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CHAPTER 5:  MOLECULAR ORBITALS 
 
5.1 There are three possible bonding interactions: 
  
 
 
  
 
  
5.2 a. Li2 has a bond order of 1.0 (two electrons in a  bonding orbital; see  

Figures 5.7 and 5.1).  Li2
+ has a bond order of only 0.5 (one electron in a 

 bonding orbital).  Therefore, Li2 has the shorter bond. 
 

 b. F2 has a bond order of 1.0 (see Figure 5.7).  F2
+ has one less antibonding (π*)  

electron and a higher bond order, 1.5.  F2
+ would be expected to have the shorter bond. 

 
 c. Expected bond orders (see Figure 5.1): 

 

   Bonding electrons Antibonding electrons   Bond order 
  He2

+  2     1  1

2
(2 – 1) = 0.5 

  HHe+  2     0  1

2
(2 – 0) = 1 

  H2
+  1     0  1

2
(2 – 1) = 0.5 

Both He2
+ and H2

+ have bond orders of 0.5.  HHe+  would therefore be expected to have 
the shortest bond because it has a bond order of 1. 
 

5.3 a. These diatomic molecules should have similar bond orders to the analogous 
  diatomics from the row directly above them in the periodic table: 

 

   P2 bond order = 3 (like N2) 
   S2 bond order = 2 (like O2) 
   Cl2 bond order = 1 (like F2)        Cl2 has the weakest bond. 
 
 b. The bond orders match those of the analogous oxygen species (Section 5.2.3): 

 

   S2
+ bond order = 2.5 

   S2 bond order = 2 
   S2

– bond order = 1.5         S2
– has the weakest bond. 

 
 c. Bond orders: 

 

   NO+ bond order = 3  (isoelectronic with CO, Figure 5.13) 
   NO bond order = 2.5  (one more (antibonding) electron than CO) 
   NO– bond order = 2  (two more (antibonding) electrons than CO) 
 
   NO– has the lowest bond order and therefore the weakest bond. 
 
 
 
 
 
 

pz              dz2                          py           dyz                          px            dxz
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5.4 
 

O2
2– has a single bond, with four 

electrons in the π* orbitals canceling 
those in the π orbitals. 
 

 
  
 
 
 

 
 

O2
– has three electrons in the π* orbitals, and  

a bond order of 1.5.  The Lewis structures 
have an unpaired electron and an average  
bond order of 1.5.  
 

O2 has two unpaired electrons in its π*    
 orbitals, and a bond order of 2.  The simple  
 Lewis structure has all electrons paired,  
 which does not match the paramagnetism  

observed experimentally. 
 
  
 
 

Bond lengths are therefore in the order  
 O2

2– > O2
– > O2, and bond strengths are  

the reverse of this order. 
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5.5       Bond Order   Bond Distance (pm)  Unpaired Electrons 
            (Figures 5.5 and 5.7) 
 

 C2
2–  3    119    0 

 N2
2–  2    122.4    2 

 O2
2–  1    149 (very long)   0 

 O2  2    120.7    2 
 
 The bond distance in N2

2– is very close to the expected bond distance for a diatomic with 12 
 valence electrons, as shown in Figure 5.8. 
 
5.6 The energy level pattern would be similar to the one shown in Figure 5.5, with the interacting  

orbitals the 3s and 3p rather than 2s and 2p.  All molecular orbitals except the highest would be  
occupied by electron pairs, and the highest orbital (u*) would be singly occupied, giving a bond  
order of 0.5.  Because the bond in Ar2

+ would be weaker than in Cl2, the Ar–Ar distance would be  
expected to be longer (calculated to be > 300 pm; see the reference). 

 
5.7 a. The energy level diagram for NO is on 
  the right.  The odd electron is in a π2p* 
  orbital. 
 
 b. O is more electronegative than N, so  
  its orbitals are slightly lower in energy. 
  The bonding orbitals are slightly more 
  concentrated on O. 
 
 c. The bond order is 2.5, with one unpaired 
  electron. 
 
 d. NO+ Bond order = 3 
   shortest bond (106 pm) 
  NO Bond order = 2.5 
   intermediate (115 pm) 

  NO
–
 Bond order = 2 

   longest bond (127 pm), two electrons in antibonding orbitals. 
 
5.8 a. The CN– energy level diagram is similar to that of NO (Problem 5.7) without the  
  antibonding π* electron. 
 
 b. The bond order is three, with no unpaired electrons. 
 
 c. The HOMO is the 2p orbital, which can interact  

with the 1s of the H+, as in the diagram at right.   
The bonding orbital has an energy near that of the  
π orbitals; the antibonding orbital becomes the  
highest energy orbital.  

 
 
 
 
 

2s
2s

2s

2s


N                     NO         O

2p2p

2p


2p

2p


2p
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5.9 a.  A diagram is sketched at the right. Since the difference in valence orbital potential energy  
between the 2s of N (-25.56 eV) and the 2p of F (-18.65 eV) is 6.91 eV, the 2p orbital is 
expected to be higher in energy 
relative to the degenerate 2p set. 

 
b.  NF is isoelectronic (has the same 

number of valence electrons) with 
O2. Therefore, NF is predicted to 
be paramagnetic with a bond 
order of 2. The populations of the 
bonding (8 electrons) and 
antibonding (4 electrons) 
molecular orbitals in the diagram 
suggest a double bond. 

 
c.  The 2s, 2s

*, 2p, and 2p
* orbitals  

exhibit Cv symmetry, with the  
NF bond axis the infinite-fold  
rotation axis. The 2p and 2p

* 
orbitals exhibit Cs symmetry. The latter do not possess C2 rotation axes coincident to the 
infinite-fold rotation axis of the  orbitals on the basis of the change in wave function 
sign upon crossing the nodes on the bond axis. 

 
5.10 a. OF– has 14 valence electrons, four in the π2p* orbitals (see the diagram in the answer to  
  Problem 5.9). 
 
 b. The net result is a single bond between two very electronegative atoms, and no unpaired 
  electrons. 
 
 c. The concentration of electrons in the π* orbital is more on the O, so combination with 
  the positive proton at that end is more likely.  In fact, H+ bonds to the oxygen atom, at 
  an angle of 97°, as if the bonding were through a p orbital on O. 
 
5.11 The molecular orbital description of KrF+ would predict that this ion, which has the same number  

of valence electrons as F2, would have a single bond.  KrF2 would also be expected, on the basis  
of the VSEPR approach, to have single Kr–F bonds, in addition to three lone pairs on Kr.   
Reported Kr–F distances:  KrF+:  176.5-178.3 pm; KrF2:  186.8-188.9 pm.  The presence of lone  
pairs in KrF2 may account for the longer bond distances in this compound. 

 
5.12 a. The KrBr+ energy level diagram is at the right. 
 
 b. The HOMO is polarized toward Br, since its 
  energy is closer to that of the Br 4p orbital. 
 
 c. Bond order = 1 
 
 d. Kr is more electronegative.  Its greater 
  nuclear charge exerts a stronger pull on 
  the shared electrons. 

