Design

- Compare $\mathcal{M}_{R \times C}$ vs \mathcal{M}_{R+C} : if the F-test is significant, stop.
- If the interaction is not significant, we need to pick one model from

$$
\mathcal{M}_{R+C}, \quad \mathcal{M}_{R}, \quad \mathcal{M}_{C}, \quad \mathcal{M}_{0}
$$

- The difficulty: to decide whether the column effect is significant, we can
a) compare \mathcal{M}_{R+C} vs \mathcal{M}_{R} (test the column effect given that the row effect has been included), or
b) compare \mathcal{M}_{C} vs \mathcal{M}_{0} (test the column effect given that the row effect is not included).
- For a balanced design, these two tests turn out to be the same, but that's not the case for the unbalanced design.
- In most cases, it is not difficult to make a consensus decision.
- Let's take a look of the two ANOVA tables.

	$\mathrm{SS}(\mathrm{Sum} \mathrm{Sq})$	df
C	$\operatorname{RSS}\left(\mathcal{M}_{0}\right)-\operatorname{RSS}\left(\mathcal{M}_{C}\right)$	$J-1$
$R \mid C$	$\operatorname{RSS}\left(\mathcal{M}_{C}\right)-\operatorname{RSS}\left(\mathcal{M}_{R+C}\right)$	$I-1$
Interaction	$\operatorname{RSS}\left(\mathcal{M}_{R+C}\right)-\operatorname{RSS}\left(\mathcal{M}_{R \times C}\right)$	$(I-1)(J-1)$
Err	$\operatorname{RSS}\left(\mathcal{M}_{R \times C}\right)$	$n-I J$
TSS	$\operatorname{RSS}\left(\mathcal{M}_{0}\right)$	$n-1$

	$\mathrm{SS}(\mathrm{Sum} \operatorname{Sq})$	df
R	$\operatorname{RSS}\left(\mathcal{M}_{0}\right)-\operatorname{RSS}\left(\mathcal{M}_{R}\right)$	$I-1$
$C \mid R$	$\operatorname{RSS}\left(\mathcal{M}_{R}\right)-\operatorname{RSS}\left(\mathcal{M}_{R+C}\right)$	$J-1$
Interaction	$\operatorname{RSS}\left(\mathcal{M}_{R+C}\right)-\operatorname{RSS}\left(\mathcal{M}_{R \times C}\right)$	$(I-1)(J-1)$
Err	$\operatorname{RSS}\left(\mathcal{M}_{R \times C}\right)$	$n-I J$
TSS	$\operatorname{RSS}\left(\mathcal{M}_{0}\right)$	$n-1$

Selected Model	R	$R \mid C$	C	$C \mid R$
\mathcal{M}_{0}	\times	\times	\times	\times
\mathcal{M}_{R+C}	-	$\sqrt{ }$	-	$\sqrt{ }$
	$\sqrt{ }$	-	-	$\sqrt{ }$
	-	$\sqrt{ }$	$\sqrt{ }$	-
\mathcal{M}_{R}	$\sqrt{ }$	$\sqrt{ }$	-	\times
	$\sqrt{ }$	\times	\times	\times
\mathcal{M}_{C}	-	\times	$\sqrt{ }$	$\sqrt{ }$
	\times	\times	\times	$\sqrt{ }$
\mathcal{M}_{R+C}	\times	$\sqrt{ }$	\times	\times
	\times	\times	\times	$\sqrt{ }$

	SS(Sum Sq)	df	F-stat
R	20	10	$2 \sim F_{10,50}$
$C \mid R$	16	8	$2 \sim F_{8,50}$
C	11	8	$1.375 \sim F_{8,50}$
$R \mid C$	25	10	$2.5 \sim F_{10,50}$
$R+C$	36	18	$2 \sim F_{18,50}$
Err	50	50	$\hat{\sigma}^{2}=1$

[^0]: ${ }^{\mathrm{a}} \mathrm{A}$ factor is a categorical predictor with possible values called levels.

