Multiple Linear Regression (MLR)

- In most applications we will want to use several predictors, instead of a single predictor as in simple linear regression (SLR).
- Data $\left(y_{i}, \mathbf{x}_{i}\right)_{i=1}^{n}$, where $\mathbf{x}_{i}=\left(x_{i 1}, \ldots, x_{i p}\right)^{t}$ with $x_{i 1}=1$.
- Assume

$$
y_{i}=x_{i 1} \beta_{1}+x_{i 2} \beta_{2}+\cdots+x_{i p} \beta_{p}+e_{i}
$$

$\left(\beta_{1}, \cdots, \beta_{p}, \sigma^{2}\right):$ the unknown but true parameters, $e_{i}^{\prime} s \quad: \quad$ random errors.

1. The mean function $\mathbb{E}\left(y_{i}\right)$ is linear in the p predictors;
2. The errors e_{i} 's are uncorrelated with mean 0 and constant variance, i.e., $\mathbb{E} e_{i}=0$ and $\operatorname{Cov}\left(e_{i}, e_{j}\right)=\sigma^{2} \delta_{i j}$. Sometimes, e.g., for hypothesis testing, we further assume e_{i} iid $\sim \mathrm{N}\left(0, \sigma^{2}\right)$.

Matrix Representation

$$
\begin{aligned}
\left(\begin{array}{l}
y_{1} \\
y_{2} \\
\cdots \\
y_{n}
\end{array}\right) & =\left(\begin{array}{c}
x_{11} \beta_{1}+x_{12} \beta_{2}+\cdots+x_{1 p} \beta_{p}+e_{1} \\
x_{21} \beta_{1}+x_{22} \beta_{2}+\cdots+x_{2 p} \beta_{p}+e_{2} \\
\cdots \\
x_{n 1} \beta_{1}+x_{n 2} \beta_{2}+\cdots+x_{n p} \beta_{p}+e_{n}
\end{array}\right) \\
& =\left(\begin{array}{cccc}
x_{11} & x_{12} & \cdots & x_{1 p} \\
x_{21} & x_{22} & \cdots & x_{2 p} \\
\cdots & \cdots & \cdots & \cdots \\
x_{n 1} & x_{n 2} & \cdots & x_{n p}
\end{array}\right)\left(\begin{array}{c}
\beta_{1} \\
\beta_{2} \\
\cdots \\
\beta_{p}
\end{array}\right)+\left(\begin{array}{c}
e_{1} \\
e_{2} \\
\cdots \\
e_{n}
\end{array}\right) \\
\mathbf{y}_{n \times 1} & =\mathbf{X}_{n \times p} \boldsymbol{\beta}_{p \times 1}+\mathbf{e}_{n \times 1}
\end{aligned}
$$

Least Squares Estimation

- Using matrix representation, we can express the MLR model as ${ }^{\square}$

$$
\mathbf{y}_{n \times 1}=\mathbf{X}_{n \times p} \boldsymbol{\beta}_{p \times 1}+\mathbf{e}_{n \times 1}, \quad \mathbf{e} \sim \mathbf{N}_{n}\left(\mathbf{0}, \sigma^{2} \mathbf{I}_{n}\right)
$$

- The LS estimate of $\boldsymbol{\beta}$ minimizes

$$
\text { RSS }=\|\mathbf{y}-\mathbf{X} \boldsymbol{\beta}\|^{2}=(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})^{t}(\mathbf{y}-\mathbf{X} \boldsymbol{\beta}) .
$$

${ }^{\text {a }}$ By default the intercept is included in the model, then the 1st column of the design matrix \mathbf{X} is a vector of all 1's. We further assume that the rank of \mathbf{X} is p, i.e., no columns of \mathbf{X} is a linear combination of the other columns and \mathbf{X} is a tall and skinny matrix ($n>p$.)

Differentiating RSS with respect to $\boldsymbol{\beta}$ and setting to zero, we have

$$
\begin{aligned}
\frac{\partial \mathrm{RSS}}{\partial \boldsymbol{\beta}} & =-2 \mathbf{X}_{p \times n}^{t}(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})_{n \times 1}=\mathbf{0}_{p \times 1} \\
& \Longrightarrow \mathbf{X}^{t}(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})=\mathbf{0} \quad \text { normal equation } \\
& \Longrightarrow\left(\mathbf{X}^{t} \mathbf{X}\right) \boldsymbol{\beta}=\mathbf{X}^{t} \mathbf{y} \\
& \Longrightarrow \hat{\boldsymbol{\beta}}=\left(\mathbf{X}^{t} \mathbf{X}\right)^{-1} \mathbf{X}^{t} \mathbf{y} \quad(*)
\end{aligned}
$$

Note that the inverse of the $p \times p$ matrix $\left(\mathbf{X}^{t} \mathbf{X}\right)$ exists since we assume the rank of \mathbf{X} is p.

Next let's check the equation (*) for SLR.

$$
\begin{aligned}
\mathbf{X}^{t} \mathbf{X} & =\left(\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
x_{1} & x_{2} & \cdots & x_{n}
\end{array}\right)\left(\begin{array}{cc}
1 & x_{1} \\
1 & x_{2} \\
\cdots & \cdots \\
1 & x_{n}
\end{array}\right)=\left(\begin{array}{cc}
n & n \bar{x} \\
n \bar{x} & \sum x_{i}^{2}
\end{array}\right) \\
\left(\mathbf{X}^{t} \mathbf{X}\right)^{-1} & =\frac{1}{n \sum x_{i}^{2}-(n \bar{x})^{2}}\left(\begin{array}{cc}
\sum x_{i}^{2} & -n \bar{x} \\
-n \bar{x} & n
\end{array}\right) \\
\mathbf{X}^{t} \mathbf{y} & =\left(\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
x_{1} & x_{2} & \cdots & x_{n}
\end{array}\right)\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\cdots \\
y_{n}
\end{array}\right)=\binom{n \bar{y}}{\sum x_{i} y_{i}}
\end{aligned}
$$

$$
\begin{aligned}
\hat{\boldsymbol{\beta}} & =\left(\mathbf{X}^{t} \mathbf{X}\right)^{-1} \mathbf{X} \mathbf{y} \\
& =\frac{1}{n \sum x_{i}^{2}-(n \bar{x})^{2}}\left(\begin{array}{cc}
\sum x_{i}^{2} & -n \bar{x} \\
-n \bar{x} & n
\end{array}\right)\binom{n \bar{y}}{\sum x_{i} y_{i}}
\end{aligned}
$$

So $\hat{\beta}_{1}$ is given by ${ }^{a}$

$$
\hat{\beta}_{1}=\frac{-n^{2} \bar{x} \bar{y}+n \sum x_{i} y_{i}}{n \sum x_{i}^{2}-(n \bar{x})^{2}}=\frac{\sum x_{i} y_{i}-n \bar{x} \bar{y}}{\sum x_{i}^{2}-n \bar{x}^{2}}=\frac{\mathrm{Sxy}}{\mathrm{Sxx}}
$$

Similarly we can check the calculation for $\hat{\beta}_{0}$.
${ }^{\mathrm{a}} \sum\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)=\sum x_{i} y_{i}-n \bar{x} \bar{y}$ and $\sum\left(x_{i}-\bar{x}\right)\left(x_{i}-\bar{x}\right)=\sum x_{i}^{2}-n \bar{x}^{2}$.

