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CHAPTER 9:  COORDINATION CHEMISTRY I:  STRUCTURES AND 
ISOMERS 
 
9.1 Hexagonal:   C2v C2v D2h  
 

 Hexagonal pyramidal:  Cs Cs C2v 

 

 Trigonal prismatic:  Cs C2v C2    
 

 Trigonal antiprismatic:  Cs C2 C2h 
 

 The structures with C2 symmetry would be optically active. 
 

9.2 a. dicyanotetrakis(methylisocyano)iron(II) or dicyanotetrakis(methylisocyano)iron(0) 
 
 b. rubidium tetrafluoroargentate(III) or rubidium tetrafluoroargentate(1–) 
 
 c. cis- and trans-carbonylchlorobis(triphenylphosphine)iridium(I) or cis- and trans- 
  carbon ylchlorobis(triphenylphospine)iridium(0) 
 
 d. pentaammineazidocobalt(III) sulfate or pentaammineazidocobalt(2+) sulfate 
 
 e. diamminesilver(I) tetrafluoroborate(III) or diamminesilver(1+) tetrafluoroborate(1–) 
  (The BF4

– ion is commonly called “tetrafluoroborate.”) 
  
9.3 a. tris(oxalato)vanadate(III) or tris(oxalato)vanadate(3–)   
 
 b. sodium tetrachloroaluminate(III) or sodium tetrachloroaluminate(1–) 
 
 c. carbonatobis(ethylenediamine)cobalt(III) chloride or 
  carbonatobis(ethy lenediamine)cobalt(1+) chloride 
 
 d. tris(2,2-bipyridine)nickel(II) nitrate or tris(2,2-bipyridine)nickel(2+) nitrate  (The  

IUPAC name of the bidentate ligand, 2,2-bipyridyl may also be used; this ligand is most 
familiarly called “bipy.”) 

 
 e. hexacarbonylmolybdenum(0)  (also commonly called “molybdenum hexacarbonyl”).   

The (0) is often omitted.  
 

9.4 a. tetraamminecopper(II) or tetraamminecopper(2+) 
 
 b. tetrachloroplatinate(II) or tetrachloroplatinate(2–) 
 
 c. tris(dimethyldithiocarbamato)iron(III) or tris(dimethyldithiocarbamato)iron(0) 
 
 d. hexacyanomanganate(II) or hexacyanomanganate(4–) 
 

e. nonahydridorhenate(VII) or nonahydridorhenate(2–)  (This ion is commonly called 
“enneahydridorhenate.”) 
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9.5 a. triamminetrichloroplatinum(IV) or triamminetrichloroplatinum(1+) 
  
 b. diamminediaquadichlorocobalt(III) or diamminediaquadichlorocobalt(1+) 
 
 c. diamminediaquabromochlorocobalt(III) or diamminediaquabromochlorocobalt(1+) 
 
 d. triaquabromochloroiodochromium(III) or triaquabromochloroiodochromium(0) 
 
 e. dichlorobis(ethylenediamine)platinum(IV) or dichlorobis(ethylenediamine)platinum(2+) 
  or dichlorobis(1,2-ethanediamine)platinum(IV) or dichlorobis(1,2- 

ethanediamine)platinum(2+) 
  
 f. diamminedichloro(o-phenanthroline)chromium(III) or diamminedichloro(o- 
  phenanthroline)chro mium(1+) or diamminedichloro(1,10-phenanthroline)chromium(III) 
  or diamminedichloro(1,10-phenanthroline)chromium(1+) 
 

g. bis(2,2-bipyridine)bromochloroplatinum(IV) or bis(2,2-
bypyridine)bromochloroplatinum(2+) 

  or bis(2,2-bipyridyl)bromochloroplatinum(IV) or bis(2,2- 
bipyridyl)bromochloroplatinum(2+) 

 
 h. dibromo[o-phenylene(dimethylarsine)(dimethylphosphine)]rhenium(II) or 
  dibrom o[o-phenylene(dimethylarsine)(dimethylphosphine)]rhenium(0) or 
  dibrom o[1,2-phenylene(dimethylarsine)(dimethylphosphine)]rhenium(II) or 
  dibrom o[1,2-phenylene(dimethylarsine)(dimethylphosphine)]rhenium(0) 
 
 i. dibromochlorodiethylenetriaminerhenium(III) or 
  dibrom ochlorodiethylenetriaminerhenium(0) or dibromochloro(2,2- 
  diam inodiethylamine)rhenium(III) or dibromochloro(2,2- 
  diam inodiethylamine)rhenium(0) 

