Vectors

Vectors and the scalar multiplication and vector addition operations:

$$
\mathbf{x}_{n \times 1}=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\ldots \\
x_{n}
\end{array}\right) \in \mathbb{R}^{n}, \quad 2\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\ldots \\
x_{n}
\end{array}\right)+3\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\cdots \\
y_{n}
\end{array}\right)=\left(\begin{array}{c}
2 x_{1}+3 y_{1} \\
2 x_{2}+3 y_{2} \\
\ldots \\
2 x_{n}+3 y_{n}
\end{array}\right)
$$

I'll use the two terms "vector" and "point" interchangeable: any point $\in \mathbb{R}^{n}$ corresponds to a vector starting from the origin and ending at that point.

- The inner (dot or cross) product of two vectors is defined to be

$$
\mathbf{u}^{t} \mathbf{v}=\sum_{i} u_{i} v_{i}=\|\mathbf{u}\| \cdot\|\mathbf{v}\| \cos (\theta)
$$

where $\|\mathbf{u}\|$ denotes the norm of a vector

$$
\|\mathbf{u}\|=\sqrt{\mathbf{u}^{t} \mathbf{u}}=\sqrt{\sum_{i} u_{i}^{2}}
$$

and θ is the angle between the two vectors.

- A unit vector is a vector whose norm is 1 .
- When two vectors are orthogonal, $\cos (\theta)=0$, therefore $\mathbf{u}^{t} \mathbf{v}=0$, denoted by $\mathbf{u} \perp \mathbf{v}$.
- The Euclidean distance between two vectors \mathbf{u} and \mathbf{v} is $\|\mathbf{u}-\mathbf{v}\|$.

Linear Combinations

- A linear combination of vectors $\mathbf{x}_{1}, \ldots, \mathbf{x}_{p}$ is

$$
b_{1} \mathbf{x}_{1}+b_{2} \mathbf{x}_{2}+\cdots+b_{p} \mathbf{x}_{p}, \quad b_{1}, \ldots, b_{p} \in \mathbb{R}
$$

- Consider a matrix $\mathbf{X}_{n \times p}=\left(\mathbf{x}_{1}|\cdots| \mathbf{x}_{p}\right)$, where the j-th column \mathbf{x}_{j} is a $n \times 1$ vector .

All the linear combinations of the p columns are denoted by $C(\mathbf{X})$, i.e.,

$$
C(\mathbf{X})=\text { All linear combinations of } \mathbf{x}_{1}, \ldots, \mathbf{x}_{p}
$$

- Any vector in $C(\mathbf{X})$ can be written as $\mathbf{X}_{n \times p} \mathbf{b}_{p \times 1}$, where $\mathbf{b}=\left(b_{1}, \ldots, b_{p}\right)^{t}$.

Linear Subspace

- $C(\mathbf{X})$ forms a linear subspace: all items from $C(\mathbf{X})$ are vectors from \mathbb{R}^{n}, and

$$
\text { if } \mathbf{u}, \mathbf{v} \in C(\mathbf{X}), \text { then } a \mathbf{u}+b \mathbf{v} \in C(\mathbf{X})
$$

where $a, b \in \mathbb{R}$.

- You can image a linear subspace as a bag of vectors, and for any two vectors in of that bag, say \mathbf{u} and \mathbf{v} (the two vectors could be the same, i.e., you are allowed to create copies of vectors in that bag), their linear combination, say $\mathbf{u}-2 \mathbf{v}$, should also be in that bag.
- Apparently, we have $\mathbf{u}-\mathbf{u}=\mathbf{0}$, so $\mathbf{0}$ is in any linear subspace. (i.e., any linear subspace should pass the origin).

Replacement Rule

- Given p vectors: $\mathbf{x}_{1}, \ldots, \mathbf{x}_{p}$, define

$$
\mathbf{z}_{1}=a_{1} \mathbf{x}_{1}+a_{2} \mathbf{x}_{2}+\cdots+a_{p} \mathbf{x}_{p}
$$

If $a_{1} \neq 0$, then

$$
x_{1}=\frac{1}{a_{1}}\left(\mathbf{z}_{1}-a_{2} \mathbf{x}_{2}-\cdots-a_{p} \mathbf{x}_{p}\right)
$$

That is, any linear combination of $\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{p}\right)$ can be rewritten as a linear combination of $\left(\mathbf{z}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n}\right)$.

- Let $\tilde{\mathbf{X}}$ be a matrix which is the same as \mathbf{X} except that we replace the j th column by a linear combination,

$$
\tilde{\mathbf{X}}[, j]=a_{j} \mathbf{X}[, j]+\sum_{i \neq j} a_{i} \mathbf{X}[, i]
$$

If $a_{j} \neq 0$, then $C(\tilde{\mathbf{X}})=C(\mathbf{X})$.