 
4s 4s





Kr                   KrBr+   Br

4p





4p





HOMO

2s

2p

2s

2p

N NF F

2s

2s
*

2p
*

2p

2p

2p
*
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5.13 The energy level diagram for SH– is shown below.  A bond order of 1 is predicted. 
  

The S orbital energies are –22.7 eV (3s) and –11.6 eV (3p); the 1s of H has an energy of –13.6 
eV.  Because of the difference in their atomic orbital energies, the 1s orbital of hydrogen and the 
3s orbital of sulfur interact only weakly; this is shown in the diagram by a slight stabilization of 
the lowest energy molecular orbital with respect to the 3s orbital of sulfur. This lowest energy 
orbital is essentially nonbonding. These orbitals are similar in appearance to those of HF in 
Example 5.3, with more balanced contribution of the hydrogen 1s and sulfur valence orbitals 
since the valence orbitals of sulfur are closer to the energy of the hydrogen 1s orbital than the 
valence orbitals of fluorine. 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
5.14 a.  The group orbitals on the  

hydrogen atoms are 

 

           
and 

           
 

The first group orbital interacts  
with the 2s orbital on carbon: 

 

           
 

And the second group orbital  
interacts with a 2p orbital on  
carbon: 

 

              
 

Carbon’s remaining 2p orbitals are  
nonbonding. 

 
b. Linear CH2 is a paramagnetic diradical, with one electron in each of the px and py orbitals 

of carbon.  (A bent singlet state, with all electrons paired, is also known, with a calculated  
bond angle of approximately 130°.) 

2s



C H  C  H                  H H

2p





1s

3s


H SH– S

3p





1s
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5.15 a.   BeH2  

       

H Be H H       Be      H

Group Orbitals:

Be Orbitals with
Matching Symmetry:

MO Diagram:
  2s                                                  2pz

 

     
 
 
 
b. The energy level diagrams for CH2 and BeH2 feature the same orbital interactions. One 

difference is that the different number of valence electrons renders the linear species 
BeH2 diamagnetic and CH2 paramagnetic. The energy difference between the Be and H 
valence orbitals is larger than that between the valence orbitals of C and H, and both the 
2s and 2p orbitals of Be are higher in energy than the 1s orbital of H.  The result is 
greater bond polarity in BeH2. 

 
 
5.16 BeF2 uses s and p orbitals on all three atoms, and is isoelectronic with CO2.  The energy level  
 diagram for CO2 in Figure 5.25 can be used as a guide, with the orbitals of Be higher in energy 
 than those of C and the orbitals of F lower in energy than those of O.  Calculated molecular 
 orbital shapes are below, for comparison for those of CO2 in Figure 5.25. 
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Of the occupied orbitals, there are three bonding (two π and one ) and five nonbonding 
 (two π and three ).  (References: W. R. Wadt, W. A. Goddard III, J. Am. Chem. Soc., 
 1974, 96, 5996; R. Gleiter, R. Hoffmann, J. Am. Chem. Soc., 1968, 90, 5457; C. W. 
 Bauschlicher, Jr., I. Shavitt, J. Am. Chem. Soc., 1978, 100, 739.) 
 
 
 
 
 
 
 

4b1u 

4ag 

LUMO (2) 
2b2u, 2b3u 

HOMO (2) 
1b2g, 1b3g 

 

Bonding (2) 
1b2u, 1b3u 

 
3b1u Nonbonding 

2ag

2b1u 

3ag, Bonding
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5.17 a. The group orbitals of the  

fluorines are: 
       
 
  
 
 
 
 
 

 
b. The matching orbitals on 
 xenon are: 

                      
s, dz2

s, dz2

pz

pz

px

py

dxz

dyz

  F          Xe          F                   F          Xe F

  F          Xe          F                    F          Xe         F

  
 
 

5.18 1. 
Ta

H

HH
H H

   

The point group of TaH5 is C4v.  

2.  Axes can be assigned as shown:      

z

Ta
y

x

    

3.  Construction of reducible representation: 
 

C4v E 2C4 C2 2v 2d   

 5 1 1 3 1   
A1 1 1 1 1 1 z z2 

A2 1 1 1 –1 –1 Rz  
B1 1 –1 1 1 –1  x2–y2 
B2 1 –1 1 –1 1  xy 
E 2 0 –2 0 0 (x, y), (Rx, Ry) (xz, yz) 

 

z

x

XeF F

  F F                 F          F
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 reduces to 2 A1 + B1 + E 
5, 6.  Two group orbitals, shown at right, have A1                

symmetry.  These may interact with the pz, dz2,  
and s orbitals of Ta.  

 
  
 One group orbital has B1 symmetry.  It                  
 can interact with the dx2–y2 orbital of Ta. 

 
 A degenerate pair of group orbitals has  
 E symmetry.  It may interact with the 
 (px, py) and (dxz, dyz) pairs of Ta. 
 

5.19 The energy level diagram for O3 with the simple combinations of s and p orbitals is shown below. 
Mixing of s and p orbitals is fairly small, showing mostly in the four lowest orbitals. The order of 
orbitals may vary depending on the calculation method (for example, PM3 and AM1 methods 
reverse the orders of HOMO and HOMO –1). 

 

                  
O

O OO O
O

1

2

3

4

5

6

7

8

9

10

11

12

 

Ta Ta

Ta

Ta Ta
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5.20 SO3 has molecular orbitals similar to those of BF3 (Section 5.4.6). The irreducible 
 representations below are labeled for the oxygen orbitals. 
 
  
 
  

 
 
 
 
 
 
 
 
 
  (s) = A1 + E  Sulfur s, px, and py 

   (py) = A1 + E  Sulfur s, px, and py 
 π  (px) = A2 + E  Sulfur px and py
   (pz) = A2 + E Sulfur pz 
 
5.21 As a cyclic (triangular) ion, H3

+ has a pair of electrons in a bonding orbital and two vacant  
 orbitals that are slightly antibonding: 
 
 
 
 
 
 
 
 
 
 
 
5.22 The thiocyanate ion, SCN–, has molecular orbitals similar to those of CO2, but  

with more mixing between the s orbital of C and the s and p orbitals of S. The 
valence orbital potential energies of S are very close to those of C, and those of 
N are only slightly lower.  There is significant double bonding in thiocyanate 
on the basis of this excellent orbital energy compatibility. This is consistent 
with the resonance structures shown at right, with the top structure favored.   
 
For cyanate, OCN–, the s and p orbitals of carbon effectively interact with valence orbitals on the 
N side, but less on the O side because the oxygen orbital energies are much more negative. The 
structures described in Section 3.1.3 (a mix of two double bonds and O–C and CN) fit this ion 
also. 
 
