
Motivating Examples

• South African Heart Disease Data

• Challenge Disaster Data

• Data: (yi,xi) where yi ∈ {0, 1}, or (yi,mi,xi) where yi denotes

the number of 1’s among mi cases whose x-value = xi. Here we

merge the intercept into x.

• The linear model, yi ∼ N(xt
iβ, σ

2), is not appropriate. Instead we

should model yi ∼ Bin
(
mi, p(xi)

)
.
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The Binomial Distribution

• Bernoulli distribution: Z = 1 (success) or 0

P(Z = 1) = p, P(Y = 0) = 1− p.

• Y = number of successes in m iid Bernoulli trials

Y ∼ Bin(m, p)

P(Y = j) =

(
m

j

)
pj(1− p)m−j

=
m!

j!(m− j)!
pj(1− p)m−j, j = 0, 1, . . . ,m.

E(Y ) = mp, Var(Y ) = mp(1− p).
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Logistic Regression Model

Recall that for linear models, we assume the conditional mean of the

response variable Y is a linear function of the covariates x,

E(Y | x) = xtβ.

When Y is binary, 0 or 1, the conditional mean is

E(Y | x) = P(Y = 1|x) = p(x).

Since p(x) is constrained to be between 0 and 1, it is not realistic to

assume p(x) takes a linear form. Instead we assume its transformation

(or referred to as a link function) is a linear function,

g(p(x)) = xtβ.
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Define the logit function (i.e., the odds)

logit(p) = log
p

1− p
.

Write

pi = p(xi) = P
(
Yi = 1|X = xi

)
.

With the logistic model, we assume the odds at a given xi is a linear

function of xi:

logit(pi) = xt
iβ, i.e., pi =

ex
t
iβ

1 + ex
t
iβ
.
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Parameter Estimation: MLE

• Likelihood:

f(y1, . . . , yn;β) =
n∏

i=1

pyii (1− pi)1−yi , or

f(y1, . . . , yn;β) ∝
n∏

i=1

pyii (1− pi)mi−yi .

• Log-likelihood:

`(β) =
n∑

i=1

[
yi log

ex
t
iβ

1 + ex
t
iβ

+ (1− yi) log
1

1 + ex
t
iβ

]

=
n∑

i=1

[
yix

t
iβ − log(1 + ex

t
iβ)
]
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The NewtonRaphson method: to solve `′(β) = 0, we start with some

initial value β0, and then repeatedly update

β ⇐ β0 − `′′(β0)−1`′(β0),

where `′ is a vector and `′′ is a matrix.

`(β) =
∑
i

[
yix

t
iβ − log(1 + ex

t
iβ)
]

`′(β0) =
∑
i

yixi −
ex

t
iβ

0

1 + ex
t
iβ

0 xi

=
∑
i

xi(yi − p0i )

`′′(β) =
∑
i

p0i (1− p0i )xix
t
i
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The MLE β̂ can be obtained by the following Reweighted LS

Algorithm:

• Start with some initial values β0

• Calculate the corresponding p0i (based on β0) for i = 1, . . . , n;

define W = diag(p0i (1− p0i ))ni=1.

• Calculate

z = Xβ0 +W−1(y − p0).

• Update β0 with

β = (XtWX)−1XtWz.

And iterative the above steps until convergence.
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• In R, use the glm command.

• For each β̂j, we have the Z-score

Z =
β̂j − βj
se(β̂j)

∼ N(0, 1), approximately,

where se is calculated based on the iteratively reweighted least

squares approximation. Hypothesis testing (e.g., the p-value ) and

CI for βj can be obtained based on the Z-score.

• How to interpret β̂j?

• Model Selection: AIC or BIC (stepwise, backward or forward).
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Deviance

• We have data (yi,xi,mi), where

yi ∼ Bin(mi, pi), pi = p(xi),

and logit p(xi) = xt
iβ.

• In logistic regression, we do not measure the residual as the

difference between yi −mip̂i, as what we did in linear regression.

Instead we have the so-called deviance residuals or Pearson or χ2

residuals.
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The corresponding RSS (residual-sum-of-squares) is equal to

– deviance:

−2 log likelihood = −2
∑
i

log f(yi; β̂),

– or Pearson’s χ2 statistic:

∑
i

(Oi − Ei)
2

Ei

=
∑
i

(
Oi − Ei√

Ei

)2

where Oi = yi and Ei = mip̂i. In both cases, the RSS

(approximately) follows a χ2 distribution with df = (n -

num-of-parameters).
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Model Comparison

When comparing two nested models, we can use any of the following

methods:

• Their RSS difference ∼ χ2 distribution with df equal to the dim

difference between the two models;

• Pick the model with smallest AIC/BIC;

• If the two models just differ by one predictor, we can just look at

the p-value from the normal test.

a

aThe F -test is used when there is a scale parameter, such as in the ordi-

nary linear regression, or the quasi-Poisson or quasi-logistic regression that has

a dispersion parameter.
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