Orthogonality

- Vector \perp Vector: $\mathbf{u} \perp \mathbf{v}$ if $\mathbf{u}^{t} \mathbf{v}=0$.

For example, $\hat{\mathbf{y}} \perp \mathbf{y}-\hat{\mathbf{y}}$.

- Vector \perp Subspace: $\mathbf{u} \perp$ a subspace, if \mathbf{u} is orthogonal to any vector from that subspace. For example, if \mathbf{u} is orthogonal to each column of a matrix \mathbf{X}, then we have $\mathbf{u} \perp C(\mathbf{X})$.

For example, $(\mathbf{y}-\hat{\mathbf{y}}) \perp C(\mathbf{X})$.

- Subspace \perp Subspace: Similarly we can define orthogonal subspaces, if any vector from one subspace is orthogonal to any vector from the other subspace.

Pythagorean Theorem

If $\mathbf{v}_{1} \perp \mathbf{v}_{2}$ then $\left\|\mathbf{v}_{1}+\mathbf{v}_{2}\right\|^{2}=\left\|\mathbf{v}_{1}\right\|^{2}+\left\|\mathbf{v}_{2}\right\|^{2}$.
In particular

$$
\|\mathbf{y}\|^{2}=\|\hat{\mathbf{y}}+\mathbf{y}-\hat{\mathbf{y}}\|^{2}=\|\hat{\mathbf{y}}\|^{2}+\|\mathbf{y}-\hat{\mathbf{y}}\|^{2}
$$

$$
a^{2}+b^{2}=c^{2}
$$

Linear Independence

- A set of vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}$ is said to be linear independent, if

$$
c_{1} \mathbf{v}_{1}+\cdots+c_{m} \mathbf{v}_{m}=0 \text { iff } c_{1}=\cdots=c_{m}=0
$$

Otherwise they are linear dependent.

- In other words, if a set of vectors are linear independent, then no one can be expressed as a linear combination of the others; if they are linear dependent, then there at least exists one vector, say \mathbf{v}_{2}, which can be written as a linear combination of $\mathbf{v}_{1}, \mathbf{v}_{3}, \ldots, \mathbf{v}_{m}$.

Linear Independence and Bases

A set of vectors $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{m}\right\}$ is a basis for a subspace \mathcal{M}, if

1. $\operatorname{Span}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{m}\right)=\mathcal{M}$, and
2. $\mathbf{u}_{1}, \ldots, \mathbf{u}_{m}$ are linear independent.

- That is, a basis is a set of vectors that spans a linear subspace \mathcal{M} without redundancy.
- $\mathbf{X}_{n \times p}$ is not of full rank \Longleftrightarrow its columns are linear dependent.
- $\mathbf{X}_{n \times p}$ is of full rank \Longleftrightarrow its columns are linear independent and form a basis for $C(\mathbf{X})$.
- $\mathbf{X}=\left(\mathbf{x}_{1}|\cdots| \mathbf{x}_{p}\right)_{n \times p}$ is of full rank, then the p columns form a basis for $C(\mathbf{X})$. Any vector \mathbf{v} in $C(\mathbf{X})$ can be uniquely represented by the linear combination of \mathbf{x}_{i} 's. That is, if we can write \mathbf{v} as

$$
\begin{aligned}
\mathbf{v} & =c_{1} \mathbf{x}_{1}+c_{2} \mathbf{x}_{2}+\cdots+c_{p} \mathbf{x}_{p}, \quad \text { and also } \\
\mathbf{v} & =a_{1} \mathbf{x}_{1}+a_{2} \mathbf{x}_{2}+\cdots+a_{p} \mathbf{x}_{p},
\end{aligned}
$$

then $c_{i}=a_{i}$ for all $i=1: m$.

- Bases are not unique. That is, a linear space $C(\mathbf{X})$ has more than one bases, e.g., based on the replacement rule, we can replace \mathbf{x}_{j} by another vector. But the number of vectors in each basis is always p, which is the rank/dim of $C(\mathbf{X})$.

OLS Solution

- Consider a linear model

$$
y_{i}=x_{i 1} \beta_{1}+\cdots+x_{i p} \beta_{p}+e r r_{i}, \quad i=1, \ldots, n
$$

Using the LS principal, we aim to find $\boldsymbol{\beta}=\left(\beta_{1}, \ldots, \beta_{p}\right)^{t}$, which minimizes

$$
\sum_{i=1}^{n}\left(y_{i}-x_{i 1} \beta_{1}-\cdots-x_{i p} \beta_{p}\right)^{2}
$$