 
9.6 a. dicarbonylbis(dimethyldithiocarbamato)ruthenium(III) or  

dicarbonylbis(dimethyldithiocarbamato)ruthenium(1+) 
 
 b. trisoxalatocobaltate(III) or trisoxalatocobaltate(3–) 
 
 c. tris(ethylenediamine)ruthenium(II) or tris(ethylenediamine)ruthenium(2+) 
 
 d. bis(2,2-bipyridine)dichloronickel(II) or bis(2,2-bipyridine)dichloronickel(2+) 
  
9.7 a. Bis(en)Co(III)-µ-amido-µ-hydroxobis(en)Co(III) 
 

   

Co
N O

N N

N

N

Co
N

N
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 b. Diaquadiiododinitritopalladium(IV) 
 

Pd
H2O ONO

ONO OH2

I

I
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ONO OH2

ONO OH2

I

I

Pd
H2O I

ONO OH2

I

ONO

Pd
ONO ONO

H2O I

I

H2O

Pd
ONOONO

OH2I

I

OH2

enantiomers  
 
 c. Fe(dtc)3 
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At low temperature, restricted rotation about the C—N bond can lead to additional 
isomers as a consequence of the different substituents on the nitrogen.  These isomers can 
be observed by NMR.
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9.8 a. triammineaquadichlorocobalt(III) chloride Isomers are of the cation: 
 

  

Co
H3N NH3

H3N Cl

H2O

Cl

Co
H3N NH3

H3N OH2

Cl

Cl

+ +

Co
Cl NH3

H2O NH3
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+

cis                                                  trans

mer                                                                            fac  
 

b. -oxo-bis(pentammine-chromium(III)) ion 
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O
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 c. potassium diaquabis(oxalato)manganate(III) Isomers are of the anion: 
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H2O O
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9.9 a. cis-diamminebromochloroplatinum(II)  
 
  
 
  
 

b. diaquadiiododinitritopalladium(IV)  
 
  
 
 
 
  
 c. tri--carbonylbis(tricarbonyliron(0))  

 

Pt

Cl NH3

Br NH3

Pt
ONO OH2

H2O ONO

I

I

Fe Fe

C

C C

O

OO
C C

C CC C
O O

O

O O

O



  Chapter 9   Coordination Chemistry I: Structures and Isomers          127 

Copyright © 2014 Pearson Education, Inc. 

9.10  
  
 
 
 
 
 
         
 
 
     
 
 
9.11 M(AB)3 
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9.12 a. [Pt(NH3)3Cl3]+ 
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Cl NH3

Cl NH3
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 b. [Co(NH3)2(H2O)2Cl2]+ 
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c. [Co(NH3)2(H2O)2BrCl]+ 

 

 
 
  
 
 
 
 
 

 
 
 
 
 
 
 
d. Cr(H2O)3BrClI 
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 e. [Pt(en)2Cl2]2+ 
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 f. [Cr(o-phen)(NH3)2Cl2]+ 

 

 

+ +
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 g. [Pt(bipy)2BrCl]2+ 
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h. Re(arphos)2Br2  Abbreviating the bidentate ligands As   P: 
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i. Re(dien)Br2Cl 
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9.13 a.   M(ABA)(CDC) 
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b.   M(ABA)(CDE) 
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9.14   
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9.15 a.  The “softer” phosphorus atom bonds preferentially to the soft metal Pd (see Section 6.6.1).  

 b, c.  Abbreviating the bidentate ligands N P: 
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9.16 a, b. Abbreviating the bidentate ligands N P and O S: 
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9.17 The single C–N stretching frequency indicates a trans  

structure for the cyanides (the symmetric stretch of the  
C—N bonds is not IR active), while the two C–O bonds  
indicate a cis structure for the carbonyls (both the  
symmetric and antisymmetric C–O stretches are IR 
active).  As a result, the bromo ligands are also cis.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Co
BrBr

CC

C

C

O

N

O

N

–



  Chapter 9   Coordination Chemistry I: Structures and Isomers          133 

Copyright © 2014 Pearson Education, Inc. 

