
Variable Selection

• Consider a MLR model Y ∼ 1 +X1 +X2 + · · ·+Xp where we have p

non-intercept predictors. Latter on some slides, I drop the intercept for

notational simplicity.

• In many applications nowadays, we have a lot of explanatory variables, i.e.,

p is large and we could even have p >> n, but only a small portion of the

p variables are believed to be relevant to Y .

• Of interest is to find the following subset of the p predictors

S = {j : βj = 0}.
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• In some applications, the key question we need to answer is to identify this

set S, e.g., which variables among the p variables are really effective for

boosting the sales (Y ).

• If our goal is simply to do well on prediction, then should we care about

variable selection?

Recall that the LS estimate β̂ is unbiased, i.e., estimates for the irrelevant

variables β̂j (with j ∈ Sc) will eventually go to zero anyway.

To understand this, let’s examine the training and the test errors.
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Test vs Training Error

• Training data (xi, yi)
n
i=1

• Test data (xi, y
∗
i )
n
i=1 is an independent (imaginary) data set collected at

the same location xi’s (aka, in-sample prediction).

• Assume the data are indeed from a linear model

yn×1, y
∗
n×1 i.i.d. ∼ Nn

(
µ, σ2In

)
, where Xβ = µ.

Or equivalently, write

y = Xβ + e,

y∗ = Xβ + e∗

en×1, e
∗
n×1 i.i.d. ∼ Nn

(
0, σ2In

)
.

Note that the two error terms en×1 and e∗n×1 are independent.
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E[Test Err] = E‖y∗ −Xβ̂‖2

= E‖(y∗ −Xβ) + (Xβ −Xβ̂)‖2

= E‖y∗ − µ‖2 + E‖Xβ −Xβ̂‖2

= E‖e∗‖2 + Tr
(
XCov(β̂)Xt

)
= n · σ2 + TrH = n · σ2 + p · σ2

E[Train Err] = E‖y − ŷ‖2 = E‖(I−H)y‖2

= Tr
(
(I−H)Cov(y)(I−H)t

)
= σ2Tr(I−H) = (n− p) · σ2

So Test Err increases with p and Training Err decreases with p. When adding

more variables, i.e., p gets large, although training error gets smaller, but the

test error will be large, since the error for estimating p covariates accumulates.
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So even if our goal is purely prediction, it is not the more the X variables, the

better the prediction. We should remove some irrelevant variables.

The analysis on the previous slides seems to indicate that the best model (i.e.,

the one with the smallest expected test error) is the intercept-only model with

p = 0.

This, of course, is not true. The previous analysis is based on the assumption

that the mean of y is in the column space of X, i.e., there exists some

coefficient vector β, such that µ = Xβ. In general, when we run a linear

regression model using only a subset of the columns of X, there will be an

additional bias term.
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Model Index γ

• Index each model (i.e., each subset of the p variables) by a p-dimensional

binary vector γ.

γ = (γ1, . . . , γp), γj = 0/1,

where γj = 1 indicates that Xj is included (in the model); 0, otherwise.

• So There are totally 2p subsets or models. In particular,

γ = (1, 1, . . . , 1)

refers to the full model including all p variables (largest dim), and

γ = (0, 0, . . . , 0)

refers to the intercept-only model (smallest dim).
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Suppose µ = Xβ, where µ denotes the mean of y. If we fit the data y with

respect to model γ, i.e., we fit a linear model with a sub-design-matrix Xγ

where Xγ contains only columns from X such that �j= 1.

We can show that the Test Err and Train Error for model γ are

E[Test Err] = n · σ2 + p · σ2 + Biasγ

E[Train Err] = n · σ2 − p · σ2 + Biasγ

Bigger model (i.e., p large), small Bias, but large variance (pσ2);

Smaller model (i.e., p small), large Bias, but small variance (pσ2).

So to reduce the test error (i.e., prediction error), the key is to find the best

trade-off between Bias and Variance.
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Testing-based Procedures

• Backward

1. Start with all the predictors in the model.

2. Remove the predictor with highest p-value great than α0 (most

insignificant).

3. Refit the model, and repeat the above process.

4. Stop when all p-values ≤ α0.

• α0 is often set to be 15% or 20%.
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• Forward

1. Start with the intercept-only model.

2. For all predictors not in the model, check their p-value if being added

to the model. Add the one with the lowest p-value ≤ α0 (most

significant);

3. Refit the model, and repeat the above process;

4. Stop when no predictors can be added
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• Pros and Cons

– Main advantage: Computation cost is low.

– Due to the “one-at-a-time” nature of adding/dropping variables, this

type of procedures does not compare all possible models. So it’s

possible to miss the “optimal” model.

– It’s not clear how to choose α0, the cut-off for p-values.
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Criterion-based Procedures

1. Score each model;

2. Use a search algorithm to find the optimal one.
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• Model selection criteria/scores often take the following form

Training error + Complexity-penalty.

In the context of linear regression models, complexity of a model increases

with the number of predictor variables (i.e., pγ).

• Why not R2 or RSS?
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Model Selection Criteria

• AIC/BIC

AIC : −2× loglikγ + 2pγ

BIC : −2× loglikγ + (log n)pγ

where pγ denotes the number of predictors included in model γ.

For linear regression model

−2× loglikγ = n log
RSSγ

n
.

Note that when n is large, adding an additional predictor costs a lot more

in BIC than AIC. So AIC tends to pick a bigger model than BIC.
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• Adjusted R2 for model γ

R2
a = 1− RSS/(n− pγ − 1)

TSS/(n− 1)

= 1−R2

(
n− 1

n− pγ − 1

)

= 1−
σ̂2
γ

σ̂2
0

• Mallow’s Cp

RSSγ

σ̂2
+ 2pγ − n

where σ̂2 is the estimate of the error variance from the full model.

Mallow’s Cp behaves very similar to AIC.
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Search Algorithms

• Leaps and bounds: return the global optimal solution, but only feasible for

less than 50 variables.

1. Find p models which are the ones with the smallest RSS among models

of the same size; a

2. Then evaluate the score on the p models and report the optimal one.

aNote that at step 1, we do not need to visit every model. For example, suppose we’ve

know that RSS(X1, X2) < RSS(X3, X4, X5, X6), then we do not need to visit any size 2

or 3 sub-models of (X3, X4, X5, X6), which can be leaped over.
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• Greedy algorithms: fast, but only return a local optimal solution (which

might be good enough in practice).

– Backward: start with the full model and sequentially delete predictors

until the score does not improve.

– Forward: start with the null model and sequentially add predictors until

the score does not improve.

– Stepwise: consider both deleting and adding one predictor at each

stage.
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