h.	[M(CO) ₄ I(diphos)] ⁻	A: $18 - 4 \times 2 - 2 - 4 = 4 = M$, Ti
		B: $18 - 4 \times 2 - 1 - 4 = 5 = M^{-}$, Ti

13.4 Calculating for each metal atom:

		-			
	а.	$[Fe(CO)_2(\eta^5-C_5H_5)]_2$	A: $7 + 2 \times 2 + 6 = 17$, single Fe–Fe B: $8 + 2 \times 2 + 5 = 17$, single Fe–Fe		
	b.	$[Mo(CO)_2(\eta^5-Cp)]_2^{2-}$	A: $5 + 2 \times 2 + 6 + 1 = 16$, double Mo=Mo B: $6 + 2 \times 2 + 5 + 1 = 16$, double Mo=Mo		
13.5	a.	[M(CO) ₃ (NO)] ⁻		M–N–O: I–N–O:	A: $18 - 3 \times 2 - 2 - 2 = 8 = M$, Ru B: $18 - 3 \times 2 - 3 = 9 = M^{-}$, Ru A: $18 - 3 \times 2 - 2 = 10 = M$, Pd B: $18 - 3 \times 2 - 1 = 11 = M^{-}$, Pd
	b.	$\left[M(PF_3)_2(NO)_2\right]^+$	linear 1	NO:	A: $18 - 2 \times 2 - 2 \times 2 = 10 = M^{-}$, Rh B: $18 - 2 \times 2 - 2 \times 3 = 8 = M^{+}$, Rh
	c.	[M(CO) ₄ (µ ₂ -H)] ₃	As a tr	iangular structu	re with three M–M bonds: A: $18 - 4 \times 2 - 2 - 2 = 6 = M^+$, Tc B: $18 - 4 \times 2 - 1 - 2 = 7 = M$, Tc
	d.	M(CO)(PMe ₃) ₂ Cl		$-2 - 2 \times 2 - 2 =$ $-2 - 2 \times 2 - 1 =$	-
13.6	Metho	hod B works better for calculating overall charge.			
	a.	$[Co(CO)_3]^z$		$9+3\times 2=15,$, <i>z</i> = 3–
	b.	$[Ni(CO)_3(NO)]^z$		$10 + 3 \times 2 + 3$	= 19, <i>z</i> = 1+
	c.	$[Ru(CO)_4(GeMe_3)]^2$		$8 + 4 \times 2 + 1 =$	= 17, <i>z</i> = 1–
	d.	$[(\eta^3-C_3H_5)V(CNCH_3)_5]$] ^z	$3 + 5 + 5 \times 2 =$	= 18, z = 0
	e.	$[(\eta^5\text{-}C_5\text{H}_5)\text{Fe}(\text{CO})_3]^z$		$5 + 8 + 3 \times 2 =$	= 19, <i>z</i> = 1+

f. $[(\eta^{5}-C_{5}H_{5})_{3}Ni_{3}(\mu_{3}-CO)_{2}]^{z}$ $3 \times 5 + 3 \times 10 + 2 \times 2 = 49, z = 1+, assuming three Ni-Ni bonds; calculating for each Ni: 5 + 10 + 2(2/3) + 2 = 18 1/3; charge per Ni = 1/3+, overall charge = 1+ (Each triply bridging CO can be considered to donate 2 electrons overall, 2/3 electron to each metal.)$

13.7	a.	$[(\eta^5-C_5H_5)W(CO)_x]_2$, assuming	a single W–W: A: $6+5+1+x \times 2 = 18, x = 3$ B: $5+6+1+x \times 2 = 18, x = 3$
	b.	$\operatorname{ReBr}(\operatorname{CO})_{x}(\operatorname{CO}_{2}\operatorname{C}_{2}\operatorname{H}_{4})$	A: $6 + 2 + x \times 2 + 2 = 18$, $x = 4$ B: $7 + 1 + x \times 2 + 2 = 18$, $x = 4$
	c.	$[(CO)_3Ni-Co(CO)_3]^z$	A and B: $3 \times 2 + 10 + 2 + 9 + 3 \times 2 - z = 36, z = 3 - 36$
	d.	$[Ni(NO)_3(SiMe_3)]^2$	B: $10 + 3 \times 3 + 1 - z = 18, z = 2 +$

Copyright © 2014 Pearson Education, Inc.

Problem 13.6: Using Method A d electrons+ ligand electrons must equal 18, calculate charge 'z' based on metal charge and ligand charge

Metal complex	Total ligand electrons	Metal electrons to make 18	Overall charge
[Co(CO)3]	2x3=6	12 (gives Co 3- charge)	0 from ligand 3- from metal, overall charge 3-
[Ni(CO)3(NO)]	2+2x3=8	10 (gives Ni 0 charge)	+1 charge from linear NO+, 0 charge from metal, overall charge +1
[Ru(CO)4(GeMe3	3)] 2+2x4=10	8 (gives Ru 0 charge)	GeMe3 is like CMe3, an alkyl ligand. This will have a -1 charge and overall charge of complex will also be -1
[(eta-3-C3H5)V(C	NCH3)5] 4+5x2=14	4 (gives V +1 charge)	V is +1, C3H5 is -1, overall charge 0
[(eta-5-C5H5)Fe(CO)3] 6+3x2+12	6 (gives Fe a +2 charge)	Fe is +2, C5H5 is -1, overall charge +1

[(eta-5-C5H5)3Ni3(mu-3–CO)2] This compound is difficult to do if you don't know number of metal-metal bonds. Something this complicated will not be on test

Problem 13.7d

[Ni(NO)3(SiMe3)] Method A treatment

Total ligand electrons: 2x3+2=8 Metal electrons to make 18: 10 (gives Ni a 0 charge)

Overall charge: +3 charge from three linear NO+, -1 charge from SiMe3-, 0 charge from metal, overall charge = +2