Multiple Linear Regression (MLR)

• In most applications we will want to use several predictors, instead of a single predictor as in simple linear regression (SLR).

• Data
$$(y_i, \mathbf{x}_i)_{i=1}^n$$
, where $\mathbf{x}_i = (x_{i1}, \dots, x_{ip})^t$ with $x_{i1} = 1$.

• Assume

$$y_i = x_{i1}\beta_1 + x_{i2}\beta_2 + \dots + x_{ip}\beta_p + e_i$$

 $(eta_1,\cdots,eta_p,\sigma^2)$: the unknown but true parameters, e'_is : random errors.

- 1. The mean function $\mathbb{E}(y_i)$ is linear in the p predictors;
- 2. The errors e_i 's are uncorrelated with mean 0 and constant variance, i.e., $\mathbb{E}e_i = 0$ and $Cov(e_i, e_j) = \sigma^2 \delta_{ij}$. Sometimes, e.g., for hypothesis testing, we further assume e_i iid $\sim N(0, \sigma^2)$.

Matrix Representation

$$\begin{pmatrix} y_1 \\ y_2 \\ \dots \\ y_n \end{pmatrix} = \begin{pmatrix} x_{11}\beta_1 + x_{12}\beta_2 + \dots + x_{1p}\beta_p + e_1 \\ x_{21}\beta_1 + x_{22}\beta_2 + \dots + x_{2p}\beta_p + e_2 \\ \dots \\ x_{n1}\beta_1 + x_{n2}\beta_2 + \dots + x_{np}\beta_p + e_n \end{pmatrix}$$
$$= \begin{pmatrix} x_{11} & x_{12} & \dots & x_{1p} \\ x_{21} & x_{22} & \dots & x_{2p} \\ \dots & \dots & \dots \\ x_{n1} & x_{n2} & \dots & x_{np} \end{pmatrix} \begin{pmatrix} \beta_1 \\ \beta_2 \\ \dots \\ \beta_p \end{pmatrix} + \begin{pmatrix} e_1 \\ e_2 \\ \dots \\ e_n \end{pmatrix}$$
$$\mathbf{y}_{n \times 1} = \mathbf{X}_{n \times p} \beta_{p \times 1} + \mathbf{e}_{n \times 1}$$

Least Squares Estimation

• Using matrix representation, we can express the MLR model as $^{\mathrm{a}}$

$$\mathbf{y}_{n \times 1} = \mathbf{X}_{n \times p} \boldsymbol{\beta}_{p \times 1} + \mathbf{e}_{n \times 1}, \quad \mathbf{e} \sim \mathsf{N}_n (\mathbf{0}, \sigma^2 \mathbf{I}_n).$$

• The LS estimate of β minimizes

$$\mathsf{RSS} = \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|^2 = (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^t (\mathbf{y} - \mathbf{X}\boldsymbol{\beta}).$$

^aBy default the intercept is included in the model, then the 1st column of the design matrix **X** is a vector of all 1's. We further assume that the rank of **X** is p, i.e., no columns of **X** is a linear combination of the other columns and **X** is a tall and skinny matrix (n > p.) Differentiating RSS with respect to β and setting to zero, we have

$$\begin{aligned} \frac{\partial \mathsf{RSS}}{\partial \boldsymbol{\beta}} &= -2\mathbf{X}_{p \times n}^{t}(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})_{n \times 1} = \mathbf{0}_{p \times 1} \\ &\implies \mathbf{X}^{t}(\mathbf{y} - \mathbf{X}\boldsymbol{\beta}) = \mathbf{0} \quad \text{normal equation} \\ &\implies (\mathbf{X}^{t}\mathbf{X})\boldsymbol{\beta} = \mathbf{X}^{t}\mathbf{y} \\ &\implies \hat{\boldsymbol{\beta}} = (\mathbf{X}^{t}\mathbf{X})^{-1}\mathbf{X}^{t}\mathbf{y} \quad (*) \end{aligned}$$

Note that the inverse of the $p \times p$ matrix $(\mathbf{X}^t \mathbf{X})$ exists since we assume the rank of \mathbf{X} is p.

Next let's check the equation (*) for SLR.

$$\mathbf{X}^{t}\mathbf{X} = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ x_{1} & x_{2} & \cdots & x_{n} \end{pmatrix} \begin{pmatrix} 1 & x_{1} \\ 1 & x_{2} \\ \cdots & \cdots \\ 1 & x_{n} \end{pmatrix} = \begin{pmatrix} n & n\bar{x} \\ n\bar{x} & \sum x_{i}^{2} \end{pmatrix}$$
$$(\mathbf{X}^{t}\mathbf{X})^{-1} = \frac{1}{n\sum x_{i}^{2} - (n\bar{x})^{2}} \begin{pmatrix} \sum x_{i}^{2} & -n\bar{x} \\ -n\bar{x} & n \end{pmatrix}$$
$$\mathbf{X}^{t}\mathbf{y} = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ x_{1} & x_{2} & \cdots & x_{n} \end{pmatrix} \begin{pmatrix} y_{1} \\ y_{2} \\ \cdots \\ y_{n} \end{pmatrix} = \begin{pmatrix} n\bar{y} \\ \sum x_{i}y_{i} \end{pmatrix}$$

$$\hat{\boldsymbol{\beta}} = (\mathbf{X}^{t}\mathbf{X})^{-1}\mathbf{X}\mathbf{y}$$
$$= \frac{1}{n\sum x_{i}^{2} - (n\bar{x})^{2}} \begin{pmatrix} \sum x_{i}^{2} & -n\bar{x} \\ -n\bar{x} & n \end{pmatrix} \begin{pmatrix} n\bar{y} \\ \sum x_{i}y_{i} \end{pmatrix}$$

So \hat{eta}_1 is given by $^{\mathrm{a}}$

$$\hat{\beta}_1 = \frac{-n^2 \bar{x} \bar{y} + n \sum x_i y_i}{n \sum x_i^2 - (n\bar{x})^2} = \frac{\sum x_i y_i - n\bar{x} \bar{y}}{\sum x_i^2 - n\bar{x}^2} = \frac{\mathsf{Sxy}}{\mathsf{Sxx}}$$

Similarly we can check the calculation for $\hat{\beta}_0$.

