
Multiple Linear Regression (MLR)

• In most applications we will want to use several predictors, instead of a

single predictor as in simple linear regression (SLR).

• Data (yi,xi)
n
i=1, where xi = (xi1, . . . , xip)

t with xi1 = 1.

• Assume

yi = xi1β1 + xi2β2 + · · ·+ xipβp + ei

(β1, · · · , βp, σ2) : the unknown but true parameters,

e′is : random errors.

1. The mean function E(yi) is linear in the p predictors;

2. The errors ei’s are uncorrelated with mean 0 and constant variance,

i.e., Eei = 0 and Cov(ei, ej) = σ2δij . Sometimes, e.g., for hypothesis

testing, we further assume ei iid ∼ N(0, σ2).
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Matrix Representation



y1

y2

· · ·

yn


=



x11β1 + x12β2 + · · ·+ x1pβp + e1

x21β1 + x22β2 + · · ·+ x2pβp + e2

· · ·

xn1β1 + xn2β2 + · · ·+ xnpβp + en



=



x11 x12 · · · x1p

x21 x22 · · · x2p

· · · · · · · · · · · ·

xn1 xn2 · · · xnp





β1

β2

· · ·

βp


+



e1

e2

· · ·

en


yn×1 = Xn×pβp×1 + en×1
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Least Squares Estimation

• Using matrix representation, we can express the MLR model as a

yn×1 = Xn×pβp×1 + en×1, e ∼ Nn
(
0, σ2In

)
.

• The LS estimate of β minimizes

RSS = ‖y −Xβ‖2 = (y −Xβ)t(y −Xβ).

aBy default the intercept is included in the model, then the 1st column of the design

matrix X is a vector of all 1’s. We further assume that the rank of X is p, i.e., no columns

of X is a linear combination of the other columns and X is a tall and skinny matrix

(n > p.)
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Differentiating RSS with respect to β and setting to zero, we have

∂RSS

∂β
= −2Xt

p×n(y −Xβ)n×1 = 0p×1

=⇒ Xt(y −Xβ) = 0 normal equation

=⇒
(
XtX

)
β = Xty

=⇒ β̂ = (XtX)−1Xty (∗)

Note that the inverse of the p× p matrix (XtX
)

exists since we assume the

rank of X is p.

Next let’s check the equation (*) for SLR.
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XtX =

 1 1 · · · 1

x1 x2 · · · xn




1 x1

1 x2

· · · · · ·

1 xn


=

 n nx̄

nx̄
∑
x2i



(
XtX

)−1
=

1

n
∑
x2i − (nx̄)2

 ∑
x2i −nx̄

−nx̄ n



Xty =

 1 1 · · · 1

x1 x2 · · · xn




y1

y2

· · ·

yn


=

 nȳ∑
xiyi
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β̂ =
(
XtX)−1Xy

=
1

n
∑
x2i − (nx̄)2

 ∑
x2i −nx̄

−nx̄ n


 nȳ∑

xiyi


So β̂1 is given by a

β̂1 =
−n2x̄ȳ + n

∑
xiyi

n
∑
x2i − (nx̄)2

=

∑
xiyi − nx̄ȳ∑
x2i − nx̄2

=
Sxy

Sxx

Similarly we can check the calculation for β̂0.

a
∑

(xi − x̄)(yi − ȳ) =
∑

xiyi − nx̄ȳ and
∑

(xi − x̄)(xi − x̄) =
∑

x2
i − nx̄2.
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• Fitted value

ŷn×1 = Xβ̂ = X(XtX)−1Xty = Hn×nyn×1.

Hn×n: hat matrix, since it returns “y-hat.”

• Residuals

rn×1 = y − ŷ = (I−H)y.

• The residuals can be used to estimate the error variance

σ̂2 =
1

n− p

n∑
i=1

r2i =
RSS

n− p
.
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Recall that the LS estimate β̂ satisfies the normal equations

Xt(y −Xβ̂) = 0.