- Fitted value

$$
\hat{\mathbf{y}}_{n \times 1}=\mathbf{X} \hat{\boldsymbol{\beta}}=\mathbf{X}\left(\mathbf{X}^{t} \mathbf{X}\right)^{-1} \mathbf{X}^{t} \mathbf{y}=\mathbf{H}_{n \times n} \mathbf{y}_{n \times 1}
$$

$\mathbf{H}_{n \times n}$: hat matrix, since it returns " y -hat."

- Residuals

$$
\mathbf{r}_{n \times 1}=\mathbf{y}-\hat{\mathbf{y}}=(\mathbf{I}-\mathbf{H}) \mathbf{y}
$$

- The residuals can be used to estimate the error variance

$$
\hat{\sigma}^{2}=\frac{1}{n-p} \sum_{i=1}^{n} r_{i}^{2}=\frac{\mathrm{RSS}}{n-p}
$$

Recall that the LS estimate $\hat{\boldsymbol{\beta}}$ satisfies the normal equations

$$
\mathbf{X}^{t}(\mathbf{y}-\mathbf{X} \hat{\boldsymbol{\beta}})=\mathbf{0}
$$

So $\mathbf{r}=\mathbf{y}-\mathbf{X} \hat{\boldsymbol{\beta}}$ satisifies:

- $\mathbf{X}^{t} \mathbf{r}=\mathbf{0}$, the cross-products between the residual vector \mathbf{r} and each column of \mathbf{X} are zero; especially, if the intercept is included in the model, we have $\sum_{i=1}^{n} r_{i}=0$;
- $\hat{\mathbf{y}}^{t} \mathbf{r}=\hat{\boldsymbol{\beta}}^{t} \mathbf{X}^{t} \mathbf{r}=0$, the cross-product between the fitted value $\hat{\mathbf{y}}$ and the residual vector \mathbf{r} is zero.

That is, the residual vector \mathbf{r} is orthogonal to each column of \mathbf{X} and $\hat{\mathbf{y}}$.

The Hat Matrix

$$
\mathbf{H}_{n \times n}=\mathbf{X}\left(\mathbf{X}^{t} \mathbf{X}\right)^{-1} \mathbf{X}^{t}
$$

- Let $\mathbf{v}=\mathbf{X a} \mathbf{a}_{p \times 1}$ be any linear combination of the columns of \mathbf{X}, then $\mathbf{H v}=\mathbf{v}$, since

$$
\mathbf{H} \mathbf{X}=\mathbf{X}\left(\mathbf{X}^{t} \mathbf{X}\right)^{-1} \mathbf{X}^{t} \mathbf{X}=\mathbf{X} .
$$

- Symmetric: $\mathbf{H}^{t}=\left[\mathbf{X}\left(\mathbf{X}^{t} \mathbf{X}\right)^{-1} \mathbf{X}^{t}\right]^{t}=\mathbf{X}\left(\mathbf{X}^{t} \mathbf{X}\right)^{-1} \mathbf{X}^{t}=\mathbf{H}$.
- Idempotent ${ }^{a}$: $\mathbf{H H}=\mathbf{H H}^{t}=\mathbf{H}$.

$$
\mathbf{H} \mathbf{H}=\mathbf{X}\left(\mathbf{X}^{t} \mathbf{X}\right)^{-1} \mathbf{X}^{t} \mathbf{X}\left(\mathbf{X}^{t} \mathbf{X}\right)^{-1} \mathbf{X}^{t}=\mathbf{X}\left(\mathbf{X}^{t} \mathbf{X}\right)^{-1} \mathbf{X}^{t}=\mathbf{H}
$$

- $\operatorname{trace}(\mathbf{H})=p$, the number of LS coefficients we estimated.
${ }^{\text {a }}$ This property also implies that $\mathbf{H}(\mathbf{I}-\mathbf{H})=\mathbf{0}_{n \times n}$.

Goodness of Fit: R-square

We measure how well the model fits the data via R^{2} (fraction of variance explained)

$$
R^{2}=\frac{\sum\left(\hat{y}_{i}-\bar{y}\right)^{2}}{\sum\left(y_{i}-\bar{y}\right)^{2}},
$$

which is also equal to

$$
R^{2}=1-\frac{\sum\left(y_{i}-\hat{y}_{i}\right)^{2}}{\sum\left(y_{i}-\bar{y}\right)^{2}}=1-\frac{\mathrm{RSS}}{\mathrm{TSS}} .
$$

Geometry Interpretation of LS

- Estimation space: columns of \mathbf{X} form a p-dim subspace in \mathbb{R}^{n} (denoted by $C(\mathbf{X})$), which consists of vectors that can be written as linear combinations of columns of \mathbf{X}, i.e., $\mathbf{X w}$ where $\mathbf{w} \in \mathbb{R}^{p}$.
- Fitted value:

$$
\hat{\mathbf{y}}=\mathbf{X} \hat{\boldsymbol{\beta}}=\mathbf{X}\left(\mathbf{X}^{t} \mathbf{X}\right)^{-1} \mathbf{X}^{t} \mathbf{y}=\mathbf{H}_{n \times n} \mathbf{y}
$$

Finding $\hat{\boldsymbol{\beta}}$ that minimizes $\|\mathbf{y}-\mathbf{X} \boldsymbol{\beta}\|^{2}$ is equivalent to finding a vector $\hat{\mathbf{y}}$ from the estimation space that minimizes $\|\mathbf{y}-\hat{\mathbf{y}}\|^{2}$. Intuitively we know what $\hat{\mathbf{y}}$ is: it's the projection of \mathbf{y} onto the estimation space.

- $\mathbf{H}_{n \times n}$: projection/hat matrix. It is symmetric, unique, and idempotent. Especially $\operatorname{tr}(\mathbf{H})=p$, the dimension of the vector space $C(\mathbf{X})$.
- Error space: the $(n-p)$-dim subspace, denoted by $C(\mathbf{X})^{\perp}$, which is orthogonal to the estimation space. $\left(\mathbf{I}_{n}-\mathbf{H}\right)$ is the projection matrix of the error space.
- Residuals:

$$
\mathbf{r}=\mathbf{y}-\hat{\mathbf{y}}=(\mathbf{I}-\mathbf{H}) \mathbf{y} .
$$

If the intercept is included in the model, then $\sum_{i=1}^{n} \hat{e}_{i}=0$. In general, $\sum_{i=1}^{n} \hat{e}_{i} X_{i j}=0$ for $j=1, \ldots, p$, due to the normal equation: $\mathbf{X}^{T}(\mathbf{y}-\mathbf{X} \hat{\boldsymbol{\beta}})=0$.

The geometric interpretation: \mathbf{r} is the projection of \mathbf{y} onto the error space orthogonal to $C(\mathbf{X})$. So \mathbf{r} is orthogonal to any vector in $C(\mathbf{X})$. Especially, \mathbf{r} is orthogonal to each column of \mathbf{X}.