^a
$$\sum (x_i - \bar{x})(y_i - \bar{y}) = \sum x_i y_i - n\bar{x}\bar{y}$$
 and $\sum (x_i - \bar{x})(x_i - \bar{x}) = \sum x_i^2 - n\bar{x}^2$.

• Fitted value

$$\hat{\mathbf{y}}_{n\times 1} = \mathbf{X}\hat{\boldsymbol{\beta}} = \mathbf{X}(\mathbf{X}^t\mathbf{X})^{-1}\mathbf{X}^t\mathbf{y} = \mathbf{H}_{n\times n}\mathbf{y}_{n\times 1}.$$

 $\mathbf{H}_{n \times n}$: hat matrix, since it returns "y-hat."

• Residuals

$$\mathbf{r}_{n\times 1} = \mathbf{y} - \hat{\mathbf{y}} = (\mathbf{I} - \mathbf{H})\mathbf{y}.$$

• The residuals can be used to estimate the error variance

$$\hat{\sigma}^2 = \frac{1}{n-p} \sum_{i=1}^n r_i^2 = \frac{\text{RSS}}{n-p}.$$

Recall that the LS estimate $\hat{oldsymbol{eta}}$ satisfies the normal equations

$$\mathbf{X}^t(\mathbf{y} - \mathbf{X}\hat{\boldsymbol{\beta}}) = \mathbf{0}.$$

So $\mathbf{r} = \mathbf{y} - \mathbf{X}\hat{\boldsymbol{\beta}}$ satisifies:

- X^tr = 0, the cross-products between the residual vector r and each column of X are zero; especially, if the intercept is included in the model, we have ∑_{i=1}ⁿ r_i = 0;
- $\hat{\mathbf{y}}^t \mathbf{r} = \hat{\boldsymbol{\beta}}^t \mathbf{X}^t \mathbf{r} = 0$, the cross-product between the fitted value $\hat{\mathbf{y}}$ and the residual vector \mathbf{r} is zero.

That is, the residual vector \mathbf{r} is orthogonal to each column of \mathbf{X} and $\hat{\mathbf{y}}$.

The Hat Matrix

$$\mathbf{H}_{n \times n} = \mathbf{X} (\mathbf{X}^t \mathbf{X})^{-1} \mathbf{X}^t$$

• Let $\mathbf{v} = \mathbf{X} \mathbf{a}_{p \times 1}$ be any linear combination of the columns of \mathbf{X} , then $\mathbf{H} \mathbf{v} = \mathbf{v}$, since

$$\mathbf{H}\mathbf{X} = \mathbf{X}(\mathbf{X}^t\mathbf{X})^{-1}\mathbf{X}^t\mathbf{X} = \mathbf{X}.$$

- Symmetric: $\mathbf{H}^t = \left[\mathbf{X}(\mathbf{X}^t\mathbf{X})^{-1}\mathbf{X}^t\right]^t = \mathbf{X}(\mathbf{X}^t\mathbf{X})^{-1}\mathbf{X}^t = \mathbf{H}.$
- Idempotent ^a: $HH = HH^t = H$.

$$\mathbf{H}\mathbf{H} = \mathbf{X}(\mathbf{X}^{t}\mathbf{X})^{-1}\mathbf{X}^{t}\mathbf{X}(\mathbf{X}^{t}\mathbf{X})^{-1}\mathbf{X}^{t} = \mathbf{X}(\mathbf{X}^{t}\mathbf{X})^{-1}\mathbf{X}^{t} = \mathbf{H}.$$

• trace(H) = p, the number of LS coefficients we estimated.

^aThis property also implies that $\mathbf{H}(\mathbf{I} - \mathbf{H}) = \mathbf{0}_{n \times n}$.

Goodness of Fit: R-square

We measure how well the model fits the data via R^2 (fraction of variance explained)

$$R^{2} = \frac{\sum (\hat{y}_{i} - \bar{y})^{2}}{\sum (y_{i} - \bar{y})^{2}},$$

which is also equal to

$$R^{2} = 1 - \frac{\sum (y_{i} - \hat{y}_{i})^{2}}{\sum (y_{i} - \bar{y})^{2}} = 1 - \frac{\text{RSS}}{\text{TSS}}.$$

Geometry Interpretation of LS

- Estimation space: columns of X form a p-dim subspace in ℝⁿ (denoted by C(X)), which consists of vectors that can be written as linear combinations of columns of X, i.e., Xw where w ∈ ℝ^p.
- Fitted value:

$$\hat{\mathbf{y}} = \mathbf{X}\hat{\boldsymbol{\beta}} = \mathbf{X}(\mathbf{X}^t\mathbf{X})^{-1}\mathbf{X}^t\mathbf{y} = \mathbf{H}_{n\times n}\mathbf{y}.$$

Finding $\hat{\beta}$ that minimizes $\|\mathbf{y} - \mathbf{X}\beta\|^2$ is equivalent to finding a vector $\hat{\mathbf{y}}$ from the estimation space that minimizes $\|\mathbf{y} - \hat{\mathbf{y}}\|^2$. Intuitively we know what $\hat{\mathbf{y}}$ is: it's the projection of \mathbf{y} onto the estimation space.

H_{n×n}: projection/hat matrix. It is symmetric, unique, and idempotent.
 Especially tr(H) = p, the dimension of the vector space C(X).