So r = y −Xβ̂ satisifies:

• Xtr = 0, the cross-products between the residual vector r and each

column of X are zero; especially, if the intercept is included in the model,

we have
∑n
i=1 ri = 0;

• ŷtr = β̂
t
Xtr = 0, the cross-product between the fitted value ŷ and the

residual vector r is zero.

That is, the residual vector r is orthogonal to each column of X and ŷ.
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The Hat Matrix

Hn×n = X(XtX)−1Xt

• Let v = Xap×1 be any linear combination of the columns of X, then

Hv = v, since

HX = X(XtX)−1XtX = X.

• Symmetric: Ht =
[
X(XtX)−1Xt

]t
= X(XtX)−1Xt = H.

• Idempotent a: HH = HHt = H.

HH = X(XtX)−1XtX(XtX)−1Xt = X(XtX)−1Xt = H.

• trace(H) = p, the number of LS coefficients we estimated.

aThis property also implies that H(I−H) = 0n×n.
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Goodness of Fit: R-square

We measure how well the model fits the data via R2 (fraction of variance

explained)

R2 =

∑
(ŷi − ȳ)2∑
(yi − ȳ)2

,

which is also equal to

R2 = 1−
∑

(yi − ŷi)2∑
(yi − ȳ)2

= 1− RSS

TSS
.
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Geometry Interpretation of LS
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• Estimation space: columns of X form a p-dim subspace in Rn (denoted by

C(X)), which consists of vectors that can be written as linear

combinations of columns of X, i.e., Xw where w ∈ Rp.

• Fitted value:

ŷ = Xβ̂ = X(XtX)−1Xty = Hn×ny.

Finding β̂ that minimizes ‖y −Xβ‖2 is equivalent to finding a vector ŷ

from the estimation space that minimizes ‖y − ŷ‖2. Intuitively we know

what ŷ is: it’s the projection of y onto the estimation space.

• Hn×n: projection/hat matrix. It is symmetric, unique, and idempotent.

Especially tr(H) = p, the dimension of the vector space C(X).
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• Error space: the (n− p)-dim subspace, denoted by C(X)⊥, which is

orthogonal to the estimation space. (In −H) is the projection matrix of

the error space.

• Residuals:

r = y − ŷ = (I−H)y.

If the intercept is included in the model, then
∑n
i=1 êi = 0. In general,∑n

i=1 êiXij = 0 for j = 1, . . . , p, due to the normal equation:

XT (y −Xβ̂) = 0.

The geometric interpretation: r is the projection of y onto the error space

orthogonal to C(X). So r is orthogonal to any vector in C(X). Especially,

r is orthogonal to each column of X.
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Recall the Hat/Projection matrix

Hn×n = X(XtX)−1Xt

• Based on the geometric intuition, we have for any β ∈ Rp, H(Xβ) = Xβ.

Especially HX = X.

• Idempotent: HH = HHt = H. This property can also be understood via

the projection idea. For any vector v ∈ Rn, we have H(Hv) = Hv.

(Why)
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The QR Decomposition (*)

How is the LS estimate β̂ solved in R? Denote the QR decomposition of X as

Xn×p = Qn×pRp×p

where Q is an orthogonal matrix (i.e., QtQ = Ip) and R is an upper triangular

matrix, i.e., all the entries in R below the diagonal are equal to 0.

β̂ = (XtX)−1Xty

(XtX)−1 = (RtR)−1 = R−1(Rt)−1

β̂ = R−1Qty

Rβ̂ = Qty

The last equation, Rβ̂ = Qty, can be solved pretty easily via backsolving since

R is an upper triangular matrix.
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Gram-Schmidt (*)

One methods for computing the QR decomposition is the Gram-Schmidt

algorithm. Let’s work with a matrix

An×p =
[
a1 | a2 | · · · | ap

]
,

where aj denotes the jth column of A. Then

• e1 = a1, u1 = e1

‖e1‖

• e2 = a2 − (at2u1)u1, u2 = e2

‖e2‖

• · · ·

• ek+1 = ak+1 −
∑k
j=1(atjuj)uj , uk+1 = ek+1

‖ek+1‖

The resulting QR decomposition is

A =
[
a1 | a2 | · · · |ap

]
=
[
u1 | · · · | up

]
R = QR.

