
Vectors

Vectors and the scalar multiplication and vector addition operations:

xn×1 =



x1

x2

. . .

xn


∈ Rn, 2



x1

x2

. . .

xn


+ 3



y1

y2

. . .

yn


=



2x1 + 3y1

2x2 + 3y2

. . .

2xn + 3yn


I’ll use the two terms “vector” and “point” interchangeable: any point ∈ Rn

corresponds to a vector starting from the origin and ending at that point.
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• The inner (dot or cross) product of two vectors is defined to be

utv =
∑
i

uivi = ‖u‖ · ‖v‖ cos(θ),

where ‖u‖ denotes the norm of a vector

‖u‖ =
√
utu =

√∑
i

u2i ,

and θ is the angle between the two vectors.

• A unit vector is a vector whose norm is 1.

• When two vectors are orthogonal, cos(θ) = 0, therefore utv = 0, denoted

by u ⊥ v.

• The Euclidean distance between two vectors u and v is ‖u− v‖.
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Linear Combinations

• A linear combination of vectors x1, . . . ,xp is

b1x1 + b2x2 + · · ·+ bpxp, b1, . . . , bp ∈ R.

• Consider a matrix Xn×p = (x1 | · · · | xp), where the j-th column xj is a

n× 1 vector.

All the linear combinations of the p columns are denoted by C(X), i.e.,

C(X) = All linear combinations of x1, . . . ,xp.

• Any vector in C(X) can be written as Xn×pbp×1, where b = (b1, . . . , bp)
t.
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Linear Subspace

• C(X) forms a linear subspace: all items from C(X) are vectors from Rn,

and

if u,v ∈ C(X), then au+ bv ∈ C(X),

where a, b ∈ R.

• You can image a linear subspace as a bag of vectors, and for any two

vectors in of that bag, say u and v (the two vectors could be the same,

i.e., you are allowed to create copies of vectors in that bag), their linear

combination, say u− 2v, should also be in that bag.

• Apparently, we have u− u = 0, so 0 is in any linear subspace. (i.e., any

linear subspace should pass the origin).
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Replacement Rule

• Given p vectors: x1, . . . ,xp, define

z1 = a1x1 + a2x2 + · · ·+ apxp.

If a1 6= 0, then

x1 =
1

a1

(
z1 − a2x2 − · · · − apxp

)
.

That is, any linear combination of (x1,x2, . . . ,xp) can be rewritten as a

linear combination of (z1,x2, . . . ,xn).

• Let X̃ be a matrix which is the same as X except that we replace the jth

column by a linear combination,

X̃[, j] = ajX[, j] +
∑
i 6=j

aiX[, i].

If aj 6= 0, then C(X̃) = C(X).
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Orthogonality

• Vector ⊥ Vector: u ⊥ v if utv = 0.

For example, ŷ ⊥ y − ŷ.

• Vector ⊥ Subspace: u ⊥ a subspace , if u is orthogonal to any vector from

that subspace. For example, if u is orthogonal to each column of a matrix

X, then we have u ⊥ C(X).

For example, (y − ŷ) ⊥ C(X).

• Subspace ⊥ Subspace: Similarly we can define orthogonal subspaces, if

any vector from one subspace is orthogonal to any vector from the other

subspace.
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Pythagorean Theorem

If v1 ⊥ v2 then ‖v1 + v2‖2 = ‖v1‖2 + ‖v2‖2.

In particular

‖y‖2 = ‖ŷ + y − ŷ‖2 = ‖ŷ‖2 + ‖y − ŷ‖2
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Linear Independence

• A set of vectors v1, . . . ,vm is said to be linear independent, if

c1v1 + · · ·+ cmvm = 0 iff c1 = · · · = cm = 0.

Otherwise they are linear dependent.

• In other words, if a set of vectors are linear independent, then no one can

be expressed as a linear combination of the others; if they are linear

dependent, then there at least exists one vector, say v2, which can be

written as a linear combination of v1,v3, . . . ,vm.
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Linear Independence and Bases

A set of vectors {u1, . . . ,um} is a basis for a subspace M, if

1. Span(u1, . . . ,um) =M, and

2. u1, . . . ,um are linear independent.

• That is, a basis is a set of vectors that spans a linear subspace M without

redundancy.

• Xn×p is not of full rank ⇐⇒ its columns are linear dependent.

• Xn×p is of full rank ⇐⇒ its columns are linear independent and form a

basis for C(X).
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• X = (x1 | · · · | xp)n×p is of full rank, then the p columns form a basis for

C(X). Any vector v in C(X) can be uniquely represented by the linear

combination of xi’s. That is, if we can write v as

v = c1x1 + c2x2 + · · ·+ cpxp, and also

v = a1x1 + a2x2 + · · ·+ apxp,

then ci = ai for all i = 1 : m.

• Bases are not unique. That is, a linear space C(X) has more than one

bases, e.g., based on the replacement rule, we can replace xj by another

vector. But the number of vectors in each basis is always p, which is the

rank/dim of C(X).
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OLS Solution

• Consider a linear model

yi = xi1β1 + · · ·+ xipβp + erri, i = 1, . . . , n

Using the LS principal, we aim to find β = (β1, . . . , βp)
t, which minimizes

n∑
i=1

(yi − xi1β1 − · · · − xipβp)2.

• Using the matrix form, we can write the linear model as

yn×1 = Xn×pβp×1 + e,

and solve

min
β∈Rp

‖y −Xβ‖2. (1)
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The LS optimization

min
β∈Rp

‖y −Xβ‖2.

is equivalent to finding a vector v in C(X) that minimizes ‖y − v‖2,

min
v∈C(X)

‖y − v‖2.

Once we solve v, we then go back to find its representation β.

The optimal choice of v is ŷ, the projection of y onto C(X), the subspace

consisting of linear combinations of columns of X.
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Projection

For any vector y ∈ Rn and a subspace M⊆ Rn, there exists a unique vector ŷ

such that

1. ŷ ∈M, and

2. (y − ŷ) ⊥M.

We call ŷ the projection of y onto M.

y = ŷ︸︷︷︸
∈M

+
(
y − ŷ︸ ︷︷ ︸
∈M⊥

)
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The projection ŷ can be computed based on a set of basis of M. More

specifically,

ŷn×1 = Mn×nyn×1

where the n× n matrix M (known as the projection matrix) only depends on

the underline subspace M and does not depend on y. That is for any vector y,

we can compute My to obtain its projection.
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LS and Projection

Recall the LS problem: find a vector v in C(X), which minimizes ‖y − v‖2,

i.e.,

min
v∈C(X)

‖y − v‖2.

Let y denote the projection of y onto C(X). We have

‖y − v‖2 = ‖ y − ŷ︸ ︷︷ ︸
orthogonal to C(X)

+ ŷ − v︸ ︷︷ ︸
∈C(X)

‖2 = ‖y − ŷ‖2 + ‖ŷ − v‖2 ≥ ‖y − ŷ‖2.

So the LS solution is the projection of y onto the space C(X):

ŷ = X(XtX)−1Xty = Hy.

The projection matrix H is also called the hat matrix in many textbooks.
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• If we apply some linear transformation on the columns of X, as long as

C(X) stays the same, ŷ and R2 stay the same, although β̂ may differ.

• We can still compute ŷ even if X does not have full rank.

• C(X) is often called the estimation space, and the residual vector

r = y − ŷ = (I−M)y is orthogonal to C(X), i.e., orthogonal to any

linear combinations based on vectors from C(X).

• The essence of LS: decompose the data vector y into two orthogonal

components

y = ŷ + r,

where ŷ in the estimation space and r in the error space.
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