- Error space: the (n − p)-dim subspace, denoted by C(X)[⊥], which is orthogonal to the estimation space. (I_n − H) is the projection matrix of the error space.
- Residuals:

$$\mathbf{r} = \mathbf{y} - \hat{\mathbf{y}} = (\mathbf{I} - \mathbf{H})\mathbf{y}.$$

If the intercept is included in the model, then $\sum_{i=1}^{n} \hat{e}_i = 0$. In general, $\sum_{i=1}^{n} \hat{e}_i X_{ij} = 0$ for $j = 1, \dots, p$, due to the normal equation: $\mathbf{X}^T (\mathbf{y} - \mathbf{X} \hat{\boldsymbol{\beta}}) = 0.$

The geometric interpretation: \mathbf{r} is the projection of \mathbf{y} onto the error space orthogonal to $C(\mathbf{X})$. So \mathbf{r} is orthogonal to any vector in $C(\mathbf{X})$. Especially, \mathbf{r} is orthogonal to each column of \mathbf{X} . Recall the Hat/Projection matrix

$$\mathbf{H}_{n \times n} = \mathbf{X} (\mathbf{X}^t \mathbf{X})^{-1} \mathbf{X}^t$$

- Based on the geometric intuition, we have for any β ∈ ℝ^p, H(Xβ) = Xβ.
 Especially HX = X.
- Idempotent: HH = HH^t = H. This property can also be understood via the projection idea. For any vector v ∈ ℝⁿ, we have H(Hv) = Hv.
 (Why)

The QR Decomposition (*)

How is the LS estimate $\hat{oldsymbol{eta}}$ solved in R? Denote the QR decomposition of ${f X}$ as

$$\mathbf{X}_{n \times p} = \mathbf{Q}_{n \times p} \mathbf{R}_{p \times p}$$

where \mathbf{Q} is an orthogonal matrix (i.e., $\mathbf{Q}^t \mathbf{Q} = \mathbf{I}_p$) and \mathbf{R} is an upper triangular matrix, i.e., all the entries in \mathbf{R} below the diagonal are equal to 0.

$$\hat{\boldsymbol{\beta}} = (\mathbf{X}^{t}\mathbf{X})^{-1}\mathbf{X}^{t}\mathbf{y}$$
$$(\mathbf{X}^{t}\mathbf{X})^{-1} = (\mathbf{R}^{t}\mathbf{R})^{-1} = \mathbf{R}^{-1}(\mathbf{R}^{t})^{-1}$$
$$\hat{\boldsymbol{\beta}} = \mathbf{R}^{-1}\mathbf{Q}^{t}\mathbf{y}$$
$$\mathbf{R}\hat{\boldsymbol{\beta}} = \mathbf{Q}^{t}\mathbf{y}$$

The last equation, $\mathbf{R}\hat{\boldsymbol{\beta}} = \mathbf{Q}^t \mathbf{y}$, can be solved pretty easily via backsolving since \mathbf{R} is an upper triangular matrix.

Gram-Schmidt (*)

One methods for computing the QR decomposition is the *Gram-Schmidt* algorithm. Let's work with a matrix

$$\mathbf{A}_{n \times p} = \big[\mathbf{a}_1 \mid \mathbf{a}_2 \mid \cdots \mid \mathbf{a}_p\big],$$

where \mathbf{a}_j denotes the *j*th column of \mathbf{A} . Then

•
$$\mathbf{e}_1 = \mathbf{a}_1, \quad \mathbf{u}_1 = \frac{\mathbf{e}_1}{\|\mathbf{e}_1\|}$$

• $\mathbf{e}_2 = \mathbf{a}_2 - (\mathbf{a}_2^t \mathbf{u}_1)\mathbf{u}_1, \quad \mathbf{u}_2 = \frac{\mathbf{e}_2}{\|\mathbf{e}_2\|}$
• ...

•
$$\mathbf{e}_{k+1} = \mathbf{a}_{k+1} - \sum_{j=1}^{k} (\mathbf{a}_{j}^{t} \mathbf{u}_{j}) \mathbf{u}_{j}, \quad \mathbf{u}_{k+1} = \frac{\mathbf{e}_{k+1}}{\|\mathbf{e}_{k+1}\|}$$

The resulting QR decomposition is

$$\mathbf{A} = \begin{bmatrix} \mathbf{a}_1 \mid \mathbf{a}_2 \mid \cdots \mid \mathbf{a}_p \end{bmatrix} = \begin{bmatrix} \mathbf{u}_1 \mid \cdots \mid \mathbf{u}_p \end{bmatrix} \mathbf{R} = \mathbf{Q} \mathbf{R}.$$

Use R to Analyze the Savings Data

- Basic command: 1m
- How to interprete LS coefficients? β_j measures the average change of Y per unit change of X_j, with all other predictors held fixed.
- Note that the result from SLR might be different from the one from MLR: SLR suggests that pop75 has a significant positive effect on sr, while MLR suggests the opposite. Such seemingly contradictory statements are caused by correlations among predictors.
- How to handle rank deficiency?

Review: Mean and Covariance

• The mean of a random vector **Z** is a *m*-by-1 vector with the *i*-th element equal to $\mathbb{E}(Z_i)$.

$$oldsymbol{\mu}_{m imes 1} = \mathbb{E}[\mathbf{Z}] = \left(egin{array}{c} \mathbb{E}Z_1 \ \ \ldots \ \ \mathbb{E}Z_m \end{array}
ight)$$

•

• The covariance of **Z** is a symmetric *m*-by-*m* matrix with the (i, j)-th element equal to $Cov(Z_i, Z_j)$.

$$\Sigma_{m \times m} = \mathsf{Cov}(\mathbf{Z}) = \mathbb{E}\Big[(\mathbf{Z} - \boldsymbol{\mu})(\mathbf{Z} - \boldsymbol{\mu})^t\Big]$$
$$= \begin{pmatrix} \mathsf{Var}(Z_1) & \cdots & \mathsf{Cov}(Z_1, Z_m) \\ \cdots & \cdots & \cdots \\ \mathsf{Cov}(Z_m, Z_1) & \cdots & \mathsf{Var}(Z_m) \end{pmatrix}$$

• Affine transformations: $\mathbf{W} = \mathbf{a}_{n \times 1} + \mathbf{B}_{n \times m} \mathbf{Z}$,

$$\mathbb{E}[\mathbf{W}] = \mathbf{a} + \mathbf{B}\boldsymbol{\mu}, \quad \mathsf{Cov}(\mathbf{W}) = \mathbf{B}\boldsymbol{\Sigma}\mathbf{B}^t.$$

Especially, for $W = v_1 Z_1 + \cdots + v_m Z_m = \mathbf{v}^t \mathbf{Z}$,

$$\mathbb{E}[W] = \mathbf{v}^t \boldsymbol{\mu} = \sum_{i=1}^m v_i \mu_i,$$

$$\mathsf{Var}(W) = \mathbf{v}^t \Sigma \mathbf{v} = \sum_{i=1}^m v_i^2 \mathsf{Var}(Z_i) + 2 \sum_{i < j} v_i v_j \mathsf{Cov}(Z_i, Z_j).$$

Means and Covariances of LS Estimates

Recall our assumption: $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{e}$ with

$$\mathbb{E}(\mathbf{e}) = \mathbf{0}, \quad \mathsf{Cov}(\mathbf{e}) = \sigma^2 \mathbf{I}_n,$$

that is,
$$\mathbb{E}(\mathbf{y}) = \mathbf{X}\boldsymbol{\beta}$$
, $Cov(\mathbf{y}) = \sigma^2 \mathbf{I}_n$.

