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CHAPTER 4:  SYMMETRY AND GROUP THEORY 
 
4.1 a. Ethane in the staggered conformation has 2 C3 axes (the C–C line), 3 perpendicular C2 

axes bisecting the C–C line, in the plane of the two C’s and the H’s on opposite sides of 
the two C’s.  No h, 3d, i, S6. D3d.  

 
 b. Ethane in eclipsed conformation has two C3 axes (the C–C line), three perpendicular C2 

axes bisecting the C–C line, in the plane of the two C’s and the H’s on the same side of 
the two C’s.  Mirror planes include h and 3d. D3h. 

 
 c.   Chloroethane in the staggered conformation has only one mirror plane, through both C’s, 

the Cl, and the opposite H on the other C. Cs. 
 

d.  1,2-dichloroethane in the trans conformation has a C2 axis perpendicular to the 
C–C bond and perpendicular to the plane of both Cl’s and both C’s, a h plane through 
both Cl’s and both C’s, and an inversion center. C2h. 
 

4.2 a. Ethylene is a planar molecule, with C2 axes through the C’s and perpendicular to the C–C 
bond both in the plane of the molecule and perpendicular to it.  It also has a h plane and 
two d planes (arbitrarily assigned). D2h. 

 
 b. Chloroethylene is also a planar molecule, with the only symmetry element the mirror 

plane of the molecule. Cs. 
 

c.  1,1-dichloroethylene has a C2 axis coincident with the C–C bond, and two mirror planes, 
one the plane of the molecule and one perpendicular to the plane of the molecule through 
both C’s. C2v. 

 

cis-1,2-dichloroethylene has a C2 axis perpendicular to the C–C bond, and in the plane of 
the molecule, two mirror planes (one the plane of the molecule and one perpendicular to 
the plane of the molecule and perpendicular to the C–C bond). C2v. 

 

trans-1,2-dichloroethylene has a C2 axis perpendicular to the C–C bond and 
perpendicular to the plane of the molecule, a mirror plane in the plane of the molecule, 
and an inversion center. C2h. 

  
4.3 a. Acetylene has a C axis through all four atoms, an infinite number of perpendicular 
  C2 axes, a h plane, and an infinite number of d planes through all four atoms. Dh. 
 
 b. Fluoroacetylene has only the C axis through all four atoms and an infinite number of  
  mirror planes, also through all four atoms. Cv. 
 
 c. Methylacetylene has a C3 axis through the carbons and three v planes, each  
  including one hydrogen and all three C’s. C3v. 
 
 d. 3-Chloropropene (assuming a rigid molecule, no rotation around the C–C bond) has 
  no rotation axes and only one mirror plane through Cl and all three C atoms. Cs. 
 
 e. Phenylacetylene (again assuming no internal rotation) has a C2 axis down the long axis  

of the molecule and two mirror planes, one the plane of the benzene ring and the other 
perpendicular to it. C2v  
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4.4 a. Napthalene has three perpendicular C2 axes, and a horizontal mirror plane (regardless 
  of which C2 is taken as the principal axis), making it a D2h molecule. 
 
 b. 1,8-dichloronaphthalene has only one C2 axis, the C–C bond joining the two rings, and 
  two mirror planes, making it a C2v molecule. 
 
 c. 1,5-dichloronaphthalene has one C2 axis perpendicular to the plane of the molecule, a 
  horizontal mirror plane, and an inversion center; overall, C2h. 
 
 d. 1,2-dichloronaphthalene has only the mirror plane of the molecule, and is a Cs molecule. 
 
4.5 a. 1,1-dichloroferrocene has a C2 axis parallel to the rings, perpendicular to the Cl–Fe–Cl  
  h mirror plane.  It also has an inversion center. C2h. 
 
 b. Dibenzenechromium has collinear C6, C3, and C2 axes perpendicular to the rings, six  
  perpendicular C2 axes and a h plane, making it a D6h molecule.  It also has three v  

and three d  planes, S3 and S6 axes, and an inversion center. 
 
 c. Benzenebiphenylchromium has a mirror plane through the Cr and the biphenyl bridge 

bond and no other symmetry elements, so it is a Cs molecule. 
 
 d. H3O

+ has the same symmetry as NH3: a C3 axis, and three v planes for a C3v molecule. 
 
 e. O2F2 has a C2 axis perpendicular to the O–O bond and perpendicular to a line connecting  
  the fluorines.  With no other symmetry elements, it is a C2 molecule. 
 
 f. Formaldehyde has a C2 axis collinear with the C=O bond, a mirror plane including all the 
  atoms, and another perpendicular to the first and including the C and O atoms. C2v. 
 
 g. S8 has C4 and C2 axes perpendicular to the average plane of the ring, four C2 axes through 
  opposite bonds, and four mirror planes perpendicular to the ring, each including two S 
  atoms. D4d. 
 
 h. Borazine has a C3 axis perpendicular to the plane of the ring, three perpendicular C2 axes, 
  and a horizontal mirror plane. D3h. 
 
 i. Tris(oxalato)chromate(III) has a C3 axis and three perpendicular C2 axes, each splitting 
  a C–C bond and passing through the Cr. D3. 
 
 j. A tennis ball has three perpendicular C2 axes (one through the narrow portions of each  
  segment, the others through the seams) and two mirror planes including the first rotation 
  axis. D2d. 