Recall the Hat/Projection matrix

$$
\mathbf{H}_{n \times n}=\mathbf{X}\left(\mathbf{X}^{t} \mathbf{X}\right)^{-1} \mathbf{X}^{t}
$$

- Based on the geometric intuition, we have for any $\boldsymbol{\beta} \in \mathbb{R}^{p}, \mathbf{H}(\mathbf{X} \boldsymbol{\beta})=\mathbf{X} \boldsymbol{\beta}$. Especially $\mathbf{H X}=\mathbf{X}$.
- Idempotent: $\mathbf{H H}=\mathbf{H H}^{t}=\mathbf{H}$. This property can also be understood via the projection idea. For any vector $\mathbf{v} \in \mathbb{R}^{n}$, we have $\mathbf{H}(\mathbf{H v})=\mathbf{H v}$. (Why)

The QR Decomposition (*)

How is the LS estimate $\hat{\boldsymbol{\beta}}$ solved in R? Denote the QR decomposition of \mathbf{X} as

$$
\mathbf{X}_{n \times p}=\mathbf{Q}_{n \times p} \mathbf{R}_{p \times p}
$$

where \mathbf{Q} is an orthogonal matrix (i.e., $\mathbf{Q}^{t} \mathbf{Q}=\mathbf{I}_{p}$) and \mathbf{R} is an upper triangular matrix, i.e., all the entries in \mathbf{R} below the diagonal are equal to 0 .

$$
\begin{aligned}
\hat{\boldsymbol{\beta}} & =\left(\mathbf{X}^{t} \mathbf{X}\right)^{-1} \mathbf{X}^{t} \mathbf{y} \\
\left(\mathbf{X}^{t} \mathbf{X}\right)^{-1} & =\left(\mathbf{R}^{t} \mathbf{R}\right)^{-1}=\mathbf{R}^{-1}\left(\mathbf{R}^{t}\right)^{-1} \\
\hat{\boldsymbol{\beta}} & =\mathbf{R}^{-1} \mathbf{Q}^{t} \mathbf{y} \\
\mathbf{R} \hat{\boldsymbol{\beta}} & =\mathbf{Q}^{t} \mathbf{y}
\end{aligned}
$$

The last equation, $\mathbf{R} \hat{\boldsymbol{\beta}}=\mathbf{Q}^{t} \mathbf{y}$, can be solved pretty easily via backsolving since \mathbf{R} is an upper triangular matrix.

Gram-Schmidt (*)

One methods for computing the QR decomposition is the Gram-Schmidt algorithm. Let's work with a matrix

$$
\mathbf{A}_{n \times p}=\left[\mathbf{a}_{1}\left|\mathbf{a}_{2}\right| \cdots \mid \mathbf{a}_{p}\right],
$$

where \mathbf{a}_{j} denotes the j th column of \mathbf{A}. Then

- $\mathbf{e}_{1}=\mathbf{a}_{1}, \quad \mathbf{u}_{1}=\frac{\mathbf{e}_{1}}{\left\|\mathbf{e}_{1}\right\|}$
- $\mathbf{e}_{2}=\mathbf{a}_{2}-\left(\mathbf{a}_{2}^{t} \mathbf{u}_{1}\right) \mathbf{u}_{1}, \quad \mathbf{u}_{2}=\frac{\mathbf{e}_{2}}{\left\|\mathbf{e}_{2}\right\|}$
- ...
- $\mathbf{e}_{k+1}=\mathbf{a}_{k+1}-\sum_{j=1}^{k}\left(\mathbf{a}_{j}^{t} \mathbf{u}_{j}\right) \mathbf{u}_{j}, \quad \mathbf{u}_{k+1}=\frac{\mathbf{e}_{k+1}}{\left\|\mathbf{e}_{k+1}\right\|}$

The resulting QR decomposition is

$$
\mathbf{A}=\left[\mathbf{a}_{1}\left|\mathbf{a}_{2}\right| \cdots \mid \mathbf{a}_{p}\right]=\left[\mathbf{u}_{1}|\cdots| \mathbf{u}_{p}\right] \mathbf{R}=\mathbf{Q R} .
$$

Use R to Analyze the Savings Data

- Basic command: lm
- How to interprete LS coefficients? β_{j} measures the average change of Y per unit change of X_{j}, with all other predictors held fixed.
- Note that the result from SLR might be different from the one from MLR: SLR suggests that pop75 has a significant positive effect on sr, while MLR suggests the opposite. Such seemingly contradictory statements are caused by correlations among predictors.
- How to handle rank deficiency?

Review: Mean and Covariance

- The mean of a random vector \mathbf{Z} is a m-by- 1 vector with the i-th element equal to $\mathbb{E}\left(Z_{i}\right)$.

$$
\boldsymbol{\mu}_{m \times 1}=\mathbb{E}[\mathbf{Z}]=\left(\begin{array}{c}
\mathbb{E} Z_{1} \\
\cdots \\
\mathbb{E} Z_{m}
\end{array}\right) .
$$

- The covariance of \mathbf{Z} is a symmetric m-by- m matrix with the (i, j)-th element equal to $\operatorname{Cov}\left(Z_{i}, Z_{j}\right)$.

$$
\begin{aligned}
\Sigma_{m \times m}=\operatorname{Cov}(\mathbf{Z}) & =\mathbb{E}\left[(\mathbf{Z}-\boldsymbol{\mu})(\mathbf{Z}-\boldsymbol{\mu})^{t}\right] \\
& =\left(\begin{array}{ccc}
\operatorname{Var}\left(Z_{1}\right) & \cdots & \operatorname{Cov}\left(Z_{1}, Z_{m}\right) \\
\cdots & \cdots & \cdots \\
\operatorname{Cov}\left(Z_{m}, Z_{1}\right) & \cdots & \operatorname{Var}\left(Z_{m}\right)
\end{array}\right) .
\end{aligned}
$$

- Affine transformations: $\mathbf{W}=\mathbf{a}_{n \times 1}+\mathbf{B}_{n \times m} \mathbf{Z}$,

$$
\mathbb{E}[\mathbf{W}]=\mathbf{a}+\mathbf{B} \boldsymbol{\mu}, \quad \operatorname{Cov}(\mathbf{W})=\mathbf{B} \boldsymbol{\Sigma} \mathbf{B}^{t} .
$$

Especially, for $W=v_{1} Z_{1}+\cdots v_{m} Z_{m}=\mathbf{v}^{t} \mathbf{Z}$,

$$
\begin{aligned}
\mathbb{E}[W] & =\mathbf{v}^{t} \boldsymbol{\mu}=\sum_{i=1}^{m} v_{i} \mu_{i}, \\
\operatorname{Var}(W) & =\mathbf{v}^{t} \Sigma \mathbf{v}=\sum_{i=1}^{m} v_{i}^{2} \operatorname{Var}\left(Z_{i}\right)+2 \sum_{i<j} v_{i} v_{j} \operatorname{Cov}\left(Z_{i}, Z_{j}\right) .
\end{aligned}
$$