Under this assumption,

$$\begin{split} \mathbb{E}(\hat{\boldsymbol{\beta}}) &= \mathbb{E}(\mathbf{X}^{t}\mathbf{X})^{-1}\mathbf{X}^{t}\mathbf{y} \\ &= (\mathbf{X}^{t}\mathbf{X})^{-1}\mathbf{X}^{t}\mathbb{E}\mathbf{y} \\ &= (\mathbf{X}^{t}\mathbf{X})^{-1}\mathbf{X}^{t}\mathbf{X}\boldsymbol{\beta} = \boldsymbol{\beta} \\ \mathsf{Cov}(\hat{\boldsymbol{\beta}}) &= (\mathbf{X}^{t}\mathbf{X})^{-1}\mathbf{X}^{t}\mathsf{Cov}(\mathbf{y})\left[(\mathbf{X}^{t}\mathbf{X})^{-1}\mathbf{X}^{t}\right]^{t} \\ &= (\mathbf{X}^{t}\mathbf{X})^{-1}\mathbf{X}^{t}\sigma^{2}\mathbf{X}(\mathbf{X}^{t}\mathbf{X})^{-1} \\ &= \sigma^{2}(\mathbf{X}^{t}\mathbf{X})^{-1}\mathbf{X}^{t}\sigma^{2}\mathbf{X}(\mathbf{X}^{t}\mathbf{X})^{-1} = \sigma^{2}(\mathbf{X}^{t}\mathbf{X})^{-1}; \end{split}$$

$$\begin{split} \mathbb{E}(\hat{\mathbf{y}}) &= \mathbf{X}\boldsymbol{\beta}, \quad \mathsf{Cov}(\hat{\mathbf{y}}) = \sigma^{2}\mathbf{H}; \\ \mathbb{E}(\mathbf{r}) &= \mathbf{0}, \quad \mathsf{Cov}(\mathbf{r}) = \sigma^{2}(\mathbf{I}_{n} - \mathbf{H}) \\ \mathbb{E}(\hat{\sigma}^{2}) &= \frac{1}{n-p}\mathbb{E}\mathbf{r}^{t}\mathbf{r} = \frac{1}{n-p}\mathsf{tr}[\mathbb{E}\mathbf{r}^{t}\mathbf{r}] = \frac{1}{n-p}\mathsf{tr}[\mathbb{E}\mathbf{r}\mathbf{r}^{t}] = \sigma^{2} \end{split}$$

- So the LS estimate $\hat{\beta}$ is unbiased.
- We can plug-in the estimated error variance $\hat{\sigma}^2$ to obtain the variance estimate of $\hat{\beta}$, i.e.,

$$\operatorname{Cov}(\hat{\boldsymbol{\beta}}) = \hat{\sigma}^2 (\mathbf{X}^t \mathbf{X})^{-1}.$$

• We often use the standard error of $\hat{oldsymbol{eta}}$ in our later inference. For example

$$\mathsf{se}(\hat{\beta}_1) = \sqrt{\mathsf{Var}(\hat{\beta}_1)} = \hat{\sigma}\sqrt{[(\mathbf{X}^t\mathbf{X})^{-1}]_{11}}.$$

The Gauss-Markov Theorem

• Suppose we are interested in estimating a linear combination of β ,

$$\theta = \sum_{j=1}^p c_j \beta_j = \mathbf{c}^t \boldsymbol{\beta}.$$

For example, estimating any element of β and estimating the mean response at a new value \mathbf{x}^* are all special cases of this setup.

• Naturally, we can form an estimate of θ by plugging in the LS estimate $\hat{\beta}$,

$$\hat{\theta}_{LS} = \mathbf{c}^t \hat{\boldsymbol{\beta}} = \mathbf{c}^t (\mathbf{X}^t \mathbf{X})^{-1} \mathbf{X}^t \mathbf{y},$$

which is a linear $^{\rm a}$ and unbiased estimator of θ with

$$\mathsf{MSE}(\hat{\theta}_{LS}) = \mathbb{E}(\hat{\theta}_{LS} - \theta)^2 = \mathsf{Var}(\hat{\theta}_{LS}).$$

^aIt is a linear combination of the *n* data points y_1, \ldots, y_n .

- Suppose there is another estimate of θ, which is also linear and unbiased. The following Theorem states that θ_{LS} is always better in the sense that its MSE is always smaller (or at least, not bigger).
- Gauss-Markov Theorem: $\hat{\theta}_{LS} = \mathbf{c}^t \hat{\boldsymbol{\beta}}$ is the BLUE (best linear unbiased estimator) of the parameter $\mathbf{c}^t \boldsymbol{\beta}$ for any $\mathbf{c} \in \mathbb{R}^p$.

Proof for the GM Theorem.

Suppose $\mathbf{a}^t \mathbf{y} + b$ is a linear unbiased estimator of $\theta = \mathbf{c}^t \boldsymbol{\beta}$. It is easy to compute its variance that is equal to $\sigma^2 \|\mathbf{a}\|^2$.

Since it's unbiased, we have

$$\mathbf{c}^t \boldsymbol{\beta} = \mathbb{E} \mathbf{a}^t \mathbf{y} + b = \mathbf{a}^t \mathbf{X} \boldsymbol{\beta} + b,$$

which holds true for any value of β . Therefore b = 0 and $\mathbf{a}^t \mathbf{X} = \mathbf{c}^t$.