For fulminate, CNO–, the large differences between the C and O orbital energies render the 
contributions of the terminal atom orbitals to the group orbitals relatively uneven. A practical 
result of this imbalance is less delocalization of electron density within this anion. This is 

D3h E 2C3 3C2 h 2S3 3v  

 (s) 3 0 1 3 0 1  

 (py) 3 0 1 3 0 1  

 (px)  3 0 –1 3 0 –1  

 (pz) 3 0 –1 –3 0 1  

A1 1 1 1 1 1 1  
A2 1 1 –1 1 1 –1  
A2 1 1 –1 –1 –1 1 z 
E 2 –1 0 2 –1 0 (x, y) 
E 2 –1 0 –2 1 0  

H

HH

A1'

E'
+

H3
+

S C N

S C N

1+

1–

2–

S C N
1–
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suggested by the formal charge effects described in Example 3.3. As a result, the bonding in this 
ion is weak. Fulminate is stable only when complexed with a metal ion.  

5.23 The highest occupied orbitals in SCN
–
 or OCN

– 
are π nonbonding orbitals (see Figure  

5.25 for the similar CO2 orbitals).  Combination with H+ or with metal ions depends on the energy 
match of these orbitals with those of the positive ion. The preference for attack can be examined 
by comparing the energies of the valence orbitals of the terminal atoms that contribute to these 
nonbonding molecular orbitals. For example, the H 1s orbital energy matches the energy of the N 
valence orbitals orbital better than either the S or O valence orbitals, and the nitrogen atom is the 
site of protonation in both anions. The energies of metal ion valence orbitals vary from element to 
element (and with oxidation state). Some metal ions will be more compatible energetically with 
the S orbitals while others will be more compatible with the N orbitals. These electronic effects 
contribute to which site of thiocyanate is appropriate for bonding to metals. The S can also use 
the empty 3d orbitals to accept electron density via π bonding from some metal ions. 

 

5.24 The CN
– molecular orbitals are similar to those of CO (Figure 5.13), but with less difference 

between the C and N atomic orbital energies than between C and O orbitals.  As a result, the 
HOMO should be more evenly balanced between the two atoms, and bonding at both ends seems 

more likely with CN
– 

relative CO.  The Prussian blue structures (Fe4[Fe(CN)6]3 or KFe(Fe(CN)6) 
have iron and CN– in arrangements that have both Fe–C and Fe–N bonds. 

  
5.25 a. The resonance structures were considered in Problem 3.3, showing bent structures  
  with primarily double bond character in S=N and single bonding in N–O or S–O. 

  SNO
–
 is more stable on the basis of formal charges. 

 
 b. The molecular orbitals should be similar to those of O3, with more mixing of s and p 
  orbitals because of the difference between atomic orbital energies of S and O as 

terminal atoms.  The π bonding, nonbonding, and antibonding orbitals are numbers 6, 9, 
and 10 in the ozone diagram in the Problem 5.19 answer.  
 

The relative contributions of the valence orbitals of each atom to the π molecular orbitals 

of SNO
–
 can be partially rationalized on the basis of electronegativity. In the π bonding 

orbital, the electron density is highest on the most electronegative O atom, a reasonable 
expectation for the most stabilized π interaction. In the π antibonding orbital, the electron 
density is highest on the least electronegative S atom, a feature that contributes to the 

destabilization of this orbital. The π molecular orbitals of NSO
– 

are not as clearly 
explained by these electronegativity arguments, possibly due to the ability of S to expand 
its valence shell to increase its participation in bonding as a central atom.  
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π   πn   π* 
         S—N—O–         S—N—O–                       S—N—O– 
 
 

 
 
 

 
π   πn   π* 

         N—S—O–         N—S—O–                       N—S—O– 

 
c. The calculated bond distances for these ions are: 

 

   ion  N–S  S–O  N–O 

   SNO
–
  171 pm    120 pm 

   NSO
–
  146 pm  149 pm 

NSO
– has the shorter N–S bond and the higher energy N–S stretching vibration. 

 
5.26 H2O has C2v symmetry. Figure 5.26 defines the coordinate system to be used. The representation 

that describes the symmetry of the group orbitals (Section 5.4.3) is A1  B1. The next step is to 
track the fate of one of the hydrogen 1s orbitals as the symmetry operations are carried out:  

  

Original Orbital E  C2   v(xz)   v( yz)  

H1s(a)becomes…. H1s(a) H1s(b)  H1s(a) H1s(b)  
 

Now we multiply these outcomes by the characters associated with 
each operation for the A1 and B1 representations, and then add the results to obtain the linear 
combinations of the H 1s atomic orbitals that define the group orbitals. 
 

 E   C2    v(xz)   v( yz)  SALCs 

A1  H1s(a) + H1s(b)  + H1s(a) + H1s(b)   2(H1s(a) ) 2(H1s(b) )  

B1  H1s(a) – H1s(b)  + H1s(a) – H1s(b)   2(H1s(a) ) 2(H1s(b) )  
 

Each group orbital equation must be normalized, so that the sum of the squares of the coefficients 

within each equation equals 1. The normalization factors, N  (ca
2  cb

2 )





1
, where ca  and cb  

are the lowest common integer coefficients for the hydrogen 1s orbital wave functions in each 
SALC, are: 

A1 : N  (1) 2  (1) 2





1


1

2
B1 : N  (1) 2  (1) 2 )





1


1

2
. 

This results in the normalized SALC equations for the two group orbitals: 

  
A1 :

1

2
(Ha )(Hb)  B1 :

1

2
(Ha )(Hb)  . 

H1s(a)H1s(b)
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 SALC Coefficients and Evidence of Normalization: 
 

Coefficients in Normalized SALCs 
Squares of SALC 

Coefficients 
Sum of Squares =1 
for Normalization  

 ca  cb  ca
2  cb

2   

A1 
1

2
 

1

2
 

1

2
 

1

2
 1 

B1 
1

2
 

1

2
 

1

2
 

1

2
 1 

Sum of the squares for each 1s wavefunction 
must total 1 for an identical contribution of 
each atomic orbital to the group orbitals 

1 1 
 

 
5.27 The irreducible representation associated with the 2s set is   A1

  E . The  
atoms will be labeled as shown. The next step is to track the fate of one of the 
fluorine 2s orbitals as the symmetry operations are carried out: 

 

Original Orbital E  C3 C3
2 C2(a) C2(b) C2(c)  h  S3  S3

2  v(a)   v(b)  v(c)

2sa  becomes… 2sa  2sb  2sc 2sa  2sc 2sb  2sa 2sb 2sc 2sa  2sc 2sb  

 

Now we multiply these outcomes by the characters associated with each operation for A1
  in the 

D3h character table to obtain the linear combination. All of the characters are 1 for the totally 
symmetric A1

  irreducible representation. Therefore: 

A1
 : 2sa  2sb  2sc  2sa  2sc  2sb  2sa  2sb  2sc  2sa  2sc  2sb  4(2sa ) 4(2sb) 4(2sc )  

The lowest common integer coefficient is 1, and N  (1) 2  (1) 2  (1)2





1


1

3
. The 

normalized A1
  SALC is 

  

1

3
(2sa )(2sb)(2sc )  .  Next we multiply the terms in the 

table above by the characters of the E  irreducible representation. The characters for C2  and  v  

are 0, so multiplication by these characters leads to no contribution to the SALC: 

E  : 2(2sa ) 2sb  2sc  2(2sa ) 2sb  2sc  4(2sa ) 2(2sb) 2(2sc ). 