Means and Covariances of LS Estimates

Recall our assumption: $\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\mathbf{e}$ with

$$
\begin{gathered}
\mathbb{E}(\mathbf{e})=\mathbf{0}, \quad \operatorname{Cov}(\mathbf{e})=\sigma^{2} \mathbf{I}_{n} \\
\text { that is, } \mathbb{E}(\mathbf{y})=\mathbf{X} \boldsymbol{\beta}, \quad \operatorname{Cov}(\mathbf{y})=\sigma^{2} \mathbf{I}_{n} .
\end{gathered}
$$

Under this assumption,

$$
\begin{aligned}
\mathbb{E}(\hat{\boldsymbol{\beta}}) & =\mathbb{E}\left(\mathbf{X}^{t} \mathbf{X}\right)^{-1} \mathbf{X}^{t} \mathbf{y} \\
& =\left(\mathbf{X}^{t} \mathbf{X}\right)^{-1} \mathbf{X}^{t} \mathbb{E} \mathbf{y} \\
& =\left(\mathbf{X}^{t} \mathbf{X}\right)^{-1} \mathbf{X}^{t} \mathbf{X} \boldsymbol{\beta}=\boldsymbol{\beta} \\
\operatorname{Cov}(\hat{\boldsymbol{\beta}}) & =\left(\mathbf{X}^{t} \mathbf{X}\right)^{-1} \mathbf{X}^{t} \operatorname{Cov}(\mathbf{y})\left[\left(\mathbf{X}^{t} \mathbf{X}\right)^{-1} \mathbf{X}^{t}\right]^{t} \\
& =\left(\mathbf{X}^{t} \mathbf{X}\right)^{-1} \mathbf{X}^{t} \sigma^{2} \mathbf{X}\left(\mathbf{X}^{t} \mathbf{X}\right)^{-1} \\
& =\sigma^{2}\left(\mathbf{X}^{t} \mathbf{X}\right)^{-1} \mathbf{X}^{t} \mathbf{X}\left(\mathbf{X}^{t} \mathbf{X}\right)^{-1}=\sigma^{2}\left(\mathbf{X}^{t} \mathbf{X}\right)^{-1}
\end{aligned}
$$

$$
\begin{aligned}
\mathbb{E}(\hat{\mathbf{y}}) & =\mathbf{X} \boldsymbol{\beta}, \quad \operatorname{Cov}(\hat{\mathbf{y}})=\sigma^{2} \mathbf{H} \\
\mathbb{E}(\mathbf{r}) & =\mathbf{0}, \quad \operatorname{Cov}(\mathbf{r})=\sigma^{2}\left(\mathbf{I}_{n}-\mathbf{H}\right) \\
\mathbb{E}\left(\hat{\sigma}^{2}\right) & =\frac{1}{n-p} \mathbb{E} \mathbf{r}^{t} \mathbf{r}=\frac{1}{n-p} \operatorname{tr}\left[\mathbb{E} \mathbf{r}^{t} \mathbf{r}\right]=\frac{1}{n-p} \operatorname{tr}\left[\mathbb{E} \mathbf{r r}^{t}\right]=\sigma^{2}
\end{aligned}
$$

- So the LS estimate $\hat{\boldsymbol{\beta}}$ is unbiased.
- We can plug-in the estimated error variance $\hat{\sigma}^{2}$ to obtain the variance estimate of $\hat{\boldsymbol{\beta}}$, i.e.,

$$
\operatorname{Cov}(\hat{\boldsymbol{\beta}})=\hat{\sigma}^{2}\left(\mathbf{X}^{t} \mathbf{X}\right)^{-1} .
$$

- We often use the standard error of $\hat{\boldsymbol{\beta}}$ in our later inference. For example

$$
\operatorname{se}\left(\hat{\beta}_{1}\right)=\sqrt{\operatorname{Var}\left(\hat{\beta}_{1}\right)}=\hat{\sigma} \sqrt{\left[\left(\mathbf{X}^{t} \mathbf{X}\right)^{-1}\right]_{11}} .
$$

The Gauss-Markov Theorem

- Suppose we are interested in estimating a linear combination of $\boldsymbol{\beta}$,

$$
\theta=\sum_{j=1}^{p} c_{j} \beta_{j}=\mathbf{c}^{t} \boldsymbol{\beta}
$$

For example, estimating any element of $\boldsymbol{\beta}$ and estimating the mean response at a new value \mathbf{x}^{*} are all special cases of this setup.

- Naturally, we can form an estimate of θ by plugging in the LS estimate $\hat{\boldsymbol{\beta}}$,

$$
\hat{\theta}_{L S}=\mathbf{c}^{t} \hat{\boldsymbol{\beta}}=\mathbf{c}^{t}\left(\mathbf{X}^{t} \mathbf{X}\right)^{-1} \mathbf{X}^{t} \mathbf{y}
$$

which is a linear and unbiased estimator of θ with

$$
\operatorname{MSE}\left(\hat{\theta}_{L S}\right)=\mathbb{E}\left(\hat{\theta}_{L S}-\theta\right)^{2}=\operatorname{Var}\left(\hat{\theta}_{L S}\right)
$$

[^0]- Suppose there is another estimate of θ, which is also linear and unbiased. The following Theorem states that $\hat{\theta}_{\mathrm{LS}}$ is always better in the sense that its MSE is always smaller (or at least, not bigger).
- Gauss-Markov Theorem: $\hat{\theta}_{L S}=\mathbf{c}^{\mathbf{t}} \hat{\boldsymbol{\beta}}$ is the BLUE (best linear unbiased estimator) of the parameter $\mathbf{c}^{t} \boldsymbol{\beta}$ for any $\mathbf{c} \in \mathbb{R}^{p}$.

Proof for the GM Theorem.

Suppose $\mathbf{a}^{t} \mathbf{y}+b$ is a linear unbiased estimator of $\theta=\mathbf{c}^{t} \boldsymbol{\beta}$. It is easy to compute its variance that is equal to $\sigma^{2}\|\mathbf{a}\|^{2}$.

Since it's unbiased, we have

$$
\mathbf{c}^{t} \boldsymbol{\beta}=\mathbb{E} \mathbf{a}^{t} \mathbf{y}+b=\mathbf{a}^{t} \mathbf{X} \boldsymbol{\beta}+b
$$

which holds true for any value of $\boldsymbol{\beta}$. Therefore $b=0$ and $\mathbf{a}^{t} \mathbf{X}=\mathbf{c}^{t}$.
Instead of directly computing the variance of the LS estimate $\hat{\theta}_{L S}$, we first find an alternative expression for $\hat{\theta}_{L S}$ which involves \mathbf{a}.

$$
\hat{\theta}_{L S}=\mathbf{c}^{t} \hat{\boldsymbol{\beta}}=\mathbf{a}^{t} \mathbf{X} \hat{\boldsymbol{\beta}}=\mathbf{a}^{t} \hat{\mathbf{y}}=\mathbf{a}^{t} \mathbf{H} \mathbf{y}=(\mathbf{H a})^{t} \mathbf{y}=\hat{\mathbf{a}}^{t} \mathbf{y}
$$

So the variance of $\hat{\theta}_{L S}$ is equal to $\sigma^{2}\|\hat{\mathbf{a}}\|^{2}$, which apparently is smaller.