16



Use R to Analyze the Savings Data

• Basic command: lm

• How to interprete LS coefficients? βj measures the average change of Y

per unit change of Xj , with all other predictors held fixed.

• Note that the result from SLR might be different from the one from MLR:

SLR suggests that pop75 has a significant positive effect on sr, while

MLR suggests the opposite. Such seemingly contradictory statements are

caused by correlations among predictors.

• How to handle rank deficiency?
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Review: Mean and Covariance

• The mean of a random vector Z is a m-by-1 vector with the i-th element

equal to E(Zi).

µm×1 = E[Z] =


EZ1

· · ·

EZm

 .
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• The covariance of Z is a symmetric m-by-m matrix with the (i, j)-th

element equal to Cov(Zi, Zj).

Σm×m = Cov(Z) = E
[
(Z− µ)(Z− µ)t

]

=


Var(Z1) · · · Cov(Z1, Zm)

· · · · · · · · ·

Cov(Zm, Z1) · · · Var(Zm)

 .
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• Affine transformations: W = an×1 + Bn×mZ,

E[W] = a + Bµ, Cov(W) = BΣBt.

Especially, for W = v1Z1 + · · · vmZm = vtZ,

E[W ] = vtµ =
m∑
i=1

viµi,

Var(W ) = vtΣv =
m∑
i=1

v2i Var(Zi) + 2
∑
i<j

vivjCov(Zi, Zj).
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Means and Covariances of LS Estimates

Recall our assumption: y = Xβ + e with

E(e) = 0, Cov(e) = σ2In,

that is, E(y) = Xβ, Cov(y) = σ2In.

Under this assumption,

E(β̂) = E(XtX)−1Xty

= (XtX)−1XtEy

= (XtX)−1XtXβ = β

Cov(β̂) = (XtX)−1XtCov(y)
[
(XtX)−1Xt

]t
= (XtX)−1Xtσ2X(XtX)−1

= σ2(XtX)−1XtX(XtX)−1 = σ2(XtX)−1;
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E(ŷ) = Xβ, Cov(ŷ) = σ2H;

E(r) = 0, Cov(r) = σ2(In −H)

E(σ̂2) =
1

n− p
Ertr =

1

n− p
tr
[
Ertr

]
=

1

n− p
tr
[
Errt

]
= σ2
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• So the LS estimate β̂ is unbiased.

• We can plug-in the estimated error variance σ̂2 to obtain the variance

estimate of β̂, i.e.,

Cov(β̂) = σ̂2(XtX)−1.

• We often use the standard error of β̂ in our later inference. For example

se(β̂1) =

√
Var(β̂1) = σ̂

√
[(XtX)−1]11.
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The Gauss-Markov Theorem

• Suppose we are interested in estimating a linear combination of β,

θ =

p∑
j=1

cjβj = ctβ.

For example, estimating any element of β and estimating the mean

response at a new value x∗ are all special cases of this setup.

• Naturally, we can form an estimate of θ by plugging in the LS estimate β̂,

θ̂LS = ctβ̂ = ct(XtX)−1Xty,

which is a linear a and unbiased estimator of θ with

MSE(θ̂LS) = E(θ̂LS − θ)2 = Var(θ̂LS).

aIt is a linear combination of the n data points y1, . . . , yn.
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• Suppose there is another estimate of θ, which is also linear and unbiased.

The following Theorem states that θ̂LS is always better in the sense that

its MSE is always smaller (or at least, not bigger).

• Gauss-Markov Theorem: θ̂LS = ctβ̂ is the BLUE (best linear unbiased

estimator) of the parameter ctβ for any c ∈ Rp.
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Proof for the GM Theorem.

Suppose aty + b is a linear unbiased estimator of θ = ctβ. It is easy to

compute its variance that is equal to σ2‖a‖2.