- Using the matrix form, we can write the linear model as

$$
\mathbf{y}_{n \times 1}=\mathbf{X}_{n \times p} \boldsymbol{\beta}_{p \times 1}+\mathbf{e}
$$

and solve

$$
\begin{equation*}
\min _{\boldsymbol{\beta} \in \mathbb{R}^{p}}\|\mathbf{y}-\mathbf{X} \boldsymbol{\beta}\|^{2} \tag{1}
\end{equation*}
$$

The LS optimization

$$
\min _{\boldsymbol{\beta} \in \mathbb{R}^{p}}\|\mathbf{y}-\mathbf{X} \boldsymbol{\beta}\|^{2}
$$

is equivalent to finding a vector \mathbf{v} in $C(\mathbf{X})$ that minimizes $\|\mathbf{y}-\mathbf{v}\|^{2}$,

$$
\min _{\mathbf{v} \in C(\mathbf{X})}\|\mathbf{y}-\mathbf{v}\|^{2} .
$$

Once we solve \mathbf{v}, we then go back to find its representation $\boldsymbol{\beta}$.

The optimal choice of \mathbf{v} is $\hat{\mathbf{y}}$, the projection of \mathbf{y} onto $C(\mathbf{X})$, the subspace consisting of linear combinations of columns of \mathbf{X}.

Projection

For any vector $\mathbf{y} \in \mathbb{R}^{n}$ and a subspace $\mathcal{M} \subseteq \mathbb{R}^{n}$, there exists a unique vector $\hat{\mathbf{y}}$ such that

1. $\hat{\mathbf{y}} \in \mathcal{M}$, and
2. $(\mathbf{y}-\hat{\mathbf{y}}) \perp \mathcal{M}$.

We call $\hat{\mathbf{y}}$ the projection of y onto \mathcal{M}.

$$
\mathbf{y}=\underbrace{\hat{\mathbf{y}}}_{\in \mathcal{M}}+(\underbrace{\mathbf{y}-\hat{\mathbf{y}}}_{\in \mathcal{M}^{\perp}})
$$

The projection $\hat{\mathbf{y}}$ can be computed based on a set of basis of \mathcal{M}. More specifically,

$$
\hat{\mathbf{y}}_{n \times 1}=\mathbf{M}_{n \times n} \mathbf{y}_{n \times 1}
$$

where the $n \times n$ matrix \mathbf{M} (known as the projection matrix) only depends on the underline subspace \mathcal{M} and does not depend on \mathbf{y}. That is for any vector \mathbf{y}, we can compute My to obtain its projection.

LS and Projection

Recall the LS problem: find a vector \mathbf{v} in $C(\mathbf{X})$, which minimizes $\|\mathbf{y}-\mathbf{v}\|^{2}$, i.e.,

$$
\min _{\mathbf{v} \in C(\mathbf{X})}\|\mathbf{y}-\mathbf{v}\|^{2} .
$$

Let \mathbf{y} denote the projection of \mathbf{y} onto $C(\mathbf{X})$. We have

$$
\|\mathbf{y}-\mathbf{v}\|^{2}=\|\underbrace{\mathbf{y}-\hat{\mathbf{y}}}_{\text {orthogonal to } C(\mathbf{X})}+\underbrace{\hat{\mathbf{y}}-\mathbf{v}}_{\in C(\mathbf{X})}\|^{2}=\|\mathbf{y}-\hat{\mathbf{y}}\|^{2}+\|\hat{\mathbf{y}}-\mathbf{v}\|^{2} \geq\|\mathbf{y}-\hat{\mathbf{y}}\|^{2} .
$$

So the LS solution is the projection of y onto the space $C(\mathbf{X})$:

$$
\hat{\mathbf{y}}=\mathbf{X}\left(\mathbf{X}^{t} \mathbf{X}\right)^{-1} \mathbf{X}^{t} \mathbf{y}=\mathbf{H y} .
$$

The projection matrix \mathbf{H} is also called the hat matrix in many textbooks.

- If we apply some linear transformation on the columns of X, as long as $C(\mathbf{X})$ stays the same, $\hat{\mathbf{y}}$ and R^{2} stay the same, although $\hat{\boldsymbol{\beta}}$ may differ.
- We can still compute $\hat{\mathbf{y}}$ even if \mathbf{X} does not have full rank.
- $C(\mathbf{X})$ is often called the estimation space, and the residual vector $\mathbf{r}=\mathbf{y}-\hat{\mathbf{y}}=(\mathbf{I}-\mathbf{M}) \mathbf{y}$ is orthogonal to $C(\mathbf{X})$, i.e., orthogonal to any linear combinations based on vectors from $C(\mathbf{X})$.
- The essence of LS: decompose the data vector \mathbf{y} into two orthogonal components

$$
\mathbf{y}=\hat{\mathbf{y}}+\mathbf{r}
$$

where $\hat{\mathbf{y}}$ in the estimation space and \mathbf{r} in the error space.