9.18 There are 18 isomers overall, six with the chelating ligand in a mer geometry and 12 with 
 the chelating ligand in a fac geometry.  All are enantiomers.  They are all shown below, with  
 dashed lines separating the enantiomers. 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

9.19 a.  b.  c.  d.   
 

9.20 All are chiral if the ring in b does not switch conformations. 
  
9.21 20b  20c top ring: , bottom ring:  
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S

Cr O

Mo
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O W

Se
S

W O

Mo
Mo

O Cr

Se

 
            Cs                                                        Cs 
 

c.    Yes, provided the structure has no symmetry or only Cn axes.  Examples are the 
structures with C1 symmetry in part a. 

 
9.23  The 19F doublet is from the two axial fluorines (split by the equatorial fluorine).  
 
 The 19F triplet is from the equatorial fluorine (split by the two axial fluorines). 
 
 The two doubly bonded oxygens are equatorial, as expected from VSEPR  
 considerations.  Point group:  C2v 
 
9.24 Examples include both cations and anions: 
 
  [Cu(CN)2]–, [Cu2(CN)3]–, [Cu3(CN)4]–, [Cu4(CN)5]–, [Cu5(CN)6]–

 

 

  [Cu2(CN)]+, [Cu3(CN)2]+, [Cu4(CN)3]+, [Cu5(CN)4]+, [Cu6(CN)5]+ 
 
 Based primarily on calculations (rather than experimental data), Dance et al. proposed 
 linear structures such as the following: 
 
  [Cu(CN)2]–:  NC—Cu—CN 
 

  [Cu2(CN)3]–:  NC—Cu—CN—Cu—CN 
 

[Cu3(CN)4]–:  NC—Cu—CN—Cu—CN—Cu—CN 
 

[Cu2(CN)]+:  Cu—CN—Cu 
 

[Cu3(CN)2]+:  Cu—CN—Cu—CN—Cu 
 

[Cu4(CN)3]+:  Cu—CN—Cu—NC—Cu—CN—Cu 
 

 Where 2-coordinate copper appears in these ions, the geometry around the Cu is linear, as 
 expected from VSEPR. 
 
9.25 The bulky mesityl groups cause sufficient crowding that the phosphine ligands can show  

chirality (C3 symmetry) and can be considered as similar to left-handed (PL) and  
right-handed (PR) propellers.  If two P(mesityl)3 phosphines are attached in a  
linear arrangement to a gold atom, three isomers are possible: 
 

PL—Au—PL  PR—Au—PR PL—Au—PR     
 

(PR—Au—PL  is equivalent to PL—Au—PR, as can best be seen with models.)  NMR data  
at low temperature support the presence of these isomers, which interconvert at higher  
temperatures. 
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9.26 The point group is D3h.  A representation  based on the nine 1s orbitals  
of the hydride ligands is:   
 

D3h E 2C3 3C2 h 2S3 3v  
 9 0 1 3 0 3  

A1 1 1 1 1 1 0 z2 

E 2 –1 0 2 –1 0 (x, y), (x2–y2, xy) 
A2 1 1 –1 –1 –1 1 z 
E 2 –1 0 –2 1 0 (xz, yz) 

 
The representation  reduces to 2 A1 + 2 E + A2 + ECollectively these representations 
match all the functions for s (totally symmetric, matching A1), p, and d orbitals of Re, so all the s, 
p, and d orbitals of the metal have suitable symmetry for interaction.  (The strength of these 
interactions will also depend on the match in energies between the rhenium orbitals and the 1s 
orbital of hydrogen.)   
 