That is, we can improve (still unbiased, but with smaller variance) any linear estimator $\mathbf{a}^{t} \mathbf{y}$ by using $\hat{\mathbf{a}}$ as the new weights on the n data points \mathbf{y}.

For example, suppose we want to estimate the mean of y_{i} 's where

$$
y_{1}, \ldots, y_{n} \text { iid } \sim \mathrm{N}\left(\mu, \sigma^{2}\right)
$$

We can view this setting as a linear regression model with just the intercept μ. What's the corresponding projection matrix \mathbf{H} ?

There are many unbiased linear estimators of μ, e.g., y_{1}, or $\left(y_{1}+y_{2}\right) / 2$.

$$
\begin{gathered}
y_{1}=\mathbf{c}_{1}^{t} \mathbf{y}, \quad \mathbf{c}_{1}^{t}=(1,0, \ldots, 0) \\
\left(y_{1}+y_{2}\right) / 2=\mathbf{c}_{2}^{t} \mathbf{y}, \quad \mathbf{c}_{2}^{t}=(1 / 2,1 / 2,0, \ldots, 0) .
\end{gathered}
$$

You'll find that

$$
\mathbf{c}_{0}=\mathbf{H} \mathbf{c}_{1}=\mathbf{H} \mathbf{c}_{2}=\frac{1}{n}(1, \ldots, 1)^{t}
$$

and

$$
\mathbf{c}_{0}^{t} \mathbf{y}=\frac{1}{n}\left(y_{1}+\cdots+y_{n}\right)
$$

is the LS estimate of μ, the intercept. The LS estimator is better than the other two, since it uses all information in the data which is relevant to μ (therefore it has the smallest variance).

Maximum Likelihood Estimation

Recall the normal assumption for the linear regression model $y_{i}=\mathbf{x}_{i}^{t} \boldsymbol{\beta}+e_{i}$ ($i=1: n$) with e_{i} iid $\sim \mathrm{N}\left(0, \sigma^{2}\right)$, that is,

$$
\mathbf{y} \sim \mathrm{N}_{n}\left(\mathbf{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right) .
$$

Under this assumption,

$$
\begin{gathered}
\text { Likelihood }=L\left(\boldsymbol{\beta}, \sigma^{2} \mid \mathbf{y}\right) \propto\left(\frac{\mathrm{RSS}}{n}\right)^{-\frac{n}{2}} . \\
\text { The MLE of } \boldsymbol{\beta}=\text { LS Estimate of } \boldsymbol{\beta}
\end{gathered}
$$

Distributions of LS Estimates

Recall the assumption for the linear regression model: $\mathbf{y} \sim \mathrm{N}_{n}\left(\mathbf{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right)$. So any affine transformation of \mathbf{y} is normally distributed a the mean and variance are computed before.

$$
\begin{aligned}
\hat{\boldsymbol{\beta}}=\left(\mathbf{X}^{t} \mathbf{X}\right)^{-1} \mathbf{X} \mathbf{y} & \sim \mathbf{N}_{p}\left(\boldsymbol{\beta}, \sigma^{2}\left(\mathbf{X}^{t} \mathbf{X}\right)^{-1}\right), \\
\hat{\mathbf{y}}=\mathbf{H y} & \sim \mathbf{N}_{n}\left(\mathbf{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{H}\right), \\
\mathbf{r}=\left(\mathbf{I}_{n}-\mathbf{H}\right) \mathbf{y} & \sim \mathbf{N}_{n}\left(\mathbf{0}, \sigma^{2}\left(\mathbf{I}_{n}-\mathbf{H}\right)\right) .
\end{aligned}
$$

Note that

$$
\begin{aligned}
\mathbb{E} \hat{\mathbf{y}}=\mathbf{H E} \mathbf{y}=\mathbf{H X} \boldsymbol{\beta}=\mathbf{X} \boldsymbol{\beta} & \operatorname{Cov}(\hat{\mathbf{y}})=\mathbf{H} \sigma^{2} \mathbf{H}^{t}=\sigma^{2} \mathbf{H} \\
\mathbb{E} \mathbf{r}=\left(\mathbf{I}_{n}-\mathbf{H}\right) \mathbf{X} \boldsymbol{\beta}=\mathbf{0} & \operatorname{Cov}(\mathbf{r})=\left(\mathbf{I}_{n}-\mathbf{H}\right) \sigma^{2}\left(\mathbf{I}_{n}-\mathbf{H}\right)^{t}=\sigma^{2}\left(\mathbf{I}_{n}-\mathbf{H}\right)
\end{aligned}
$$

[^1]- Although \mathbf{r} is a n-dim vector, it always lies in a subspace of $\operatorname{dim}(n-p)$. It behaves like $\mathbf{N}_{n-p}\left(\mathbf{0}, \sigma^{2} \mathbf{I}_{n-p}\right)$, so we have

$$
\hat{\sigma}^{2}=\frac{\|\mathbf{r}\|^{2}}{n-p} \sim \sigma^{2} \frac{\chi_{n-p}^{2}}{n-p}
$$

- We can show that $\hat{\mathbf{y}}$ and \mathbf{r} are uncorrelated, since they are in two orthogonal spaces. Then plus the joint normal assumption, we conclude that they are independent.

Hypothesis Testing for One Predictor

- Test $H_{0}: \beta_{j}=c$ versus $H_{a}: \beta_{j} \neq c$. 回
- The t-test statistic

$$
t=\frac{\hat{\beta}_{j}-c}{\operatorname{se}\left(\hat{\beta}_{j}\right)}=\frac{\hat{\beta}_{j}-c}{\hat{\sigma} \sqrt{\left[\left(\mathbf{X}^{t} \mathbf{X}\right)^{-1}\right]_{j j}}} \sim T_{n-p} \text { under } H_{0} .
$$

- p-value $=2 \times$ the area under the T_{n-p} dist more extreme than the observed statistic t.
- The p-value returned by the R command Im corresponds to testing $\beta_{j}=0$.
${ }^{\text {a }}$ The test result may vary depending what other predictors are included in the model.

We've learned various t-tests in class and each seems to have a different degree of freedom. How can I find out the correct df for a t-test?

All t-tests we've encountered so far involve an estimate of the error variance σ^{2}. The df of a t-test is determined by the denominator of $\hat{\sigma}^{2}$.