 
Reduction to the lowest common integer coefficient affords 2(2sa ) (2sb) (2sc ) , and 

N  (2) 2  (1) 2  (1)2





1


1

6
. The normalized E  SALC is therefore 

  

1

6
2((2sa )(2sb)(2 pc )  .   

The remaining E  SALC can be deduced by examination of the coefficients and the sums of their 
squares. 
 
 
 
 

a

b

c
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Coefficients of Normalized SALCs Squares of SALC Coefficients 

Sum of the 
Squares = 1 

for 
Normalization 

 ca  cb  cc ca
2  cb

2  cc
2   

A1
  

1

3
 

1

3
 

1

3
 

1

3
 

1

3
 

1

3
 1 

E  
2

6
 

1

6
 

1

6
 

2

3
 

1

6
 

1

6
 1 

E  0 
1

2
 

1

2
 0 

1

2
 

1

2
 1 

Sum of the squares for each 2s wavefunction must 
total 1 for an identical contribution of each atomic 

orbital to the group orbitals 
1 1 1 

 

 
Since the sum of the squares of the coefficients for 2sa  equals 1 without any contribution from 

the second E  SALC, this SALC must have ca  0. The squares of cb  and cc must equal 
1

2
 to 

satisfy the normalization and identical contribution from each orbital requirements. Since E  
matches the symmetry of  the x and y axes, and the origin is the center of the group orbital (the 
boron atom), one of the coefficients must be positive and the other negative. The second E  

SALC is therefore 
  

1

2
(2sb)(2sc )  .  

The irreducible representation associated with the 2 py  set is also   A1
  E . 

The atoms are labeled as shown. The fate of one of the fluorine 2 py  orbitals as the 

symmetry operations are carried out is: 
 

 E  C3 C3
2  C2(a) C2(b) C2(c)  h  S3  S3

2  v(a)  v(b)  v(c)

2 py(a)  
becomes… 

2 py(a)  2 py(b)

 

2 py(c)

 

2 py(a)

 

2 py(c)

 

2 py(b)

 

2 py(a)

 

2 py(b)

 

2 py(c)

 

2 py(a)

 

2 py(c)

 

2 py(b)

 

Now we multiply these outcomes by the characters associated with each operation for A1
  in the 

D3h character table. All of the characters are 1 for the A1
  irreducible representation. Therefore: 

1 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

: 2 2 2 2 2 2 2 2 2 2 2 2

4(2 ) 4(2 ) 4(2 ).

y a y b y c y a y c y b y a y b y c y a y c y b

y a y b y c

A p p p p p p p p p p p p

p p p

           

  

 

The lowest common integer coefficient is 1, and N  (1) 2  (1) 2  (1)2





1


1

3
. The 

normalized A1
  SALC is therefore 

1

3
(2 py(a) )(2 py(b) )(2 py(c) )



 . 

a

b

c
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Next we multiply the terms in the table above by the characters of the E  irreducible 
representation. The characters for C2  and  v  are 0, so multiplication by these characters leads to 

no contribution to the SALC: 

E  : 2(2 py(a) ) 2 py(b)  2 py(c)  2(2 py(a) ) 2 py(b)  2 py(c)  4(2 py(a) ) 2(2 py(b) ) 2(2 py(c) ). 

Reduction to the lowest common integer coefficient affords 2(2 py(a) ) (2 py(b) ) (2 py(c) ) , and 

N  (2) 2  (1) 2  (1)2





1


1

6
.  The normalized E  SALC is 

  

1

6
2((2 py(a) )(2 py(b) )(2 py(c) )



 . 

 

The remaining E  SALC can be deduced by examination of the coefficients and the sums of their 
squares. 
 

 

Coefficients of Normalized SALCs Squares of SALC Coefficients 

Sum of the 
Squares = 1 

for 
Normalization 

 ca  cb  cc ca
2  cb

2  cc
2   

A1
  

 

1

3
 

 

1

3
 

1

3
 1

3
 

1

3
 

1

3
 1 

E  
 

2

6
 

 


1

6
 

1

6
 2

3
 

1

6
 

1

6
 1 

E  0 
 

1

2
 

1

2
 0 

1

2
 

1

2
 1 

Sum of the squares for each 2py  wavefunction must 
total 1 for an identical contribution of each atomic 

orbital to the group orbitals 
1 1 1 

 

 

Since the sum of the squares of the coefficients for 2 py(a)  equals 1 without any contribution 

from the second E  SALC, this SALC must have ca  0. The squares of cb  and cc must equal 

1

2
 to satisfy the normalization and identical contribution from each orbital requirements. Since 

E  matches the symmetry of the x and y axes, and the origin is the center of the group orbital (the 
boron atom), one of the coefficients must be positive and the other negative. The second E  

SALC is  
  

1

2
(2 py(b) )(2 py(c) )



 . 

The irreducible representation associated with the 2 px  set is   A2
  E . The 

atoms are labeled as shown. The fate of one of the fluorine 2 px  orbitals as the 

symmetry operations are carried out is: 
 
 
 

a

b

c



68         Chapter 5   Molecular Orbitals         

Copyright © 2014 Pearson Education, Inc. 

 E  C3 C3
2  C2(a)  C2(b) C2(c)  h  S3  S3

2  v(a)  v(b)  v(c)

2 px(a)  
becomes… 

2 px(a)  2 px(b)  2 px(c)  2 px(a)  2 px(c) 2 px(b) 2 px(a)  2 px(b)  2 px(c)  2 px(a) 2 px(c) 2 px(b)

 

Now we multiply these outcomes by the characters associated with each operation for A2
  in the 

D3h character table: 

A2
 : 2 px(a)  2 px(b)  2 px(c)  2 px(a)  2 px(c)  2 px(b)  2 px(a)  2 px(b)  2 px(c)  2 px(a)  2 py(c)  2 px(b)

 4(2 px(a) ) 4(2 px(b) ) 4(2 px(c) )

 

The lowest common integer coefficient is 1, and N  (1) 2  (1) 2  (1)2





1


1

3
. The 

normalized A2
  SALC is 

  

1

3
(2 px(a) )(2 px(b) )(2 px(c) )



 . 

Next we multiply the terms in the table by the characters of the E  irreducible representation. 

E  : 2(2 px(a) ) 2 px(b)  2 px(c)  2(2 py(a) ) 2 px(b)  2 px(c)  4(2 px(a) ) 2(2 px(b) ) 2(2 px(c) )  

 
Reduction to the lowest common integer coefficient affords 2(2 px(a) ) (2 px(b) ) (2 px(c) ) , and 

N  (2) 2  (1) 2  (1)2





1


1

6
. The normalized E  SALC is 

  

1

6
2((2 px(a) )(2 px(b) )(2 px(c) )



 . 

 

The remaining E  SALC can be deduced by examination of the coefficients and the sums of their 
squares. 
 