 
4.6 a. Cyclohexane in the chair conformation has a C3 axis perpendicular to the average plane  
  of the ring, three perpendicular C2 axes between the carbons, and three v planes, each  
  including the C3 axis and one of the C2 axes. D3d. 
 

 b. Tetrachloroallene has three perpendicular C2 axes, one collinear with the double bonds 
  and the other two at 45° to the Cl—C—Cl planes.  It also has two v planes, one defined 
  by each of the Cl–C–Cl groups.  Overall, D2d.  (Note that the ends of tetrachlorallene are  

staggered.) 
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c. The sulfate ion is tetrahedral. Td. 
  
 d. Most snowflakes have hexagonal symmetry (Figure 4.2), and have collinear C6, C3, and  

C2 axes, six perpendicular C2 axes, and a horizontal mirror plane.  Overall, D6h.  (For high  
quality images of snowflakes, including some that have different shapes, see K. G.  
Libbrecht, Snowflakes, Voyageur Press, Minneapolis, MN, 2008.) 
 

 e. Diborane has three perpendicular C2 axes and three perpendicular mirror planes. D2h. 
 
 f. 1,3,5-tribromobenzene has a C3 axis perpendicular to the plane of the ring, three  
  perpendicular C2 axes, and a horizontal mirror plane. D3h. 
 
  1,2,3-tribromobenzene has a C2 axis through the middle Br and two perpendicular 
  mirror planes that include this axis. C2v 
   
  1,2,4-tribromobenzene has only the plane of the ring as a mirror plane. Cs. 
 
 g. A tetrahedron inscribed in a cube has Td symmetry (see Figure 4.6). 
 
 h. The left and right ends of B3H8 are staggered with respect to each other.  There is a  
  C2 axis through the borons.  In addition, there are two planes of symmetry, each  
  containing four H atoms, and two C2 axes between these planes and perpendicular to 
  the original C2.  The point group is D2d. 
 

i. A mountain swallowtail butterfly has only a mirror that cuts through the head, thorax, and 
abdomen. Cs 

 
j. The Golden Gate Bridge has a C2 axis and two perpendicular mirror planes that include 

this axis. C2v 
 
4.7 a. A sheet of typing paper has three perpendicular C2 axes and three perpendicular mirror 
  planes. D2h. 
 
 b. An Erlenmeyer flask has an infinite-fold rotation axis and an infinite number of v 

 planes, Cv. 
 
 c. A screw has no symmetry operations other than the identity, for a C1 classification. 
 
 d. The number 96 (with the correct type font) has a C2 axis perpendicular to the plane 
  of the paper, making it C2h. 
 
 e. Your choice—the list is too long to attempt to answer it here. 
 
 f. A pair of eyeglasses has only a vertical mirror plane.  Cs. 
 
 g. A five-pointed star has a C5 axis, five perpendicular C2 axes, one horizontal and five  
  vertical mirror planes. D5h. 
 
 h. A fork has only a mirror plane. Cs. 
 
 i. Wilkins Micawber has no symmetry operation other than the identity.  C1. 
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 j. A metal washer has a C axis, an infinite number of perpendicular C2 axes, an infinite 
number of v mirror planes, and a horizontal mirror plane. Dh. 
 

4.8 a. D2h    f. C3 
 
 b. D4h  (note the four knobs) g. C2h 

 

 c. Cs    h. C8v 
 
 d. C2v    i. Dh 

 
e. C6v    j. C3v 
 

 
4.9 a. D3h     f. Cs (note holes) 
 
 b. D4h    g. C1 
 
 c. Cs    h. C3v 
 
 d. C3    i. Dh 
 
 e. C2v    j. C1 

 
 
4.10 Hands (of identical twins):  C2  Baseball:  D2d      Atomium:  C3v     
 
 Eiffel Tower:  C4v Dominoes:   6 × 6:  C2v 3 × 3:  C2 5 × 4:  Cs 

 

 Bicycle wheel: The wheel shown has 32 spokes.  The point group assignment depends on how  
the pairs of spokes (attached to both the front and back of the hub) connect with the rim.  If the 
pairs alternate with respect to their side of attachment, the point group is D8d.  Other arrangements 
are possible, and different ways in which the spokes cross can affect the point group assignment; 
observing an actual bicycle wheel is recommended.  (If the crooked valve is included, there is no 
symmetry, and the point group is a much less interesting C1.) 