- $Z_{1}, \ldots, Z_{n} \sim \mathrm{~N}\left(\theta, \sigma^{2}\right)$. To test $\theta=a$, we have

$$
\frac{\hat{\theta}-a}{\operatorname{se}(\hat{\theta})}=\frac{\bar{Z}-a}{\sqrt{\hat{\sigma}^{2} / n}} \sim T_{n-1}, \quad \hat{\sigma}^{2}=\frac{\sum_{i}\left(Z_{i}-\bar{Z}\right)^{2}}{n-1} .
$$

- For SLR, to test $\beta_{1}=c$, we have

$$
\frac{\hat{\beta}_{1}-c}{\operatorname{se}\left(\hat{\beta}_{1}\right)}=\frac{\hat{\beta}_{1}-c}{\hat{\sigma} / \sqrt{\mathrm{Sxx}}} \sim T_{n-2}, \quad \hat{\sigma}^{2}=\frac{\mathrm{RSS}}{n-2} .
$$

- For MLR with p predictors (including the intercept), to test $\beta_{j}=c$,

$$
\frac{\hat{\beta}_{j}-c}{\operatorname{se}\left(\hat{\beta}_{j}\right)}=\frac{\hat{\beta}_{j}-c}{\hat{\sigma}\left[\left(\mathbf{X}^{t} \mathbf{X}\right)^{-1}\right]_{j j}} \sim T_{n-p}, \quad \hat{\sigma}^{2}=\frac{\mathrm{RSS}}{n-p} .
$$

F-test and ANOVA Table

Source	df	SS	MS	F
Regression	$p-1$	FSS	$\mathrm{FSS} /(p-1)$	$\mathrm{MS}($ reg $) / \mathrm{MS}$ (err)
Error	$n-p$	RSS	$\mathrm{RSS} /(n-p)$	
Total	$n-1$	TSS		

The test statistic $\frac{\mathrm{MS}(\text { reg })}{\mathrm{MS}(\text { err })} \sim F_{(p-1), n-p}$ under

$$
H_{0}: \beta_{2}=\beta_{3}=\cdots=\beta_{p}=0 .
$$

Compare Nested Models

A working example: savings data.

- We start with the full model.
- Suppose we want to test a theory that savings is independent of age, so we fit a reduced model (i.e., remove the two columns corresponding to pop15 and pop75 from the design matrix).
- How can we compare the results of the two fitted models? More specifically, how would we test the following hypotheses:
$H_{0} \quad$: \quad The reduced model suffices (age not needed).
$H_{a} \quad: \quad$ The full model is required.

In matrix notation, partition $\mathbf{X}_{n \times p}=\left(\mathbf{X}_{1 n \times(p-q)}, \mathbf{X}_{2 n \times q}\right)$.
The corresponding partition of the regression parameter is $\boldsymbol{\beta}^{t}=\left(\boldsymbol{\beta}_{1}^{t}, \boldsymbol{\beta}_{2}^{t}\right)$, where $\boldsymbol{\beta}_{1}$ is $(p-q) \times 1$ and $\boldsymbol{\beta}_{2}$ is $q \times 1$.

This partition is used to test

$$
\begin{aligned}
& H_{0}: \boldsymbol{\beta}_{2}=\mathbf{0}, \text { i.e., } \mathbf{y}=\mathbf{X}_{1} \boldsymbol{\beta}_{1}+\text { error, } \\
& H_{a}: \boldsymbol{\beta}_{2} \neq \mathbf{0} \text {, i.e., } \mathbf{y}=\mathbf{X}_{1} \boldsymbol{\beta}_{1}+\mathbf{X}_{2} \boldsymbol{\beta}_{2}+\text { error. }
\end{aligned}
$$

The test statistic is then

$$
F=\frac{\left(\mathrm{RSS}_{0}-\mathrm{RSS}_{a}\right) / q}{\operatorname{RSS}_{a} /(n-p)} \sim F_{q, n-p} \text { under } H_{0}
$$

- Numerator: variation (per dim) in the data not explained by the reduced model, but explained by the full model.
- Denominator: variation (per dim) in the data not explained by the full model (i.e., not explained by either model), which is used to estimate the error variance.
- Reject H_{0}, if F-stat is large, that is, the variation missed by the reduced model, when being compared with the error variance, is significantly large.
- Example 1. The default F-test returned by $\operatorname{Im}()$.

$$
\begin{aligned}
& H_{0}: \mathbf{y}=\mathbf{1}_{n} \alpha+\text { error } \\
& H_{a}: \mathbf{y}=\mathbf{X}_{n \times p} \boldsymbol{\beta}+\text { error }
\end{aligned}
$$

- Example 2. The F-test which is equivalent to the t-test $\left(H_{0}: \beta_{j}=0\right)$.

$$
\begin{aligned}
& H_{0}: \mathbf{y}=\mathbf{X}[,-j] \boldsymbol{\alpha}+\text { error } \\
& H_{a}: \mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\text { error }
\end{aligned}
$$

where $\mathbf{X}[,-j]=\mathbf{X}$ without the j-th column and $\boldsymbol{\alpha}$ is $(p-1) \times 1$.

- Example 3. Test $H_{0}: \beta_{2}=\beta_{3}$. (See Sec 3.2.4.)

$$
\begin{aligned}
& H_{0}: \mathbf{y}=\mathbf{X}_{1} \boldsymbol{\alpha}+\text { error } \\
& H_{a}: \mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\text { error }
\end{aligned}
$$

where \mathbf{X}_{1}, a $n \times(p-1)$ matrix, is almost the same as \mathbf{X} but replaces the 2nd and 3 rd columns of \mathbf{X} by one column, their sum, and $\boldsymbol{\alpha}$ is $(p-1) \times 1$. In this example, \mathbf{X}_{1} is not a sub-matrix of \mathbf{X}. But it's clear that the estimation space spanned by \mathbf{X}_{1} is a subspace of the estimation space spanned by \mathbf{X}, since each column of \mathbf{X}_{1} is either a column from \mathbf{X} or a linear combination of columns of \mathbf{X}.

Permutation Test

Steps for hypothesis testing:

1. Form a test statistic g (data), ${ }^{a}$ which tends to take extreme values under the alternative hypothesis H_{a}.
2. Evaluate the test statistic on the observed data, denoted by g_{0}.
3. Find the distribution of g (data), when data are generated from H_{0}, and then calculate

$$
p \text {-value }=\mathbb{P}\left[g(\text { data }) \text { is more extreme than the observed } g_{0} \mid \text { data } \sim H_{0}\right] .
$$

The normal assumption for linear regression is used at step 3 . What if the assumption does not hold?

[^2]
Monte Carlo Method

- Suppose the pdf (or pmf) of a r.v. Y does not have a simple form, therefore it's not easy to calculate $\mathbb{E} Y$.
- But suppose it's easy to write a short R script to generate such a r.v.
- So we can obtain an approximation of $\mathbb{E} Y$ as follows: generate $N=1000$ samples from this distribution, Y_{1}, \ldots, Y_{N}, and then

$$
\mathbb{E} Y \approx \frac{1}{N} \sum_{i=1}^{N} Y_{i}
$$

That is, population mean \approx sample mean (assume the sample size is large).

- Similarly we can approximate

$$
\mathbb{E} f(Y) \approx \frac{1}{N} \sum_{i=1}^{N} f\left(Y_{i}\right)
$$

For example, $\operatorname{Var}(Y)=\mathbb{E} Y^{2}-(\mathbb{E} Y)^{2}$ and $\mathbb{P}(Y>a)=\mathbb{E} I(Y>a)$ where $I(\cdot)$ is an indicator function.