 

 

Coefficients of Normalized SALCs Squares of SALC Coefficients 

Sum of the 
Squares = 1 

for 
Normalization 
Requirement 

 ca  cb  cc ca
2  cb

2  cc
2   

A2
  

 

1

3
 

 

1

3
 

1

3
 1

3
 

1

3
 

1

3
 1 

E  
 

2

6
 

 


1

6
 

1

6
 2

3
 

1

6
 

1

6
 1 

E  0 
 

1

2
 

1

2
 0 

1

2
 

1

2
 1 

Sum of the squares for each 2px wavefunction must 
total 1 for an identical contribution of each atomic 

orbital to the group orbitals 
1 1 1  
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Since the sum of the squares of the coefficients for 2 px(a)  equals 1 without any contribution 

from the second E  SALC, this SALC must have ca  0. The squares of cb  and cc must equal 

1

2
 to satisfy the normalization and identical contribution from each orbital requirements. Because 

E  matches the symmetry of  the x and y axes, and the origin is the center of the group orbital 
(the boron atom), one of the coefficients must be positive and the other negative. The second E  

SALC is 
  

1

2
(2 px(b) )(2 px(c) )



 . 

 
The irreducible representation associated with the 2 pz  set is 

  A2
 E . The atoms are labeled as shown. The fate of one of the 

fluorine 2 pz  orbitals as the symmetry operations are carried out is: 

 
 
 E  C3 C3

2  C2(a)  C2(b) C2(c)  h  S3  S3
2  v(a)  v(b)  v(c)

2 pz(a)  

becomes… 
2 pz(a)  2 pz(b)  2 pz(c)  2 pz(a)  2 pz(c) 2 pz(b) 2 pz(a) 2 pz(b) 2 pz(c)  2 pz(a)  2 pz(c)  2 pz(b)  

 

Now we multiply these outcomes by the characters associated with each operation for A2
  in the 

D3h character table: 

 

A2
: 2 pz(a)  2 pz(b)  2 pz(c)  2 pz(a)  2 pz(c)  2 pz(b)  2 pz(a)  2 pz(b)  2 pz(c)  2 px(a)  2 pz(c)  2 pz(b)

 4(2 pz(a) ) 4(2 pz(b) ) 4(2 pz(c) )
 

The lowest common integer coefficient is 1, and N  (1) 2  (1) 2  (1)2





1


1

3
. The 

normalized A2
  SALC is 

  

1

3
(2 pz(a) )(2 pz(b) )(2 pz(c) )



. 

 
Next we multiply the terms in the table by the characters of the E  irreducible representation: 
 
E : 2(2 pz(a) ) 2 pz(b)  2 pz(c)  2(2 pz(a) ) 2 pz(b)  2 pz(c)  4(2 pz(a) ) 2(2 pz(b) ) 2(2 pz(c) ). 

 
Reduction to the lowest common integer coefficient affords 2(2 pz(a) ) (2 pz(b) ) (2 pz(c) ) , and 

N  (2) 2  (1) 2  (1)2





1


1

6
. The normalized E  SALC is 

  

1

6
2((2 pz(a) )(2 pz(b) )(2 pz(c) )



. 

The remaining E  SALC can be deduced by examination of the coefficients and the sums of 
their squares. 

a

b

c



70         Chapter 5   Molecular Orbitals         

Copyright © 2014 Pearson Education, Inc. 

 

Coefficients of Normalized SALCs Squares of SALC Coefficients 

Sum of the 
Squares = 1 

for 
Normalization 
Requirement 

 ca  cb  cc ca
2  cb

2  cc
2   

A2
  

 

1

3
 

 

1

3
 

1

3
 1

3
 

1

3
 

1

3
 1 

E  
 

2

6
 

 


1

6
 

1

6
 2

3
 

1

6
 

1

6
 1 

E  0 
 

1

2
 

1

2
 0 

1

2
 

1

2
 1 

Sum of the squares for each 2pz wavefunction must 
total 1 for an identical contribution of each atomic 

orbital to the group orbitals 
1 1 1  

 

Since the sum of the squares of the coefficients for 2 pz(a)  equals 1 without any contribution from 

the second E  SALC, this SALC must have ca  0. The squares of cb  and cc must equal 
1

2
 to 

satisfy the normalization and identical contribution from each orbital requirements. Since E  has 
the same symmetry as the xz and yz orbitals that have nodes defined by the yz and xz planes, 
respectively, one of the coefficients must be positive and the other negative. The second E  

SALC is 
  

1

2
(2 pz(b) )(2 pz(c) )



 . 

 
5.28 The point group is D4h . The reducible representation that describes the symmetries of the group 

orbitals is: 
 
 

D4h  E  2C4  C2  2C2
  2C2

  i  2S4   h  2 v  2 d  

 4 0 0 2 0 0 0 4 2 0 
 

Reduction affords   A1g  B1g  Eu . To deduce the SALCs, we need to track the fate of one of 

the 3s orbitals through each symmetry operation of the character table. 
 

 

  3s( A)  
becomes… 

E  C4  C4
3  C2  C2

 (x)  C2
 ( y)  C2

(1) C2
(2)  

   3s( A)    3s(B)  3s(D)  3s(C)  3s(C)  3s( A)    3s(D)  3s(B)  

 i  S4  S4
3  h   v (x)   v ( y)  d (1)   d (2)  

   3s(C)    3s(B)  3s(D)  3s( A)  3s(C)  3s( A)    3s(D)  3s(B)  

 
 

Since all of the characters for A1g  are 1, the SALC for A1g  is: 
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A1g :3s( A) 3s(B) 3s(D) 3s(C) 3s(C) 3s( A) 3s(D) 3s(B) 3s(C) 3s(B) 3s(D) 3s( A)

3s(C) 3s( A) 3s(D) 3s(B)  4(3s( A)) 4(3s(B)) 4(3s(C)) 4(3s(D))
 

 
This simplifies to   3s( A) 3s(B) 3s(C) 3s(D), which provides a normalization constant of 

N  (1) 2  (1) 2  (1)2  (1)2





1


1

2
 and the SALC 

1

2
(3s( A))(3s(B))(3s(C))(3s(D))  . 

Multiplication of the orbitals in the above table by the B1g  characters gives: 

B1g :3s( A) 3s(B) 3s(D) 3s(C) 3s(C) 3s( A) 3s(D) 3s(B) 3s(C) 3s(B) 3s(D) 3s( A)

3s(C) 3s( A) 3s(D) 3s(B)  4(3s( A)) 4(3s(B)) 4(3s(C)) 4(3s(D))
 

 
This simplifies to   3s( A) 3s(B) 3s(C) 3s(D), which provides a normalization constant of 

N  (1) 2  (1) 2  (1)2  (1)2





1


1

2
 and 

1

2
(3s( A))(3s(B))(3s(C))(3s(D))   

as the B1g  normalized SALC.  

 
Multiplication of the orbitals in the above table by the Eu  characters affords: 

Eu : 2(3s( A)) 2(3s(C)) 2(3s(C)) 2(3s( A))  4(3s( A)) 4(3s(C))  

This simplifies to 3 ( ) 3 ( ),s A s C which provides a normalization constant of 

N  (1) 2  (1) 2





1


1

2
 and 

1

2
(3s( A))(3s(C))   as one of the normalized Eu  

SALCs. 
 
