Two-Way ANOVA

- Two factors ^a: X_1 has I levels and X_2 has J levels.
- Data y_{ijl} can be displayed in a two-way table with I rows and J columns. The (i, j)th cell contains n_{ij} obs

 $y_{ij1}, \ldots, y_{ijn_{ij}}.$

• A balanced design has $n_{ij} = m$.

^aA factor is a categorical predictor with possible values called levels.

Possible Models

• The interaction model (the most general model) $\mathcal{M}_{R \times C}$

$$y_{ijl} = \mu + \alpha_i + \beta_j + \gamma_{ij} + e_{ijl}.$$

• The additive model \mathcal{M}_{R+C}

$$y_{ijl} = \mu + \alpha_i + \beta_j + e_{ijl}.$$

- The row-effect model \mathcal{M}_R $y_{ijl} = \mu + \alpha_i + e_{ijl}$.
- The column-effect model \mathcal{M}_C $y_{ijl} = \mu + \beta_j + e_{ijl}$.
- The intercept-only model \mathcal{M}_0 $y_{ijl} = \mu + e_{ijl}$.

The LS Estimates

- We can write the (element-wise) models in matrix form.
- Yes, some are over-parameterized. There are multiple ways to reduce parameters, .e.g., we can remove some columns. But no matter which approach we take, the resulting LS estimates should be the same.

- $\mathcal{M}_{R \times C}$ $\hat{y}_{ijl} = \bar{y}_{ij}$.
- \mathcal{M}_{R+C} $\hat{y}_{ijl} = \bar{y}_{i..} + \bar{y}_{.j.} \bar{y}_{...}^{a}$
- \mathcal{M}_R $\hat{y}_{ijl} = \bar{y}_{i..}$
- \mathcal{M}_C $\hat{y}_{ijl} = \bar{y}_{.j.}$
- \mathcal{M}_0 $\hat{y}_{ijl} = \bar{y}_{...}$

^aThis is true only for balanced design. For unbalanced design, the LS for \mathcal{M}_{R+C} does not have a closed-form expression.

Which model to pick?

• Recall the partial *F*-test for comparing two **nested** models:

 H_0 : a smaller model with p_0 coefficients

 H_a : a large model with p_a coefficients

$$F = \frac{\left(\text{RSS}_0 - \text{RSS}_a\right)/(p_a - p_0)}{\hat{\sigma}_a^2}$$

~ $F_{p_a - p_0, n - p_a}$ under the null.

• Suppose we are comparing three nested models:

 $\mathcal{M}_1 \subset \mathcal{M}_2 \subset \mathcal{M}_3$ with dim $p_1 < p_2 < p_3$.

• We make our decision through the following path:

1) Compare \mathcal{M}_2 vs \mathcal{M}_3 . If \mathcal{M}_3 is selected, stop;

2) otherwise, compare \mathcal{M}_1 vs \mathcal{M}_2 .

When calculating the F-stat at step 2, we could use σ² from M₂,
 i.e., the F-test ~ F_{p2-p1,n-p2} or we could calculate the two F-stats simultaneously using σ² from M₃ (the largest model), so the F-test for the comparison at step 2 would be F_{p2-p1,n-p3}.

• Back to the two-way ANOVA model. Due to the hierarchical structure, we make our decision through the following path:

1) Compare $\mathcal{M}_{R\times C}$ vs \mathcal{M}_{R+C} . If select the interaction model, stop; otherwise, go to the next step.

2) Pick one among the remaining four models,

$$\mathcal{M}_{R+C}, \quad \mathcal{M}_{R}, \quad \mathcal{M}_{C}, \quad \mathcal{M}_{0},$$

depending on whether the row or column effect is significant.

Step 2 is much easier for the balanced design.