Instead of directly computing the variance of the LS estimate $\hat{\theta}_{LS}$, we first find an alternative expression for $\hat{\theta}_{LS}$ which involves **a**.

$$\hat{\theta}_{LS} = \mathbf{c}^t \hat{\boldsymbol{\beta}} = \mathbf{a}^t \mathbf{X} \hat{\boldsymbol{\beta}} = \mathbf{a}^t \hat{\mathbf{y}} = \mathbf{a}^t \mathbf{H} \mathbf{y} = (\mathbf{H} \mathbf{a})^t \mathbf{y} = \hat{\mathbf{a}}^t \mathbf{y}.$$

So the variance of $\hat{\theta}_{LS}$ is equal to $\sigma^2 \|\hat{\mathbf{a}}\|^2$, which apparently is smaller.

That is, we can improve (still unbiased, but with smaller variance) any linear estimator $\mathbf{a}^t \mathbf{y}$ by using $\hat{\mathbf{a}}$ as the new weights on the *n* data points \mathbf{y} .

For example, suppose we want to estimate the mean of y_i 's where

$$y_1,\ldots,y_n$$
 iid $\sim \mathsf{N}(\mu,\sigma^2).$

We can view this setting as a linear regression model with just the intercept μ . What's the corresponding projection matrix **H**?

There are many unbiased linear estimators of μ , e.g., y_1 , or $(y_1 + y_2)/2$.

$$y_1 = \mathbf{c}_1^t \mathbf{y}, \quad \mathbf{c}_1^t = (1, 0, \dots, 0).$$

$$(y_1 + y_2)/2 = \mathbf{c}_2^t \mathbf{y}, \quad \mathbf{c}_2^t = (1/2, 1/2, 0, \dots, 0).$$

You'll find that

$$\mathbf{c}_0 = \mathbf{H}\mathbf{c}_1 = \mathbf{H}\mathbf{c}_2 = \frac{1}{n}(1, \dots, 1)^t$$

 and

$$\mathbf{c}_0^t \mathbf{y} = \frac{1}{n} (y_1 + \dots + y_n)$$

is the LS estimate of μ , the intercept. The LS estimator is better than the other two, since it uses all information in the data which is relevant to μ (therefore it has the smallest variance).

Maximum Likelihood Estimation

Recall the normal assumption for the linear regression model $y_i = \mathbf{x}_i^t \boldsymbol{\beta} + e_i$ (i = 1 : n) with e_i iid ~ N(0, σ^2), that is,

$$\mathbf{y} \sim \mathsf{N}_n(\mathbf{X}\boldsymbol{\beta}, \sigma^2 \mathbf{I}_n).$$

Under this assumption,

Likelihood =
$$L(\boldsymbol{\beta}, \sigma^2 | \mathbf{y}) \propto \left(\frac{\mathsf{RSS}}{n}\right)^{-\frac{n}{2}}$$

The MLE of β = LS Estimate of β .

Distributions of LS Estimates

Recall the assumption for the linear regression model: $\mathbf{y} \sim N_n(\mathbf{X}\boldsymbol{\beta}, \sigma^2 \mathbf{I}_n)$. So any affine transformation of \mathbf{y} is normally distributed ^a; the mean and variance are computed before.

$$\begin{split} \hat{\boldsymbol{\beta}} &= (\mathbf{X}^t \mathbf{X})^{-1} \mathbf{X} \mathbf{y} \quad \sim \quad \mathsf{N}_p(\boldsymbol{\beta}, \sigma^2 (\mathbf{X}^t \mathbf{X})^{-1}), \\ \hat{\mathbf{y}} &= \mathbf{H} \mathbf{y} \quad \sim \quad \mathsf{N}_n(\mathbf{X} \boldsymbol{\beta}, \sigma^2 \mathbf{H}), \\ \mathbf{r} &= (\mathbf{I}_n - \mathbf{H}) \mathbf{y} \quad \sim \quad \mathsf{N}_n(\mathbf{0}, \sigma^2 (\mathbf{I}_n - \mathbf{H})). \end{split}$$

Note that

$$\mathbb{E}\hat{\mathbf{y}} = \mathbf{H}\mathbb{E}\mathbf{y} = \mathbf{H}\mathbf{X}\boldsymbol{\beta} = \mathbf{X}\boldsymbol{\beta} \qquad \mathsf{Cov}(\hat{\mathbf{y}}) = \mathbf{H}\sigma^{2}\mathbf{H}^{t} = \sigma^{2}\mathbf{H}$$
$$\mathbb{E}\mathbf{r} = (\mathbf{I}_{n} - \mathbf{H})\mathbf{X}\boldsymbol{\beta} = \mathbf{0} \qquad \mathsf{Cov}(\mathbf{r}) = (\mathbf{I}_{n} - \mathbf{H})\sigma^{2}(\mathbf{I}_{n} - \mathbf{H})^{t} = \sigma^{2}(\mathbf{I}_{n} - \mathbf{H})$$

^aThey are also jointly normal.

Although r is a n-dim vector, it always lies in a subspace of dim (n – p).
 It behaves like N_{n-p}(0, σ²I_{n-p}), so we have

$$\hat{\sigma}^2 = \frac{\|\mathbf{r}\|^2}{n-p} \sim \sigma^2 \frac{\chi_{n-p}^2}{n-p}$$

 We can show that ŷ and r are uncorrelated, since they are in two orthogonal spaces. Then plus the joint normal assumption, we conclude that they are independent.

Hypothesis Testing for One Predictor

- Test $H_0: \beta_j = c$ versus $H_a: \beta_j \neq c$.^a
- The t-test statistic

$$t = \frac{\hat{\beta}_j - c}{\operatorname{se}(\hat{\beta}_j)} = \frac{\hat{\beta}_j - c}{\hat{\sigma}\sqrt{[(\mathbf{X}^t \mathbf{X})^{-1}]_{jj}}} \sim T_{n-p} \text{ under } H_0.$$

- *p*-value = 2 × the area under the T_{n-p} dist more extreme than the observed statistic t.
- The *p*-value returned by the R command Im corresponds to testing $\beta_j = 0$.

^aThe test result may vary depending what other predictors are included in the model.

We've learned various *t*-tests in class and each seems to have a different degree of freedom. How can I find out the correct df for a *t*-test?

All *t*-tests we've encountered so far involve an estimate of the error variance σ^2 . The df of a *t*-test is determined by the denominator of $\hat{\sigma}^2$.