 

The equation for the other Eu  SALC can be deduced by consideration of the normalized SALC 

coefficients and their squares. 
 

 

Coefficients of Normalized SALCs Squares of SALC Coefficients 

Sum of the 
Squares = 1 for 
Normalization 
Requirement  

 cA cB  cC  cD  cA
2  cB

2  cC
2  cD

2   

A1g  1

2
 

1

2
 

1

2
 

1

2
 

1

4
 

1

4
 

1

4
 

1

4
 1 

B1g  1

2
 

1

2
 

1

2
 

1

2
 

1

4
 

1

4
 

1

4
 

1

4
 1 

Eu  
1

2
 0 

1

2
0 

1

2
 0 

1

2
 0 1 

Eu  0 
1

2
 0 

1

2
0 

1

2
 0 

1

2
 1 

Sum of the squares for each 3s  wavefunction must 
total 1 for an identical contribution of each atomic 

orbital to the group orbitals 
1 1 1 1  
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The sum of cA
2  and cC

2  equals 1 without any contribution from the second Eu  SALC; cA  cC  0  for 

this second Eu  SALC. A magnitude of 
1

2
 is required for both cB  and cD  of the second Eu SALC on 

the basis of the normalization requirement and equal contribution of each atomic orbital to the group 
orbital’s requirement. The alternate signs are required since Eu has the symmetry of the x and y axes; 

these Eu group orbitals need to match the symmetry of the valence p orbitals of the central atom. The 

normalized equation for the second Eu SALC is 
1

2
(3s(B))(3s(D))  .  

Sketches of these group orbitals are below, using the coordinate system specified in this problem. 
Note the scaling of the orbitals to reflect the larger contribution of the 3s  orbitals in the Eu  

SALCs compared to that in A1g  and B1g  SALCs. 

 

A1g

A

B

C

D

    B1g

A

B

C

D

 

 
 

Eu  

A

C    Eu

B D

 

 
5.29 For this question, we will label the 2 pz  orbitals simply by their letters (A–F) for clarity. The first 

task is to track the fate of A through all of the D6h  symmetry operations: 

 

E  C6  C6
5  C3 C3

2 C2  C2
(1) C2

 (2) C2
 (3) C2

(1) C2
(2) C2

(3)

A B F C E D -A -C -E -B -D -F 

i  S3 S3
2 S6  S6

5  h  d (1)   d (2)   d (3)   v (1)   v (2)   v (3)  

A 
becomes… 

-D -C -E -B -F -A B D F A C E 
 

Multiplication by the characters of each irreducible representation of the D6h  character table 

(and for each symmetry operation) is a tedious, but effective, method to deduce the SALCs. 
 

A1g : A B  F C  E  D  AC  E  B  D  F  D C  E  B  F  A B  D  F  AC  E  0 

A2g : A B  F C  E  D  AC  E  B  D  F  D C  E  B  F  A B  D  F  AC  E  0  
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B1g : A B  F C  E  D  AC  E  B  D  F  D C  E  B  F  A B  D  F  AC  E  0 

B2g : A B  F C  E  D  AC  E  B  D  F  D C  E  B  F  A B  D  F  AC  E

 4A 4B  4C  4D  4E  4F
 

 

E1g : 2A B  F C  E  2D  2D C  E  B  F  2A  4A 2B  2C  4D  2E  2F  

E2g : 2 A B  F C  E  2D  2D C  E  B  F  2A  0 

A1u : A B  F C  E  D  AC  E  B  D  F  D C  E  B  F  A B  D  F  AC  E  0  
A2u : A B  F C  E  D  AC  E  B  D  F  D C  E  B  F  A B  D  F  AC  E
 4 A 4B 4C  4D  4E  4F

 

B1u : A B  F C  E  D  AC  E  B  D  F  D C  E  B  F  A B  D  F  AC  E  0  

B2u : A B F C  E  D  AC  E  B  D  F  D C  E  B  F  A B  D  F  AC  E  0  

E1u : 2A B  F C  E  2D  2D C  E  B  F  2A  0 

E2u : 2A B  F C  E  2D  2D C  E  B  F  2A  4A 2B  2C  4D  2E  2F  
 

The six group orbitals have the symmetries B2g , A2u , E1g , and E2u , expressed in simplified 

form below, with normalization constants shown at right. 
 

B2g : A B C  D  E  F   B2g : N  (1) 2  (1) 2  (1)2  (1)2  (1)2  (1)2





1


1

6
 

A2u : A B C  D  E  F   A2u : N  (1) 2  (1) 2  (1)2  (1)2  (1)2  (1)2





1


1

6
 

E1g : 2A B C  2D  E  F   E1g : N  (2) 2  (1) 2  (1)2  (2)2  (1)2  (1)2





1


1

12
 

E2u : 2A B C  2D  E  F             E2u : N  (2) 2  (1) 2  (1)2  (2)2  (1)2  (1)2





1


1

12
 

 
The first four SALC equations are: 
 

  
B2g :

1

6
(2 pz( A) )(2 pz( B) )(2 pz(C ) )(2 pz( D) )(2 pz(E ) )(2 pz( F ) )



  

  
A2u :

1

6
(2 pz( A) )(2 pz(B) )(2 pz(C ) )(2 pz(D) )(2 pz(E) )(2 pz(F ) )



  

 

  
E1g :

1

12
2(2 pz( A) )(2 pz( B) )(2 pz(C ) ) 2(2 pz(D) )(2 pz(E) )(2 pz(F ) )



  

  
E2u :

1

12
2(2 pz( A) )(2 pz( B) )(2 pz(C ) ) 2(2 pz(D) )(2 pz(E) )(2 pz(F ) )



  
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The remaining two SALCs ( E1g  and E2u ) can be deduced by examination of the coefficients of the 

normalized equations. 
 
 

 

Coefficients of Normalized SALCs Squares of SALC Coefficients 

Sum of the 
Squares = 1 for 
Normalization  
Requirement 

 cA cB  cC  cD  cE  cF  cA
2 cB

2 cC
2 cD

2  cE
2  cF

2   

B2g  
1

6
 

1

6
 

1

6
 

1

6
 

1

6
 

1

6

1

6
 

1

6
 

1

6
 

1

6
 

1

6
 

1

6
 1 

A2u  
1

6
 

1

6
 

1

6
 

1

6
 

1

6
 

1

6
 

1

6
 

1

6
 

1

6
 

1

6
 

1

6
 

1

6
 1 

E1g  
2

12
 

1

12
 

1

12
 

2

12


1

12

1

12
 

1

3
 

1

12

1

12

1

3
 

1

12
 

1

12
 1 

E1g  0 
1

2
 

1

2
 0 

1

2
 

1

2
 0 

1

4
 

1

4
 0 

1

4
 

1

4
 1 

E2u  
2

12
 

1

12
 

1

12
 

2

12
 

1

12


1

12

1

3
 

1

12

1

12

1

3
 

1

12
 

1

12
 1 

E2u  0 
1

2
 

1

2
 0 

1

2
 

1

2
 0 

1

4
 

1

4
 0 

1

4
 

1

4
 1 

Sum of the squares for each 2pz wavefunction must 
total 1 for an identical contribution of each atomic 