Since it’s unbiased, we have

ctβ = Eaty + b = atXβ + b,

which holds true for any value of β. Therefore b = 0 and atX = ct.

Instead of directly computing the variance of the LS estimate θ̂LS , we first find

an alternative expression for θ̂LS which involves a.

θ̂LS = ctβ̂ = atXβ̂ = atŷ = atHy = (Ha)ty = âty.

So the variance of θ̂LS is equal to σ2‖â‖2, which apparently is smaller.
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That is, we can improve (still unbiased, but with smaller variance) any linear

estimator aty by using â as the new weights on the n data points y.

For example, suppose we want to estimate the mean of yi’s where

y1, . . . , yn iid ∼ N(µ, σ2).

We can view this setting as a linear regression model with just the intercept µ.

What’s the corresponding projection matrix H?

There are many unbiased linear estimators of µ, e.g., y1, or (y1 + y2)/2.

y1 = ct1y, ct1 = (1, 0, . . . , 0).

(y1 + y2)/2 = ct2y, ct2 = (1/2, 1/2, 0, . . . , 0).
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You’ll find that

c0 = Hc1 = Hc2 =
1

n
(1, . . . , 1)t

and

ct0y =
1

n
(y1 + · · ·+ yn)

is the LS estimate of µ, the intercept. The LS estimator is better than the

other two, since it uses all information in the data which is relevant to µ

(therefore it has the smallest variance).
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Maximum Likelihood Estimation

Recall the normal assumption for the linear regression model yi = xtiβ + ei

(i = 1 : n) with ei iid ∼ N(0, σ2), that is,

y ∼ Nn(Xβ, σ2In).

Under this assumption,

Likelihood = L(β, σ2|y) ∝
(RSS

n

)−n
2

.

The MLE of β = LS Estimate of β .
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Distributions of LS Estimates

Recall the assumption for the linear regression model: y ∼ Nn(Xβ, σ2In). So

any affine transformation of y is normally distributed a; the mean and variance

are computed before.

β̂ = (XtX)−1Xy ∼ Np(β, σ
2(XtX)−1),

ŷ = Hy ∼ Nn(Xβ, σ2H),

r = (In −H)y ∼ Nn(0, σ2(In −H)).

Note that

Eŷ = HEy = HXβ = Xβ Cov(ŷ) = Hσ2Ht = σ2H

Er = (In −H)Xβ = 0 Cov(r) = (In −H)σ2(In −H)t = σ2(In −H)

aThey are also jointly normal.
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• Although r is a n-dim vector, it always lies in a subspace of dim (n− p).

It behaves like Nn−p(0, σ
2In−p), so we have

σ̂2 =
‖r‖2

n− p
∼ σ2

χ2
n−p

n− p
.

• We can show that ŷ and r are uncorrelated, since they are in two

orthogonal spaces. Then plus the joint normal assumption, we conclude

that they are independent.
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Hypothesis Testing for One Predictor

• Test H0 : βj = c versus Ha : βj 6= c. a

• The t-test statistic

t =
β̂j − c
se(β̂j)

=
β̂j − c

σ̂
√

[(XtX)−1]jj
∼ Tn−p under H0.

• p-value = 2 × the area under the Tn−p dist more extreme than the

observed statistic t.

• The p-value returned by the R command lm corresponds to testing βj = 0.

aThe test result may vary depending what other predictors are included in the model.
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We’ve learned various t-tests in class and each seems to have a different degree

of freedom. How can I find out the correct df for a t-test?

All t-tests we’ve encountered so far involve an estimate of the error variance

σ2. The df of a t-test is determined by the denominator of σ̂2.

• Z1, . . . , Zn ∼ N(θ, σ2). To test θ = a, we have

θ̂ − a
se(θ̂)

=
Z̄ − a√
σ̂2/n

∼ Tn−1, σ̂2 =

∑
i(Zi − Z̄)2

n− 1
.