• $Z_1, \ldots, Z_n \sim \mathsf{N}(\theta, \sigma^2)$. To test $\theta = a$, we have

$$\frac{\hat{\theta}-a}{\mathsf{se}(\hat{\theta})} = \frac{\bar{Z}-a}{\sqrt{\hat{\sigma}^2/n}} \sim T_{n-1}, \quad \hat{\sigma}^2 = \frac{\sum_i (Z_i - \bar{Z})^2}{n-1}.$$

• For SLR, to test $\beta_1 = c$, we have

$$\frac{\hat{\beta}_1 - c}{\mathsf{se}(\hat{\beta}_1)} = \frac{\hat{\beta}_1 - c}{\hat{\sigma}/\sqrt{\mathsf{Sxx}}} \sim T_{n-2}, \quad \hat{\sigma}^2 = \frac{\mathsf{RSS}}{n-2}$$

• For MLR with p predictors (including the intercept), to test $\beta_j = c$,

$$\frac{\hat{\beta}_j - c}{\mathsf{se}(\hat{\beta}_j)} = \frac{\hat{\beta}_j - c}{\hat{\sigma} \big[(\mathbf{X}^t \mathbf{X})^{-1} \big]_{jj}} \sim T_{\mathbf{n}-\mathbf{p}}, \quad \hat{\sigma}^2 = \frac{\mathsf{RSS}}{\mathbf{n}-\mathbf{p}}$$

F-test and ANOVA Table

Source	df	SS	MS	F
Regression	p-1	FSS	FSS/(p-1)	MS(reg)/MS(err)
Error	n-p	RSS	RSS/(n-p)	
Total	n-1	TSS		

The test statistic $\frac{\rm MS(reg)}{\rm MS(err)} \sim F_{(p-1),n-p}$ under

$$H_0: \beta_2 = \beta_3 = \dots = \beta_p = 0.$$

Compare Nested Models

A working example: savings data.

- We start with the full model.
- Suppose we want to test a theory that savings is independent of age, so we fit a reduced model (i.e., remove the two columns corresponding to pop15 and pop75 from the design matrix).

- How can we compare the results of the two fitted models? More specifically, how would we test the following hypotheses:
 - H_0 : The reduced model suffices (age not needed).
 - H_a : The full model is required.

In matrix notation, partition $\mathbf{X}_{n \times p} = (\mathbf{X}_{1n \times (p-q)}, \mathbf{X}_{2n \times q}).$

The corresponding partition of the regression parameter is $\beta^t = (\beta_1^t, \beta_2^t)$, where β_1 is $(p-q) \times 1$ and β_2 is $q \times 1$.

This partition is used to test

$$\begin{array}{ll} H_{\mathbf{0}} & : & \boldsymbol{\beta}_{2} = \mathbf{0}, \ i.e., \ \mathbf{y} = \mathbf{X}_{1}\boldsymbol{\beta}_{1} + \text{error}, \\ \\ H_{a} & : & \boldsymbol{\beta}_{2} \neq \mathbf{0}, \ i.e., \ \mathbf{y} = \mathbf{X}_{1}\boldsymbol{\beta}_{1} + \mathbf{X}_{2}\boldsymbol{\beta}_{2} + \text{error}. \end{array}$$

The test statistic is then

$$F = \frac{(\mathsf{RSS}_0 - \mathsf{RSS}_a)/q}{\mathsf{RSS}_a/(n-p)} \sim F_{q,n-p} \text{ under } H_0.$$

- Numerator: variation (per dim) in the data not explained by the reduced model, but explained by the full model.
- Denominator: variation (per dim) in the data not explained by the full model (i.e., not explained by either model), which is used to estimate the error variance.
- Reject H_0 , if *F*-stat is large, that is, the variation missed by the reduced model, when being compared with the error variance, is significantly large.

• Example 1. The default *F*-test returned by Im().

$$H_0$$
 : $\mathbf{y} = \mathbf{1}_n \alpha + \text{error}$
 H_a : $\mathbf{y} = \mathbf{X}_{n \times p} \boldsymbol{\beta} + \text{error}$

• Example 2. The *F*-test which is equivalent to the *t*-test $(H_0 : \beta_j = 0)$.

$$H_0$$
 : $\mathbf{y} = \mathbf{X}[, -j]\boldsymbol{\alpha} + \text{error}$
 H_a : $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \text{error}$

where $\mathbf{X}[,-j] = \mathbf{X}$ without the *j*-th column and $\boldsymbol{\alpha}$ is $(p-1) \times 1$.

• Example 3. Test $H_0: \beta_2 = \beta_3$. (See Sec 3.2.4.)

 H_0 : $\mathbf{y} = \mathbf{X}_1 \boldsymbol{\alpha} + \text{error},$ H_a : $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \text{error}.$

where \mathbf{X}_1 , a $n \times (p-1)$ matrix, is almost the same as \mathbf{X} but replaces the 2nd and 3rd columns of \mathbf{X} by one column, their sum, and α is $(p-1) \times 1$. In this example, \mathbf{X}_1 is not a sub-matrix of \mathbf{X} . But it's clear that the estimation space spanned by \mathbf{X}_1 is a subspace of the estimation space spanned by \mathbf{X}_1 is a subspace of the estimation space spanned by \mathbf{X}_1 is either a column from \mathbf{X} or a linear combination of columns of \mathbf{X} .

Permutation Test

Steps for hypothesis testing:

- 1. Form a test statistic g(data), ^a which tends to take extreme values under the alternative hypothesis H_a .
- 2. Evaluate the test statistic on the observed data, denoted by g_0 .
- 3. Find the distribution of g(data), when data are generated from H_0 , and then calculate

$$p$$
-value = $\mathbb{P}\left[g(\text{data}) \text{ is more extreme than the observed } g_0 | \text{ data} \sim H_0\right].$

The normal assumption for linear regression is used at step 3. What if the assumption does not hold?

^aA statistic is a function defined on the data.

Monte Carlo Method

- Suppose the pdf (or pmf) of a r.v. Y does not have a simple form, therefore it's not easy to calculate EY.
- But suppose it's easy to write a short R script to generate such a r.v.
- So we can obtain an approximation of $\mathbb{E}Y$ as follows: generate N = 1000 samples from this distribution, Y_1, \ldots, Y_N , and then

$$\mathbb{E}Y \approx \frac{1}{N} \sum_{i=1}^{N} Y_i.$$

That is, population mean \approx sample mean (assume the sample size is large).