- Back to the testing for linear regression: if we can generate data from H_{0} (here we don't need the normal assumption), and then we can calculate the p-value using the Monte Carlo method.
> fstats = numeric(4000);
> for (i in 1:4000)\}\{
+ newsavings=savings;
+ newsavings[,c(2,3)]=savings[sample(50), c(2,3)];
+ ge $=\operatorname{lm}\left(s r{ }^{\sim} .\right.$, data=newsavings);
+ fstats[i] = summary(ge)\$fstat[1]
+ \}
> length(fstats[fstats > summary(fullmodel)\$fstat[1]])/4000
[1] 0.004

CI and PI

- $\mathrm{A}(1-\alpha) \mathrm{CI}$ for β_{j} is given by

$$
\left(\hat{\beta}_{j} \pm t_{n-p}^{(\alpha / 2)} \operatorname{se}\left(\hat{\beta}_{j}\right)\right)=\left(\hat{\beta}_{j} \pm t_{n-p}^{(\alpha / 2)} \hat{\sigma} \sqrt{\left[\left(\mathbf{X}^{t} \mathbf{X}\right)^{-1}\right]_{j j}}\right)
$$

where $t_{n-p}^{(\alpha / 2)}$ is the $(1-\alpha / 2)$ percentile of the student T -dist with $(n-p)$ degree-of-freedom.

- We are also interested in obtaining an estimate $\mathbb{E}\left[Y \mid \mathbf{x}^{*}\right]=\mu^{*}=\left(\mathbf{x}^{*}\right)^{t} \boldsymbol{\beta}$, as well as a prediction for a future observation y^{*} at \mathbf{x}^{*}.
- The Gauss-Markov theorem tells us that the BLUE of μ^{*} is

$$
\hat{\mu}^{*}=\left(\mathbf{x}^{*}\right)^{t} \hat{\boldsymbol{\beta}}^{t}=\left(\mathbf{x}^{*}\right)^{t}\left(\mathbf{X}^{t} \mathbf{X}\right)^{-1} \mathbf{X}^{t} \mathbf{y}
$$

This is just a linear transformation of \mathbf{y}, so we can easily derive its variance, and find its standard error.

$$
\operatorname{se}\left(\hat{\mu}^{*}\right)=\hat{\sigma} \sqrt{\left(\mathbf{x}^{*}\right)^{t}\left(\mathbf{X}^{t} \mathbf{X}\right)^{-1} \mathbf{x}^{*}}
$$

- ACl for μ^{*} is given by

$$
\left(\hat{\mu}^{*}-t_{n-p}^{(\alpha / 2)} \operatorname{se}\left(\hat{\mu}^{*}\right), \hat{\mu}^{*}+t_{n-p}^{(\alpha / 2)} \operatorname{se}\left(\hat{\mu}^{*}\right)\right) .
$$

- Also $\hat{y}_{*}=\left(\mathbf{x}^{*}\right)^{t} \hat{\boldsymbol{\beta}}$ provides a point prediction for a future observation of y_{*} at \mathbf{x}_{*}. In order to find a prediction interval (PI), we need to consider the variance due to $\hat{\boldsymbol{\beta}}$ in addition to the variance associated with a new observation, which is σ^{2}.
- The standard error ${ }^{\text {a }}$ of prediction is

$$
\operatorname{se}\left(\hat{y}^{*}\right)=\hat{\sigma} \sqrt{1+\left(\mathbf{x}^{*}\right)^{t}\left(\mathbf{X}^{t} \mathbf{X}\right)^{-1} \mathbf{x}^{*}} .
$$

- A $(1-\alpha) \mathrm{PI}$ for a new observation y_{*} at x_{*} is given by

$$
\left(\hat{y}^{*}-t_{n-p}^{(\alpha / 2)} \operatorname{se}\left(\hat{y}^{*}\right), \hat{y}^{*}+t_{n-p}^{(\alpha / 2)} \operatorname{se}\left(\hat{y}^{*}\right)\right) .
$$

[^3]- Write $\mathbf{x}_{p \times 1}=\binom{1}{\mathbf{z}}$ where \mathbf{z} denotes the measure of the $(p-1)$ predictors (without the intercept).
- Write $\hat{\Sigma}_{(p-1) \times(p-1)}=\frac{1}{n-1} \sum_{i=1}^{n}\left(\mathbf{z}_{i}-\overline{\mathbf{z}}\right)\left(\mathbf{z}_{i}-\overline{\mathbf{z}}\right)^{t}$, which is the sample covariance of the $(p-1)$ predictor variables.
- Then

$$
\mathbf{x}_{*}^{t}\left(\mathbf{X}^{t} \mathbf{X}\right)^{-1} \mathbf{x}_{*}=\frac{1}{n}+\frac{1}{n-1}\left(\mathbf{z}^{*}-\overline{\mathbf{z}}\right)^{t} \hat{\Sigma}^{-1}\left(\mathbf{z}^{*}-\overline{\mathbf{z}}\right),
$$

which is the so-called Mahalanobis distance from \mathbf{x}_{i} to the center of the center of the data $\overline{\mathbf{x}}$ (the sample mean).

The point estimation and prediction at \mathbf{x}_{*} are the same, but the associated MSEs are different

$$
\begin{aligned}
& \operatorname{se}\left(\hat{\mu}^{*}\right)=\hat{\sigma} \sqrt{\left(\mathbf{x}^{*}\right)^{t}\left(\mathbf{X}^{t} \mathbf{X}\right)^{-1} \mathbf{x}_{*}}=\hat{\sigma} \sqrt{\frac{1}{n}+\frac{1}{n-1}\left(\mathbf{z}^{*}-\overline{\mathbf{z}}\right)^{t} \hat{\Sigma}^{-1}\left(\mathbf{z}^{*}-\overline{\mathbf{z}}\right)} \\
& \operatorname{se}\left(\hat{y}^{*}\right)=\hat{\sigma} \sqrt{1+\left(\mathbf{x}^{*}\right)^{t}\left(\mathbf{X}^{t} \mathbf{X}\right)^{-1} \mathbf{x}_{*}}=\hat{\sigma} \sqrt{1+\frac{1}{n}+\frac{1}{n-1}\left(\mathbf{z}^{*}-\overline{\mathbf{z}}\right)^{t} \hat{\Sigma}^{-1}\left(\mathbf{z}^{*}-\overline{\mathbf{z}}\right)}
\end{aligned}
$$

- se $\left(\hat{y}^{*}\right)$ has an extra 1. When the sample size n goes to infinity, $\operatorname{se}\left(\hat{\mu}^{*}\right) \rightarrow 0$, but se $\left(\hat{y}^{*}\right) \rightarrow \sigma^{2}$.
- Errors are not the same at all \mathbf{x}^{*} : smaller when \mathbf{x}^{*} is near $\overline{\mathrm{x}}$ in the Mahalanobis distance.
- Errors are not the same for all samples (of the same sample size n): samples whose \mathbf{x} values are more spread (i.e., the eigen-values of $\hat{\Sigma}$ are large) have smaller errors.