The Balanced Design $(n_{ij} = m > 1)$

	SS(Sum Sq)	df
Interaction	$RSS(\mathcal{M}_{R+C})$ - $RSS(\mathcal{M}_{R imes C})$	(I-1)(J-1)
Row	$RSS(\mathcal{M}_0)$ - $RSS(\mathcal{M}_R)$	I-1
Col	$RSS(\mathcal{M}_0)$ - $RSS(\mathcal{M}_C)$	J-1
Err	$RSS(\mathcal{M}_{R imes C})$	n - IJ

Three F-tests: SS/df is the numerator, and the dominator is SS/df, i.e., $\hat{\sigma}^2$ from the interaction model

$$\hat{\sigma}^2 = \frac{\mathsf{RSS}(\mathcal{M}_{R \times C})}{(m-1)IJ}.$$

Selected Model	Interaction	Row	Col
$\mathcal{M}_{R imes C}$	Sig		
\mathcal{M}_{R+C}	No	Sig	Sig
\mathcal{M}_R	No	Sig	No
\mathcal{M}_C	No	No	Sig
\mathcal{M}_0	No	No	No

The Balanced Design $(n_{ij} = m = 1)$

- Only one observation in each cell, so we cannot fit the interaction model.
- $\mathsf{RSS}(\mathcal{M}_{R \times C}) = 0$, i.e., the corresponding error variance is 0.
- Then consider M_{R+C}, instead of M_{R×C}, to be the largest model.
 All the F-tests are the same except that the interaction model is not a candidate model.

The Unbalanced Design

- Compare $\mathcal{M}_{R \times C}$ vs \mathcal{M}_{R+C} : if the *F*-test is significant, stop.
- If the interaction is not significant, we need to pick one model from

$$\mathcal{M}_{R+C}, \quad \mathcal{M}_{R}, \quad \mathcal{M}_{C}, \quad \mathcal{M}_{0}.$$

- The difficulty: to decide whether the column effect is significant, we can
 - a) compare \mathcal{M}_{R+C} vs \mathcal{M}_R (test the column effect given that the row effect has been included), or
 - b) compare \mathcal{M}_C vs \mathcal{M}_0 (test the column effect given that the row effect is not included).

- For a balanced design, these two tests turn out to be the same, but that's not the case for the unbalanced design.
- In most cases, it is not difficult to make a consensus decision.
- Let's take a look of the two ANOVA tables.

	SS(Sum Sq)	df
C	$RSS(\mathcal{M}_0)$ - $RSS(\mathcal{M}_C)$	J-1
$R \mid C$	$RSS(\mathcal{M}_C)$ - $RSS(\mathcal{M}_{R+C})$	I-1
Interaction	$RSS(\mathcal{M}_{R+C})$ - $RSS(\mathcal{M}_{R imes C})$	(I-1)(J-1)
Err	$RSS(\mathcal{M}_{R imes C})$	n - IJ
TSS	$RSS(\mathcal{M}_0)$	n-1

	SS(Sum Sq)	df
R	$RSS(\mathcal{M}_0)$ - $RSS(\mathcal{M}_R)$	I-1
$C \mid R$	$RSS(\mathcal{M}_R)$ - $RSS(\mathcal{M}_{R+C})$	J-1
Interaction	$RSS(\mathcal{M}_{R+C})$ - $RSS(\mathcal{M}_{R imes C})$	(I-1)(J-1)
Err	$RSS(\mathcal{M}_{R imes C})$	n - IJ
TSS	$RSS(\mathcal{M}_0)$	n-1

Selected Model	R	$R \mid C$	C	$C \mid R$
\mathcal{M}_0	×	×	×	×
\mathcal{M}_{R+C}				\checkmark
				\checkmark
		\checkmark		
\mathcal{M}_R	\checkmark			×
	\checkmark	×	×	×
\mathcal{M}_C		×	\checkmark	\checkmark
	×	×	×	\checkmark
\mathcal{M}_{R+C}	×		×	×
	×	×	×	\checkmark

	SS(Sum Sq)	df	F-stat
R	20	10	$2 \sim F_{10,50}$
$C \mid R$	16	8	$2\sim F_{8,50}$
C	11	8	$1.375 \sim F_{8,50}$
$R \mid C$	25	10	$2.5 \sim F_{10,50}$
R + C	36	18	$2\sim F_{18,50}$
Err	50	50	$\hat{\sigma}^2 = 1$