• Similarly we can approximate

$$\mathbb{E}f(Y) \approx \frac{1}{N} \sum_{i=1}^{N} f(Y_i).$$

For example, $Var(Y) = \mathbb{E}Y^2 - (\mathbb{E}Y)^2$ and $\mathbb{P}(Y > a) = \mathbb{E}I(Y > a)$ where $I(\cdot)$ is an indicator function.

 Back to the testing for linear regression: if we can generate data from H₀ (here we don't need the normal assumption), and then we can calculate the *p*-value using the Monte Carlo method.

- > fstats = numeric(4000);
- > for(i in 1:4000)}{
- + newsavings=savings;
- + newsavings[,c(2,3)]=savings[sample(50),c(2,3)];
- + ge = lm(sr ~., data=newsavings);
- + fstats[i] = summary(ge)\$fstat[1]
- + }

> length(fstats[fstats > summary(fullmodel)\$fstat[1]])/4000
[1] 0.004

CI and PI

• A $(1 - \alpha)$ Cl for β_j is given by

$$\left(\hat{\beta}_{j} \pm t_{n-p}^{(\alpha/2)} \operatorname{se}(\hat{\beta}_{j})\right) = \left(\hat{\beta}_{j} \pm t_{n-p}^{(\alpha/2)} \hat{\sigma} \sqrt{\left[(\mathbf{X}^{t} \mathbf{X})^{-1}\right]_{jj}}\right)$$

where $t_{n-p}^{(\alpha/2)}$ is the $(1 - \alpha/2)$ percentile of the student T-dist with (n - p) degree-of-freedom.

- We are also interested in obtaining an estimate E[Y|x*] = μ* = (x*)^tβ, as well as a prediction for a future observation y* at x*.
- The Gauss-Markov theorem tells us that the BLUE of μ^* is

$$\hat{\mu}^* = (\mathbf{x}^*)^t \hat{\boldsymbol{\beta}}^t = (\mathbf{x}^*)^t (\mathbf{X}^t \mathbf{X})^{-1} \mathbf{X}^t \mathbf{y}.$$

This is just a linear transformation of y, so we can easily derive its variance, and find its standard error.

$$\operatorname{se}(\hat{\mu}^*) = \hat{\sigma} \sqrt{(\mathbf{x}^*)^t (\mathbf{X}^t \mathbf{X})^{-1} \mathbf{x}^*}.$$

• A CI for μ^* is given by

$$\Big(\hat{\mu}^* - t_{n-p}^{(\alpha/2)} \operatorname{se}(\hat{\mu}^*), \ \hat{\mu}^* + t_{n-p}^{(\alpha/2)} \operatorname{se}(\hat{\mu}^*)\Big).$$

- Also ŷ_{*} = (x^{*})^tβ̂ provides a point prediction for a future observation of y_{*} at x_{*}. In order to find a prediction interval (PI), we need to consider the variance due to β̂ in addition to the variance associated with a new observation, which is σ².
- $\bullet\,$ The standard error $^{\rm a}$ of prediction is

$$\operatorname{se}(\hat{y}^*) = \hat{\sigma}\sqrt{1 + (\mathbf{x}^*)^t (\mathbf{X}^t \mathbf{X})^{-1} \mathbf{x}^*}.$$

• A $(1-\alpha)$ PI for a new observation y_* at x_* is given by

$$\left(\hat{y}^* - t_{n-p}^{(\alpha/2)} \operatorname{se}(\hat{y}^*), \ \hat{y}^* + t_{n-p}^{(\alpha/2)} \operatorname{se}(\hat{y}^*)\right).$$

^aNote that no matter how large the sample size becomes, the width of a PI, unlike a CI, will never approach 0.

• Write
$$\mathbf{x}_{p \times 1} = \begin{pmatrix} 1 \\ \mathbf{z} \end{pmatrix}$$
 where \mathbf{z} denotes the measure of the $(p-1)$

predictors (without the intercept).

- Write $\hat{\Sigma}_{(p-1)\times(p-1)} = \frac{1}{n-1} \sum_{i=1}^{n} (\mathbf{z}_i \bar{\mathbf{z}}) (\mathbf{z}_i \bar{\mathbf{z}})^t$, which is the sample covariance of the (p-1) predictor variables.
- Then

$$\mathbf{x}_*^t(\mathbf{X}^t\mathbf{X})^{-1}\mathbf{x}_* = \frac{1}{n} + \frac{1}{n-1}(\mathbf{z}^* - \bar{\mathbf{z}})^t \hat{\Sigma}^{-1}(\mathbf{z}^* - \bar{\mathbf{z}}),$$

which is the so-called Mahalanobis distance from \mathbf{x}_i to the center of the center of the sample mean).

The point estimation and prediction at \mathbf{x}_* are the same, but the associated MSEs are different

$$\begin{aligned} & \mathsf{se}(\hat{\mu}^*) &= \hat{\sigma}\sqrt{(\mathbf{x}^*)^t(\mathbf{X}^t\mathbf{X})^{-1}\mathbf{x}_*} = \hat{\sigma}\sqrt{\frac{1}{n}} + \frac{1}{n-1}(\mathbf{z}^* - \bar{\mathbf{z}})^t\hat{\Sigma}^{-1}(\mathbf{z}^* - \bar{\mathbf{z}}) \\ & \mathsf{se}(\hat{y}^*) &= \hat{\sigma}\sqrt{1 + (\mathbf{x}^*)^t(\mathbf{X}^t\mathbf{X})^{-1}\mathbf{x}_*} = \hat{\sigma}\sqrt{1 + \frac{1}{n} + \frac{1}{n-1}(\mathbf{z}^* - \bar{\mathbf{z}})^t\hat{\Sigma}^{-1}(\mathbf{z}^* - \bar{\mathbf{z}})} \end{aligned}$$

- $se(\hat{y}^*)$ has an extra 1. When the sample size n goes to infinity, $se(\hat{\mu}^*) \to 0$, but $se(\hat{y}^*) \to \sigma^2$.
- Errors are not the same at all x*: smaller when x* is near x̄ in the Mahalanobis distance.
- Errors are not the same for all samples (of the same sample size n): samples whose x values are more spread (i.e., the eigen-values of Σ̂ are large) have smaller errors.