  
4.11 a. Problem 3.41*: a.  VOCl3:  C3v  b.  PCl3:  C3v  c.  SOF4:  C2v 

 
    d.  SO3:  D3h  e.  ICl3:  C2v  f.  SF6:  Oh 

 
    g.  IF7: D5h  h.  XeO2F4:  D4h  i.  CF2Cl2:  C2v 

 
    j.  P4O6:  Td 

 

 

 
 
 

                                                        
* Incorrectly cited as problem 4.30 in first printing of text. 
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 b. Problem 3.42*: a.  PH3:  C3v  b.  H2Se:  C2v  c.  SeF4:  C2v 

 

    d.  PF5:  D3h  e.  IF5: C4v  f.  XeO3:  C3v 

 

    g.  BF2Cl:  C2v  h.  SnCl2:  C2v  i.  KrF2:  Dh 

 

    j.  IO2F5
2–:  D5h 

 

4.12 a. Figure 3.8: a.  CO2:  Dh  b.  SO3:  D3h  c.  CH4:  Td 
  
    d.  PCl5:  D3h  e.  SF6:   Oh  f.  IF7:  D5h 
     
    g.  TaF8

3–:  D4d      
 

 b. Figure 3.15: a. CO2:  Dh  b. COF2:  C2v  c. NO2
–
:  C2v 

 
    d. SO3:   D3h  e. SNF3:  C3v  f. SO2Cl2:  C2v 
 
    g. XeO3:  C3v  h. SO4

2–:  Td  i. SOF4:  C2v 
 
    j. ClO2F3:  C2v  k. XeO3F2:  D3h  l. IOF5:  C4v 
 
4.13 a. px has Cv symmetry.  (Ignoring the difference in sign between the two lobes, the point  

group would be Dh.) 
 

 b. dxy has D2h symmetry.  (Ignoring the signs, the point group would be D4h.) 
 

 c. dx2–y2 has D2h symmetry.  (Ignoring the signs, the point group would be D4h.) 
 

 d. dz2 has Dh symmetry. 
 
 e. fxyz has Td symmetry. 

 
4.14 a. The superimposed octahedron and cube  

show the matching symmetry elements. 

 

The descriptions below are for the  
elements of a cube; each element also  
applies to the octahedron. 
 

E Every object has an identity  
operation. 
 

  8C3 Diagonals through opposite  
corners of the cube are C3 axes. 
 

  6C2 Lines bisecting opposite edges are C2 axes. 
 

  6C4 Lines through the centers of opposite faces are C4 axes.  Although there are only  
three such lines,  there are six axes, counting the C4

3 operations. 
 

  3C2 (=C4
2) The lines through the centers of opposite faces are C4 axes as well as  

C2 axes. 
                                                        
* Incorrectly cited as problem 3.41 in first printing of text. 

C3

C2, C4
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  i The center of the cube is the inversion center. 
 

  6S4  The C4 axes are also S4 axes. 
 

  8S6 The C3 axes are also S6 axes. 
 

  3h These mirror planes are parallel to the faces of the cube. 
 

  6d These mirror planes are through two opposite edges.  
   
 b. Oh 
 
 c. O 
  
4.15 a.  There are three possible orientations of the two blue faces.  

 

If the blue faces are opposite each other, a C3 axis connects the centers of the 
blue faces. This axis has 3 perpendicular C2 axes, and contains three vertical 
mirror places (D3d).   
 

If the blue faces share one vertex of the octahedron, a C2 axis includes this 
vertex, and this axis includes two vertical mirror planes (C2v).  
 

The third possibility is for the blue faces to share an edge of the octahedron. In 
this case, a C2 axis bisects this shared edge, and includes two vertical mirror 
planes (C2v). 

 
b.  There are three unique orientations of the three blue faces. 

 

If one blue face is arranged to form edges with each of the two remaining blue 
faces, the only symmetry operations are identity and a single mirror plane (Cs).  
 

If the three blue faces are arranged such that a single blue face shares an edge 
with one blue face, but only a vertex with the other blue face, the only symmetry 
operation is a mirror plane that passes through the center of the blue faces, and 
the point group is Cs.  
 

If the three blue faces each share an edge with the same yellow face, a C3 axis 
emerges from the center of this yellow face, and this axis includes three vertical 
mirror planes (C3v). 

 

c.   If there are four different colors, and each pair of opposite faces has the identical color,  
the only symmetry operations are identity and inversion (Ci).  