Joint Confidence Region

Just as we can use estimated standard errors and t-stats to form confidence intervals for a single parameter, we can also obtain a $(1-\alpha) \times 100 \%$ confidence region for the entire vector $\boldsymbol{\beta}$. In particular

$$
\boldsymbol{\beta}-\hat{\boldsymbol{\beta}} \sim \mathrm{N}\left(\mathbf{0}, \sigma^{2}\left(\mathbf{X}^{t} \mathbf{X}\right)^{-1}\right)
$$

Thus, the quadratic form

$$
\frac{(\boldsymbol{\beta}-\hat{\boldsymbol{\beta}})^{t} \mathbf{X}^{t} \mathbf{X}(\boldsymbol{\beta}-\hat{\boldsymbol{\beta}})}{p \hat{\sigma}^{2}} \sim F_{p, n-p}
$$

Then we can construct a $(1-\alpha) \times 100 \%$ confidence region for β to be all the points in the following ellipsoid

$$
\frac{(\boldsymbol{\beta}-\hat{\boldsymbol{\beta}})^{t} \mathbf{X}^{t} \mathbf{X}(\boldsymbol{\beta}-\hat{\boldsymbol{\beta}})}{p \hat{\sigma}^{2}}<F(\alpha ; p, n-p),
$$

where $F(\alpha ; p, n-p)$ is defined to be the point such that

$$
\mathbb{P}\left[F_{p, n-p}>F(\alpha ; p, n-p)\right]=\alpha
$$

Simultaneous CIs/PIs

- Consider a simple linear regression $y_{i}=\beta_{0}+\beta_{1} x_{i}+e_{i}$.
- Given a new value x^{*}, the $(1-\alpha) \mathrm{CI}$ for $\mu^{*}=\beta_{0}+\beta_{1} x^{*}$ is

$$
\begin{equation*}
I\left(x^{*}\right)=\left(\hat{\mu}^{*} \pm t_{n-2}^{(\alpha / 2)} \operatorname{se}\left(\hat{\mu}^{*}\right)\right), \tag{1}
\end{equation*}
$$

where

$$
\hat{\mu}^{*}=\hat{\beta}_{0}+\hat{\beta}_{1} x^{*}, \quad \operatorname{se}\left(\hat{\mu}^{*}\right)=\hat{\sigma} \sqrt{\frac{1}{n}+\frac{\left(x^{*}-\bar{x}\right)^{2}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}} .
$$

- Suppose we are interested in Cls at multiple points $\left(x_{1}^{*}, \ldots, x_{m}^{*}\right)$. Using formula (1), we can form Cls at the m points, $I\left(x_{1}^{*}\right), \ldots, I\left(x_{m}^{*}\right)$.
- We know that

$$
\mathbb{P}\left[\mu_{i}^{*} \in I\left(x_{i}^{*}\right)\right]=(1-\alpha)
$$

where $\mu_{i}^{*}=\beta_{0}+\beta_{1} x_{i}^{*}$ is the value on the regression line at x_{i}^{*}. This is the point-wise coverage probability and formula (1) gives the point-wise Cl .

- What about the simultaneous coverage probability?

$$
\mathbb{P}\left[\mu_{i}^{*} \in I\left(x_{i}^{*}\right), \text { for } i=1, \ldots, m\right]=? ? ?
$$

Bonferroni Correction

Let A_{k} denotes the event that the k th confidence interval covers μ_{k}^{*} with

$$
\mathbb{P}\left(A_{k}\right)=(1-\alpha) .
$$

Then

$$
\begin{aligned}
& \mathbb{P}\left(\text { All Cls cover the corresponding } \mu_{k}^{*} ' s\right) \\
= & \mathbb{P}\left(A_{1} \cap A_{2} \cdots \cap A_{m}\right) \\
= & 1-\mathbb{P}\left(A_{1}^{c} \cup A_{2}^{c} \cdots \cup A_{m}^{c}\right) \\
\geq & 1-\mathbb{P}\left(A_{1}^{c}\right)-\cdots-\mathbb{P}\left(A_{m}^{c}\right) \\
= & 1-m \alpha
\end{aligned}
$$

- Suppose $I_{\alpha}\left(x_{k}^{*}\right)$ is the $(1-\alpha) \mathrm{Cl}$ at x_{k}^{*}, where $k=1,2, \ldots, m$. To make sure the simultaneous coverage probability is 95%, i.e.,

$$
\mathbb{P}\left(\mu_{k}^{*} \in I_{\alpha}\left(x_{k}^{*}\right) \text { for all } k=1: m\right)=95 \%,
$$

we need to set $\alpha=5 \% / m$, which is known as the Bonferroni correction.

- Similarly, suppose $I_{\alpha}\left(x_{k}^{*}\right)$ is the $(1-\alpha) \mathrm{PI}$ at x_{k}^{*}, where $k=1,2, \ldots, m$. To make sure the simultaneous coverage probability is 95%, i.e.,

$$
\mathbb{P}\left(y_{k}^{*} \in I_{\alpha}\left(x_{k}^{*}\right) \text { for all } k=1: m\right)=95 \%,
$$

we need to set $\alpha=5 \% / m$.

Confidence Band

- Ideally we would like to construct a simultaneous confidence band (i.e., $m=\infty)$ cross all x^{*} s. Scheffé's Theorem (1959): Let

$$
I(x)=(\hat{r}(x)-c \hat{\sigma}, \hat{r}(x)+c(x) \hat{\sigma})
$$

where

$$
\hat{r}(x)=\hat{\beta}_{0}+\hat{\beta}_{1} x, \quad c(x)=\sqrt{2 F(\alpha, 2, n-2)} \sqrt{\frac{1}{n}+\frac{(x-\bar{x})^{2}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}} .
$$

Then

$$
\mathbb{P}[r(x) \in I(x) \text { for all } x] \geq 1-\alpha
$$

- Can we construct a simultaneous prediction band? No.

Confidence bands are always wider than point-wise Cls? For SLR, at a location x^{*}, we have

$$
\begin{aligned}
\text { band } & : \hat{\mu}^{*} \pm \sqrt{2 F(\alpha, 2, n-2)} \operatorname{se}\left(\hat{\mu}^{*}\right) \\
\text { interval } & : \hat{\mu}^{*} \pm t_{n-2}^{(\alpha / 2)} \operatorname{se}\left(\hat{\mu}^{*}\right) .
\end{aligned}
$$

Assume $\alpha=5 \%$, you can check which one is bigger,

$$
\sqrt{2 F(\alpha, 2, n-2)}, \quad \text { or } \quad t_{n-2}^{(\alpha / 2)}=\sqrt{F(\alpha, 1, n-2)} ?
$$

In fact, for any α, we have

$$
t_{m}^{(\alpha / 2)}=\sqrt{F(\alpha, 1, m)}<\sqrt{k F(\alpha, k, m)} .
$$

[^0]: ${ }^{\text {a }}$ It is a linear combination of the n data points y_{1}, \ldots, y_{n}.

[^1]: ${ }^{\text {a }}$ They are also jointly normal.

[^2]: ${ }^{\mathrm{a}} \mathrm{A}$ statistic is a function defined on the data.

[^3]: ${ }^{\text {a }}$ Note that no matter how large the sample size becomes, the width of a PI, unlike a CI, will never approach 0 .