Joint Confidence Region

Just as we can use estimated standard errors and *t*-stats to form confidence intervals for a single parameter, we can also obtain a $(1 - \alpha) \times 100\%$ confidence region for the entire vector β . In particular

$$\boldsymbol{\beta} - \hat{\boldsymbol{\beta}} \sim \mathsf{N}(\mathbf{0}, \sigma^2(\mathbf{X}^t \mathbf{X})^{-1}).$$

Thus, the quadratic form

$$\frac{(\boldsymbol{\beta} - \hat{\boldsymbol{\beta}})^t \mathbf{X}^t \mathbf{X} (\boldsymbol{\beta} - \hat{\boldsymbol{\beta}})}{p \hat{\sigma}^2} \sim F_{p, n-p}.$$

Then we can construct a $(1 - \alpha) \times 100\%$ confidence region for β to be all the points in the following ellipsoid

$$\frac{(\boldsymbol{\beta} - \hat{\boldsymbol{\beta}})^t \mathbf{X}^t \mathbf{X} (\boldsymbol{\beta} - \hat{\boldsymbol{\beta}})}{p \hat{\sigma}^2} < F(\alpha; p, n - p),$$

where $F(\alpha;p,n-p)$ is defined to be the point such that

$$\mathbb{P}\Big[F_{p,n-p} > F(\alpha; p, n-p)\Big] = \alpha.$$

Simultaneous CIs/PIs

- Consider a simple linear regression $y_i = \beta_0 + \beta_1 x_i + e_i$.
- Given a new value $x^*,$ the $(1-\alpha)$ CI for $\mu^*=\beta_0+\beta_1x^*$ is

$$I(x^*) = \left(\hat{\mu}^* \pm t_{n-2}^{(\alpha/2)} \operatorname{se}(\hat{\mu}^*)\right),$$
(1)

where

$$\hat{\mu}^* = \hat{\beta}_0 + \hat{\beta}_1 x^*, \quad \operatorname{se}(\hat{\mu}^*) = \hat{\sigma} \sqrt{\frac{1}{n} + \frac{(x^* - \bar{x})^2}{\sum_{i=1}^n (x_i - \bar{x})^2}}.$$

Suppose we are interested in CIs at multiple points (x₁^{*},...,x_m^{*}). Using formula (1), we can form CIs at the m points, I(x₁^{*}),...,I(x_m^{*}).

• We know that

$$\mathbb{P}\Big[\mu_i^* \in I(x_i^*)\Big] = (1 - \alpha),$$

where $\mu_i^* = \beta_0 + \beta_1 x_i^*$ is the value on the regression line at x_i^* . This is the point-wise coverage probability and formula (1) gives the point-wise CI.

• What about the simultaneous coverage probability?

$$\mathbb{P}\Big[\mu_i^* \in I(x_i^*), \text{ for } i = 1, \dots, m\Big] = ???$$

Bonferroni Correction

Let A_k denotes the event that the kth confidence interval covers μ_k^* with

$$\mathbb{P}(A_k) = (1 - \alpha).$$

Then

 $\mathbb{P}(%)=\mathbb{P}(%)=\mathbb$ $= \mathbb{P}(A_1 \cap A_2 \cdots \cap A_m)$ $= 1 - \mathbb{P}(A_1^c \cup A_2^c \cdots \cup A_m^c)$ $\mathbb{P}(A_1^c) - \cdots - \mathbb{P}(A_m^c)$

$$\geq 1 - \mathbb{P}(A_1^c) - \dots - \mathbb{P}(A_m^c)$$

$$= 1 - m\alpha.$$

Suppose I_α(x^{*}_k) is the (1 – α) Cl at x^{*}_k, where k = 1, 2, ..., m. To make sure the simultaneous coverage probability is 95%, i.e.,

$$\mathbb{P}(\mu_k^* \in I_\alpha(x_k^*) \text{ for all } k = 1:m) = 95\%,$$

we need to set $\alpha = 5\%/m$, which is known as the Bonferroni correction.

• Similarly, suppose $I_{\alpha}(x_k^*)$ is the $(1 - \alpha)$ PI at x_k^* , where k = 1, 2, ..., m. To make sure the simultaneous coverage probability is 95%, i.e.,

$$\mathbb{P}(y_k^* \in I_{\alpha}(x_k^*) \text{ for all } k = 1:m) = 95\%,$$

we need to set $\alpha = 5\%/m$.

Confidence Band

• Ideally we would like to construct a simultaneous confidence band (i.e., $m = \infty$) cross all x^* 's. Scheffé's Theorem (1959): Let

$$I(x) = \left(\hat{r}(x) - c\hat{\sigma}, \hat{r}(x) + c(x)\hat{\sigma}\right),$$

where

$$\hat{r}(x) = \hat{\beta}_0 + \hat{\beta}_1 x, \quad c(x) = \sqrt{2F(\alpha, 2, n-2)} \sqrt{\frac{1}{n} + \frac{(x-\bar{x})^2}{\sum_{i=1}^n (x_i - \bar{x})^2}}.$$

Then

$$\mathbb{P}\Big[r(x) \in I(x) \text{ for all } x\Big] \ge 1 - \alpha.$$

• Can we construct a simultaneous prediction band? No.

Confidence bands are always wider than point-wise CIs? For SLR, at a location x^* , we have

band :
$$\hat{\mu}^* \pm \sqrt{2F(\alpha, 2, n-2)} \operatorname{se}(\hat{\mu}^*)$$

interval : $\hat{\mu}^* \pm t_{n-2}^{(\alpha/2)} \operatorname{se}(\hat{\mu}^*)$.

Assume $\alpha = 5\%$, you can check which one is bigger,

$$\sqrt{2F(\alpha,2,n-2)}, \quad \text{ or } \quad t_{n-2}^{(\alpha/2)} = \sqrt{F(\alpha,1,n-2)}?$$

In fact, for any α , we have

$$t_m^{(\alpha/2)} = \sqrt{F(\alpha, 1, m)} < \sqrt{kF(\alpha, k, m)}.$$