9.27   
 
  

 
 
 
 
 
 
 
 
 
 
 
9.28 
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9.29 a. Cu(acacCN)2:  D2h tpt:  C2v 
 
 b. C6 

 

9.30 All four metal-organic frameworks studied (MOF-177, Co(BDP), Cu-BTTri, Mg2(dobdc) ) are 
significantly more effective at adsorbing carbon dioxide relative to adsorbing hydrogen. This is 
attributed, in part, to the higher polarizability of CO2 relative to that of H2. The formation of an 
induced dipole in these gases by exposed cations within MOFs is an important prerequisite for 
adsorption. The two MOF properties that most strongly correlate with CO2 adsorption capacity 
are MOF surface area and MOF accessible pore volume. As these values (tabulated below) 
increase, the CO2 adsorption capacity increases. 

 

MOF Surface Area ( m2 g ) Accessible Pore Volume ( cm3 g ) 

MOF-177 4690 1.59 

Co(BDP) 2030 0.93 

Cu-BTTri 1750 0.713 

Mg2(dobdc)  1800 0.573 
 
 The graphs in Figure 1 of the reference clearly indicate that Mg2(dobdc)  adsorbs the most CO2 

at 5 bar. The arrangement and concentration of open Mg2+ cation sites on the Mg2(dobdc)  
surface is hypothesized to render this MOF more susceptible to CO2 adsorption. This MOF, 
along with Cu-BTTri, which also features exposed metal sites, are identified as the best prospects 
for CO2 H2  separation. 

 

9.31 The synthesis and application of amine-functionalized MOFs for CO2 adsorption is the general  
topic of the reference. While the M2(dobdc) series of MOFs were proposed as excellent  
candidates for this functionalization (on the basis of their relatively large concentration of  
exposed metal cation sites), their amine-functionalization proved difficult. This was attributed to  
the relatively narrow MOF channels that may hinder amine diffusion into M2(dobdc) .  
One hypothesized solution was to prepare a MOF with the M2(dobdc) structure-type, but with 
larger pores. The wider linker dobpdc (below, along with dobdc for comparison) was used in the 
hope of obtaining MOFs with larger pores. 
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 Amine-functionalized Mg2(dobpdc)was prepared by mixing H4(dobpdc), magnesium bromide, 
and a small solvent volume (a mixture of N,N’-diethylformamide and ethanol) in a Pyrex 
container. The mixture was heated in a microwave reactor, and the M2(dobpdc)  collected by 
filtration after cooling. Dried samples of Mg2(dobpdc)were then heated for roughly one hour at 
420 °C under dynamic vacuum. After this “activation” step, Mg2(dobpdc)was stirred with an 
excess of N,N’-dimethylethylenediamine (mmen) in hexanes for one day. Subsequent heating 
under vacuum resulted in removal of residual solvents to afford mmen-functionalized 
Mg2(dobpdc) . The “activation” step was found necessary to completely remove residual N,N’-

diethylformamide from the Mg2+  coordination sites. 
 
9.32 This reference discusses application of porphyrin-containing MOFs where the porphyrin provides 

a binding site for Fe(III) and Cu(II). The precursor to the porphyrin linker (TCPP) is provided 
below; the resulting carboxylates of this linker permit its incorporation into the MOF. 
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The metallation options include premetallation and postmetallation. In premetallation, 
H4-TCPP-Cu  and H4-TCPP-FeCl , respectively, are used as reactants for the MOF synthesis. In 
this case, the porphyrin linker and its bound metal ion are installed simultaneously into the MOF. 
This general approach afforded MOF-525-Cu, MOF-545-Fe, and MOF-545-Cu. MOF-525-Fe 
could not be obtained via this strategy.  For this MOF, postmetallation was employed, via the 
reaction of MOF-525 with Fe(III) chloride; Fe(III) ions were introduced into the MOF-525 
porphyrin linkers via this method. 

 
 In terms of similarities and differences, MOF-545 can be metallated with both Fe(III) and Cu(II) 

via a premetallation strategy, while MOF-525 requires alternate procedures for incorporation of 
Cu(II) (premetallation) and Fe(III) (postmetallation), respectively. 

 
 
 
 
 