orbital to the group orbitals 
1 1 1 1 1 1  

 
The sum of the squares of the SALC coefficients for A and D equal 0 without any contribution 
from the second E1g  and E2u  SALCs; therefore, cA and cD  are zero for these two SALCs. The 

sum of the squares of the coefficients for B, C, E, and F equal 
1

2
 without contributions from the 

second E1g  and E2u  SALCs. This suggests that cB
2 , cC

2 , cD
2 , and cE

2  equal 
1

4
 for these two 

SALCs, and that cC , cD , cE , and cF  equal 
1

2
. The choice of signs in the table above are 

those required for the SALCs to satisfy the symmetry requirements of the functions associated 
with the E1g  and E2u  representations, and to obtain the number of nodes expected (see sketches 

below). 
 

The last two normalized SALCs are: 

E1g :
1

2
(2 pz(B) )(2 pz(C ) )(2 pz(E ) )(2 pz( F ) )



  

E2u :
1

2
(2 pz(B) )(2 pz(C ) )(2 pz(E ) )(2 pz( F ) )



  
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The six group orbitals are sketched below, ranked by their relative energy. The number of nodes 
increases from zero to three with orbital energy. These orbitals, and a discussion of their energies, 
are in Section 13.4.4.  

Energy

A2u

E1g
E1g

E2uE2u

B2g

 
 
 
5.30 a. Cl2

+ has one fewer electron than Cl2, so the π* levels have three, rather than four,  
  electrons.  As a result, Cl2

+ has a bond order of 1.5, and the bond is shorter and stronger 
  than that of of Cl2 (189 pm, compared with 199 pm for Cl2). 
 
 b. Cl4

+ has such an elongated rectangular shape (194 pm by 294 pm) that it must be  
  essentially a Cl2 and a Cl2

+ side by side, with only a weak attraction between them 
  through the π* orbitals.  The Cl–Cl bond in Cl2

 is 199 pm long; apparently, the weak 
  side-to-side bond draws off some of the antibonding electron density, strengthening 
  and shortening the other two shorter Cl–Cl bonds. 
 

5.31 a. 
1+

B

F

F F

B

F

F F

B

F

F F

B

F

F F

1– 1– 1–

1+ 1+

 

 
 b. The 1a2 orbital near the middle of the figure is the π-bonding orbital. 
 
 c. The LUMO, 2a2, is the best orbital for accepting a lone pair. 
 
 d. The 1a2 orbital is formed by adding all the pz orbitals together.  The 2a2 orbital is 
  formed by adding the B pz orbital and subtracting the three F pz orbitals. 
 
5.32 SF4 has C2v symmetry.  Treating the four F atoms as simple spherical  

orbitals, the reducible representation  can be found and reduced to  

S

F

F

F

F
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 = 2A1 + B1 + B2.  Overall, the bonding orbitals can be dsp2 or d2sp,  
with the s and pz or dz2 orbital with A1 symmetry, px or dxy with  

 B1 symmetry, and py or  dyz with B2 symmetry.  The pz or dz2 orbital  
remaining accounts for the lone pair.  (The use of the trigonal  
bipyramidal hybrids dsp3 or d3sp include the lone pair as one of the five locations.)  

  
C2v E C2 (xz) (yz)  

 4 0 2 2  
A1 1 1 1 1 z, z2 
A2 1 1 –1 –1  
B1 1 –1 1 –1 x, xz 
B2 1 –1 –1 1 y, yz 

 
 
5.33 A square pyramidal molecule has the reducible representation  = E + 2A1 + B1. 
  

C4v E 2C4 C2 2v 2d  

 5 1 1 3 1  
E 2 0 –2 0 0 (x, y) (xz, yz) 
A1 1 1 1 1 1 z, z2, x2+y2 

B1 1 –1 1 1 –1 x2–y2 
 
 There appear to be three possibilities for combining orbitals, depending on the details of their 
 relative energies: dsp3 (px and py for E, s and pz for A1, dx2–y2 for B1), d2sp2 (substituting dz2  
 for pz), and d3sp (substituting dxz and dyz for px and py).  Although dxz and dyz appear to work, 
 they actually have their electron concentration between the B atoms, and therefore do not 
 participate in  bonding, so d3sp or d2sp2 fit better. 
 
5.34 Square planar compounds have D4h symmetry. 
  
  
 
 
 
 
 
  

 =  A1g + B1g + Eu 
                     
        s, dz2 dx2–y2 px, py  
  

dsp2 hybrids are the usual ones used for square planar compounds, although d2p2 is also 
 possible.  Since the dz2 orbital does not extend far in the xy plane, it is less likely to 

 participate in  bonding. 
 
 
 
 

D4h E 2C4 C2 C2 C2 i 2S4 h 2v 2d  

 4 0 0 2 0 0 0 4 2 0  

Eu 2 0 –2 0 0 –2 0 2 0 0 (x,y) 
A1g 1 1 1 1 1 1 1 1 1 1 z2 
B1g 1 –1 1 1 –1 1 –1 1 1 –1 x2–y2 
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5.35 a. PCl5 has D3h symmetry. 
 

D3h E 2C3 3C2 h 2S3 3v  

 5 2 1 3 0 3  

E 2 –1 0 2 –1 0 (x, y) (x2–y2, xy) 
A1 1 1 1 1 1 1 z2 

A2 1 1 –1 –1 –1 1 z 
  
   = E + 2A1 + A2, so the hybrids are dsp3 or d3sp. 
 
 b. This could also be analyzed separately for the axial and the equatorial positions.  The 
  pz and dz2 orbitals can bond to the axial chlorines (A1 + A2) and the s, px, and py  

  orbitals or the s, dx2–y2, and dxy orbitals can bond to the equatorial chlorines (E). 
 
 c. The dz2 orbital extends farther than the p orbitals, making the axial bonds a bit longer. 
 
5.36          Ignoring         Including 
   Orbital Lobe Signs  Orbital Lobe Signs 
   
  1a2  D3h    C3v 
  2a2  D3h    C3v 
  1a2  D3h    C3h   
  1e  C2v    C1 
 
  Results should be similar to Figure 5.32.  The energies of some of the orbitals in the 
  middle of the diagram are similar, and the order may vary with different calculation 
  methods.  In addition, the locations of the nodes in degenerate orbitals (e and e) may  

vary depending on how the software assigns orientations of atomic orbitals.  If nodes cut  
through atomic nuclei, 1e orbitals may have C2 symmetry, matching the symmetry of 
the first E group orbital shown in Figure 5.31. The table of orbital contributions for each 
of the orbitals should show the same orbitals as in Figure 5.32.  There may be some 
differences in contributions with different calculation methods, but they should be minor.  
Assignments to px, py, and pz will also differ, depending on how the software defines 
orientations of orbitals. Semi-empirical calculation AM1 gives these as the major 
contributors to the specified orbitals: 
 
 3a1  4a1  1a2  1a2  2a2 
 
B 2s  2s  2pz    2pz 
F 2s  2s, 2py  2pz  2px  2pz 
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5.37 a. The shapes of the orbitals, generated using one of the simplest computational  

methods, Extended Hückel Theory, are shown below, with the most  
electronegative element shown at right in the heteronuclear cases. 