• For SLR, to test β1 = c, we have

β̂1 − c
se(β̂1)

=
β̂1 − c
σ̂/
√

Sxx
∼ Tn−2, σ̂2 =

RSS

n− 2
.

• For MLR with p predictors (including the intercept), to test βj = c,

β̂j − c
se(β̂j)

=
β̂j − c

σ̂
[
(XtX)−1

]
jj

∼ Tn−p, σ̂2 =
RSS

n− p
.
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F -test and ANOVA Table

Source df SS MS F

Regression p− 1 FSS FSS/(p− 1) MS(reg)/MS(err)

Error n− p RSS RSS/(n− p)

Total n− 1 TSS

The test statistic MS(reg)
MS(err) ∼ F(p−1),n−p under

H0 : β2 = β3 = · · · = βp = 0.
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Compare Nested Models

A working example: savings data.

• We start with the full model.

• Suppose we want to test a theory that savings is independent of age, so

we fit a reduced model (i.e., remove the two columns corresponding to

pop15 and pop75 from the design matrix).
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• How can we compare the results of the two fitted models? More

specifically, how would we test the following hypotheses:

H0 : The reduced model suffices (age not needed).

Ha : The full model is required.
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In matrix notation, partition Xn×p = (X1n×(p−q),X2n×q).

The corresponding partition of the regression parameter is βt = (βt1,β
t
2),

where β1 is (p− q)× 1 and β2 is q × 1.

This partition is used to test

H0 : β2 = 0, i.e., y = X1β1 + error,

Ha : β2 6= 0, i.e., y = X1β1 + X2β2 + error.
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The test statistic is then

F =
(RSS0 − RSSa)/q

RSSa/(n− p)
∼ Fq,n−p under H0.

• Numerator: variation (per dim) in the data not explained by the reduced

model, but explained by the full model.

• Denominator: variation (per dim) in the data not explained by the full

model (i.e., not explained by either model), which is used to estimate the

error variance.

• Reject H0, if F -stat is large, that is, the variation missed by the reduced

model, when being compared with the error variance, is significantly large.
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• Example 1. The default F -test returned by lm( ).

H0 : y = 1nα+ error

Ha : y = Xn×pβ + error

• Example 2. The F -test which is equivalent to the t-test (H0 : βj = 0).

H0 : y = X[,−j]α + error

Ha : y = Xβ + error

where X[,−j] = X without the j-th column and α is (p− 1)× 1.
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• Example 3. Test H0 : β2 = β3. (See Sec 3.2.4.)

H0 : y = X1α + error,

Ha : y = Xβ + error.

where X1, a n× (p− 1) matrix, is almost the same as X but replaces the

2nd and 3rd columns of X by one column, their sum, and α is (p− 1)× 1.

In this example, X1 is not a sub-matrix of X. But it’s clear that the

estimation space spanned by X1 is a subspace of the estimation space

spanned by X, since each column of X1 is either a column from X or a

linear combination of columns of X.
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Permutation Test

Steps for hypothesis testing:

1. Form a test statistic g(data), a which tends to take extreme values under

the alternative hypothesis Ha.

2. Evaluate the test statistic on the observed data, denoted by g0.

3. Find the distribution of g(data), when data are generated from H0, and

then calculate

p-value = P
[
g(data) is more extreme than the observed g0| data ∼ H0

]
.

The normal assumption for linear regression is used at step 3. What if the

assumption does not hold?

aA statistic is a function defined on the data.
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Monte Carlo Method

• Suppose the pdf (or pmf) of a r.v. Y does not have a simple form,

therefore it’s not easy to calculate EY .

• But suppose it’s easy to write a short R script to generate such a r.v.

• So we can obtain an approximation of EY as follows: generate N = 1000

samples from this distribution, Y1, . . . , YN , and then

EY ≈ 1

N

N∑
i=1

Yi.

That is, population mean ≈ sample mean (assume the sample size is

large).
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• Similarly we can approximate

Ef(Y ) ≈ 1

N

N∑
i=1

f(Yi).