 

 1π                          3                        1π * 
 
 
 
N2 

 

 

 

 

 
 
 
 
NO+ 
 
 
 
 
 
 
 

  
CN– 

 
 
 
 
 
 
 
 
CO 

 
 
 

 
 

  
b. In the 1π orbitals (bonding), the lobes are increasingly concentrated on the more 

  electronegative atom as the difference in electronegativity between the two atoms 
  increases.  This effect is seen most significantly in CO, where the difference in  
  electronegativity is the greatest. 
 

  In the 1π* orbitals, the antibonding partners of the 1π orbitals, the effect is  
reversed, with the largest lobes now concentrated on the less electronegative  
atoms.  The greatest effect is again shown in CO, with the lobes on carbon much  
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larger than those on oxygen. 
The 3 orbitals also show the influence of electronegativity, this time with the lobe 
extending to the left from the less electronegative atom being the largest, with CO once 
more showing the greatest effect.  This can be viewed in part as a consequence of the 3 
orbital being a better match for the energy of the less electronegative atom’s 2s orbital 
which, together with the 2pz orbital of the same atom, interacts with the 2pz orbital of the 
more electronegative atom (the atom shown on the right). 

   
 

c. The results vary greatly depending on the software used.  The results using one approach, 
AM1, are shown below (numerical values are energies in electron volts). 

 
 * π*  π *  

  LUMO HOMO    

CN
–
 14.7   0.13   –3.13   –5.10   –9.37     –28.0 

CO    5.28   0.94 –13.31 –16.30 –22.00 –41.2 

N2    6.03   1.00 –14.32 –16.19 –21.43   –41.39 

NO+ –4.42 –9.62 –26.13 –28.80 –35.80   –56.89 

 
 In this table, the energies decrease as the atomic numbers increase (with CO and N2 
 giving mixed results).  There is considerable mixing of the  orbitals, a phenomenon 
 that may raise the energy of the  (HOMO) orbital above the energy of the π orbitals– 
 as is the case in each of these examples. 
 

5.38 Among the trends that should be observed is the effect on the shapes of the π and π* orbitals  
(see orbitals of CO labeled as 1π and 1π* in Figure 5.13) as the difference in electronegativity  
between the atoms increases (this trend is also observed in Problem 37).  For BF and BeNe, the  
lobes of the π orbitals should become increasingly concentrated on the more electronegative  
atoms, and the lobes of the π* orbitals should become increasingly concentrated on the less  
electronegative atoms (a pattern that has begun with CO, if the orbital shapes for CO are  
compared with those of the isoelectronic N2).   
 
An additional effect is that the size of the protruding orbital lobe of the less electronegative atom 
should increase as the difference in electronegativity between the atoms increases; this can be see 
in the 3 orbital of CO in Figure 5.13.  Additional trends in the other molecular orbitals can also 
be noted. 

 
5.39 In one bonding orbital, the H s orbitals have the same sign and add to the Be s orbital in the 
 HOMO–1 orbital.  Subtracting the Be s orbital results in the antibonding LUMO.  The difference 
 between the two H s orbitals added to the Be pz orbital results in the HOMO; subtracting the Be 
 pz results in the LUMO+3 orbital.  LUMO+1 and LUMO+2 are the Be px and py orbitals and are 
 nonbonding (and degenerate) in BeH2.  For an energy level diagram, see the solution to Exercise  

5.8 in Appendix A.  
 
5.40 BeF2 is similar to BeH2, with the addition of π and π* orbitals from the px and py orbitals, 
 extending over all three atoms.  The F px orbitals with opposite signs do not combine with the Be 
 orbitals, and neither do the py orbitals; the px and py orbitals form the HOMO and HOMO+1 pair. 
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 The answer to Problem 5.16 shows more details. 
 
5.41 The azide orbitals are similar to the CO2 orbitals, with some differences in contributions 

from the atomic orbitals because the CO2 atomic orbitals do not have the identical energies 

as the nitrogen atoms do.  The two highest occupied orbitals of CO2, BeF2, and N3
–
 all consist  

of px or py orbitals of the outer atoms with opposite signs, essentially nonbonding orbitals.  The 
third orbital down has more s orbital contribution from the outer atoms than either of the other 
two; in those cases, the lower orbital energies of the atoms reduce that contribution.  See also the 
solution to Exercise 5.7 in Appendix A. 

 
5.42 One aspect of ozone’s molecular orbitals that should be noted is its π system.  For reference, it is  

useful to compare the bonding π orbital that extends over all three atoms (the atomic orbitals that  
are involved are shown as molecular orbital 6 in the solution to Problem 5.19); this orbital is the  
lowest in energy of the 3-orbital bonding/nonbonding/antibonding set (orbitals 6, 9, and 10 in  
Problem 5.19) involving the 2p orbitals that are not involved in  bonding.  Another  
bonding/nonbonding/antibonding set can be seen in the molecular orbitals derived from 2s  
orbitals (orbitals 1, 2, and 3 in Problem 5.19). 
 

 
5.43 a.      Linear                Cyclic 

 

                       HH H

                          H H

H

 
 
 
 
 
 
 
 
 
 

 
 
 
 
   
 
  In the linear arrangement, the molecular orbitals shown, from bottom to top, are bonding,  

nonbonding, and antibonding, with only the bonding orbital occupied.  In the cyclic  
geometry, the lowest energy orbital is bonding, and the other two orbitals are degenerate,  
each with a node slicing through the center; again, only the lowest energy orbital is  
occupied. 

 
 b. Cyclic H3

+ is slightly more stable than linear H3
+, based on the energy of the lowest 

orbital in an AM1 calculation (–28.4 eV versus –26.7 eV). 
 
5.44 a. The full group theory treatment (D2h symmetry), shown in Section 8.5.1, uses the two 
  bridging hydrogens as one set for group orbitals and the four terminal hydrogens as  
  another set; these sets are shown in Figure 8.11.  The representations for these sets can be  
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reduced as follows: 
 

The bridging hydrogens have  = Ag + B3u.   
 
The boron s orbitals have  = Ag + B1u. 
 
The px orbitals (in the plane of the bridging hydrogens) have  = B2g + B3u. 
 
The pz orbitals (perpendicular to the plane of the bridging hydrogens) have  
 = Ag + B1u.   
 

The boron Ag and B3u orbitals combine with the bridging hydrogen orbitals, 
resulting in two bonding and two antibonding orbitals.  Electron pairs in each of the  
bonding orbitals result in two bonds holding the molecule together through hydrogen  
bridges. 

 
 b. Examples of diborane molecular orbitals are in Figure 8.14. 