For example, Var(Y ) = EY 2 − (EY )2 and P(Y > a) = EI(Y > a) where

I(·) is an indicator function.

• Back to the testing for linear regression: if we can generate data from H0

(here we don’t need the normal assumption), and then we can calculate

the p-value using the Monte Carlo method.
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> fstats = numeric(4000);

> for(i in 1:4000)}{

+ newsavings=savings;

+ newsavings[,c(2,3)]=savings[sample(50),c(2,3)];

+ ge = lm(sr ~., data=newsavings);

+ fstats[i] = summary(ge)$fstat[1]

+ }

> length(fstats[fstats > summary(fullmodel)$fstat[1]])/4000

[1] 0.004
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CI and PI

• A (1− α) CI for βj is given by(
β̂j ± t

(α/2)
n−p se(β̂j)

)
=
(
β̂j ± t

(α/2)
n−p σ̂

√[
(XtX)−1

]
jj

)
where t

(α/2)
n−p is the (1− α/2) percentile of the student T-dist with (n− p)

degree-of-freedom.
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• We are also interested in obtaining an estimate E[Y |x∗] = µ∗ = (x∗)tβ,

as well as a prediction for a future observation y∗ at x∗.

• The Gauss-Markov theorem tells us that the BLUE of µ∗ is

µ̂∗ = (x∗)tβ̂
t

= (x∗)t(XtX)−1Xty.

This is just a linear transformation of y, so we can easily derive its

variance, and find its standard error.

se(µ̂∗) = σ̂
√

(x∗)t(XtX)−1x∗.

• A CI for µ∗ is given by(
µ̂∗ − t(α/2)n−p se(µ̂∗), µ̂∗ + t

(α/2)
n−p se(µ̂∗)

)
.
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• Also ŷ∗ = (x∗)tβ̂ provides a point prediction for a future observation of y∗

at x∗. In order to find a prediction interval (PI), we need to consider the

variance due to β̂ in addition to the variance associated with a new

observation, which is σ2.

• The standard error a of prediction is

se(ŷ∗) = σ̂
√

1 + (x∗)t(XtX)−1x∗.

• A (1− α) PI for a new observation y∗ at x∗ is given by(
ŷ∗ − t(α/2)n−p se(ŷ∗), ŷ∗ + t

(α/2)
n−p se(ŷ∗)

)
.

aNote that no matter how large the sample size becomes, the width of a PI, unlike a

CI, will never approach 0.
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• Write xp×1 =

 1

z

 where z denotes the measure of the (p− 1)

predictors (without the intercept).

• Write Σ̂(p−1)×(p−1) = 1
n−1

∑n
i=1(zi − z̄)(zi − z̄)t, which is the sample

covariance of the (p− 1) predictor variables.

• Then

xt∗(X
tX)−1x∗ =

1

n
+

1

n− 1
(z∗ − z̄)tΣ̂−1(z∗ − z̄),

which is the so-called Mahalanobis distance from xi to the center of the

center of the data x̄ (the sample mean).
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The point estimation and prediction at x∗ are the same, but the associated

MSEs are different

se(µ̂∗) = σ̂
√

(x∗)t(XtX)−1x∗ = σ̂

√
1

n
+

1

n− 1
(z∗ − z̄)tΣ̂−1(z∗ − z̄)

se(ŷ∗) = σ̂
√

1 + (x∗)t(XtX)−1x∗ = σ̂

√
1 +

1

n
+

1

n− 1
(z∗ − z̄)tΣ̂−1(z∗ − z̄)

• se(ŷ∗) has an extra 1. When the sample size n goes to infinity,

se(µ̂∗)→ 0, but se(ŷ∗)→ σ2.

• Errors are not the same at all x∗: smaller when x∗ is near x̄ in the

Mahalanobis distance.

• Errors are not the same for all samples (of the same sample size n):

samples whose x values are more spread (i.e., the eigen-values of Σ̂ are

large) have smaller errors.
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Joint Confidence Region

Just as we can use estimated standard errors and t-stats to form confidence

intervals for a single parameter, we can also obtain a (1− α)× 100%

confidence region for the entire vector β. In particular

β − β̂ ∼ N(0, σ2(XtX)−1).

Thus, the quadratic form

(β − β̂)tXtX(β − β̂)

pσ̂2
∼ Fp,n−p.
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Then we can construct a (1− α)× 100% confidence region for β to be all the

points in the following ellipsoid

(β − β̂)tXtX(β − β̂)

pσ̂2
< F (α; p, n− p),

where F (α; p, n− p) is defined to be the point such that

P
[
Fp,n−p > F (α; p, n− p)

]
= α.
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Simultaneous CIs/PIs

• Consider a simple linear regression yi = β0 + β1xi + ei.

• Given a new value x∗, the (1− α) CI for µ∗ = β0 + β1x
∗ is

I(x∗) =
(
µ̂∗ ± t

(α/2)
n−2 se(µ̂∗)

)
, (1)

where

µ̂∗ = β̂0 + β̂1x
∗, se(µ̂∗) = σ̂

√
1

n
+

(x∗ − x̄)2∑n
i=1(xi − x̄)2

.

• Suppose we are interested in CIs at multiple points (x∗1, . . . , x
∗
m). Using

formula (1), we can form CIs at the m points, I(x∗1), . . . , I(x∗m).
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• We know that

P
[
µ∗i ∈ I(x∗i )

]
= (1− α),

where µ∗i = β0 + β1x
∗
i is the value on the regression line at x∗i . This is the

point-wise coverage probability and formula (1) gives the point-wise CI.

• What about the simultaneous coverage probability?

P
[
µ∗i ∈ I(x∗i ), for i = 1, . . . ,m

]
= ???
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Bonferroni Correction

Let Ak denotes the event that the kth confidence interval covers µ∗k with

P(Ak) = (1− α).

Then

P( All CIs cover the corresponding µ∗k’s)

= P(A1 ∩A2 · · · ∩Am)

= 1− P(Ac1 ∪Ac2 · · · ∪Acm)

≥ 1− P(Ac1)− · · · − P(Acm)

= 1−mα.
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• Suppose Iα(x∗k) is the (1− α) CI at x∗k, where k = 1, 2, . . . ,m. To make

sure the simultaneous coverage probability is 95%, i.e.,

P
(
µ∗k ∈ Iα(x∗k) for all k = 1 : m

)
= 95%,

we need to set α = 5%/m, which is known as the Bonferroni correction.

• Similarly, suppose Iα(x∗k) is the (1− α) PI at x∗k, where k = 1, 2, . . . ,m.

To make sure the simultaneous coverage probability is 95%, i.e.,

P
(
y∗k ∈ Iα(x∗k) for all k = 1 : m

)
= 95%,

we need to set α = 5%/m.
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Confidence Band

• Ideally we would like to construct a simultaneous confidence band (i.e.,

m =∞) cross all x∗’s. Scheffé’s Theorem (1959): Let

I(x) =
(
r̂(x)− cσ̂, r̂(x) + c(x)σ̂

)
,

where

r̂(x) = β̂0 + β̂1x, c(x) =
√

2F (α, 2, n− 2)

√
1

n
+

(x− x̄)2∑n
i=1(xi − x̄)2

.

Then

P
[
r(x) ∈ I(x) for all x

]
≥ 1− α.

• Can we construct a simultaneous prediction band? No.
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Confidence bands are always wider than point-wise CIs? For SLR, at a location

x∗, we have

band : µ̂∗ ±
√

2F (α, 2, n− 2)se(µ̂∗)

interval : µ̂∗ ± t(α/2)n−2 se(µ̂∗).

Assume α = 5%, you can check which one is bigger,√
2F (α, 2, n− 2), or t

(α/2)
n−2 =

√
F (α, 1, n− 2)?

In fact, for any α, we have

t(α/2)m =
√
F (α, 1,m) <

√
kF (α, k,m).
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