 
4.16 Four point groups are represented by the symbols of the chemical elements.  Most  

symbols have a single mirror in the plane of the symbol (Cs), for example, Cs!  Two 
symbols have D2h symmetry (H, I), and two more (�, S) have C2h. Seven exhibit C2v 
symmetry (B, C, K, V, Y, W, U).  In some cases, the choice of font may affect the point 
group.  For example, the symbol for nitrogen may have C2h in a sans serif font (�) but 
otherwise Cs (N).  The symbol of oxygen has D∞h symmetry if shown as a circle but D2h 

if oval. 
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4.17 a. on-deck circle Dh   e. home plate C2v          

 b. batter’s box D2h   f. baseball D2d (see Figure 4.1) 
 
 c. cap Cs    g. pitcher  C1 
 
 d. bat Cv 
 
  

4.18 a. D2h  d. D4h  g. D2h 

 
 b. C2v  e. C5h  h. D4h 

 
 c. C2v  f. C2v  i. C2 
 

4.19 SNF3                            

S

N

FF

F
                           

N F1

F2

F3

x

y

(top view)
 

 
Symmetry Operations: 

 

      

N F1

F2

F3                                      

N

F1

F2

F3

                                      

N F1

F2

F3

 
         after E                         after C3                          after v (xz) 

  
Matrix Representations (reducible): 
 

 E: 

1 0 0

0 1 0

0 0 1

















 C3:  

cos
2
3

 sin
2
3

0

sin
2
3

cos
2
3

0

0 0 1

























–
1

2
–

3

2
0

3

2
–

1

2
0

0 0 1

























  v(xz): 

1 0 0

0 1 0

0 0 1

















 

 

Characters of Matrix Representations: 
 

               3         0                        1 
 
 
       (continued on next page) 
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Block Diagonalized Matrices: 

                                                                         

 

 Irreducible Representations: 
 

  E 2 C3 3v Coordinates Used 
  2 –1  0  (x, y) 
  1   1  1 z 
 

 Character Table: 
 

C3v  E 2 C3 3v Matching Functions   
A1  1   1   1 z x2 + y2, z2 
A2  1   1 –1 Rz  
E  2  –1   0 (x, y), (Rx, Ry) (x2 – y2, xy)(xz, yz) 

 
 

 
 
 
4.20 a. C2h molecules have E, C2, i, and h operations.  
 
 b.           E:               C2:                             i:                            h:    

              

1 0 0
0 1 0
0 0 1

















    

1 0 0
0 1 0
0 0 1
















    

1 0 0
0 1 0
0 0 1
















    

1 0 0
0 1 0
0 0 1

















 

          
c. These matrices can be block diagonalized into three 1 × 1 matrices, with the  
 representations shown in the table. 
 
  (E) (C2) (i) (h) 
 Bu 1 –1 –1   1 from the x and y coefficients 
 Au 1   1 –1 –1 from the z coefficients 
  
 The total is  = 2Bu +Au. 

 
 d. Multiplying Bu and Au: 
  1 × 1 + (–1) × 1 + (–1) × (–1) + 1 × (–1) = 0, proving they are orthogonal. 
 
 
  
  
 

C C

Cl

H

H

Cl
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4.21 a. D2h molecules have E, C2(z), C2(y), C2(x), i, (xy), (xz), and 
   (yz) operations.          
 

 b. E:  

1 0 0
0 1 0
0 0 1

















 C2(z): 

1 0 0
0 1 0
0 0 1
















 C2(y): 

1 0 0
0 1 0
0 0 1

















 

 

        C2(x):
1 0 0
0 1 0
0 0 1
















          i:  

1 0 0
0 1 0
0 0 1
















 (xy):  

1 0 0
0 1 0
0 0 1

















 

 

                 (xz): 
1 0 0
0 1 0
0 0 1
















 (yz): 

1 0 0
0 1 0
0 0 1

















 

 

 c. 
 E C2(z) C2(y) C2(x) i (xy) (xz) (yz) 

 3 –1 –1 –1 –3 1 1 1 
d. 1 1 –1 –1   1 –1   1   1 –1 matching B3u     

  2 1 –1   1 –1 –1   1 –1   1 matching B2u  
  3 1   1 –1 –1 –1 –1   1   1 matching B1u 
 

e. 1 × 2 = 1 × 1 + (–1) × (–1) + (–1) × 1 + 1 × (–1) + (–1) × (–1) + 1 × 1  
+ 1 × (–1) + (–1) × 1 = 0 
 
1 × 3 = 1 × 1 + (–1) × 1 + (–1) × (–1) + 1 × (–1) + (–1) × (–1) + 1 × (–1)  
+ 1 × 1 + (–1) × 1 = 0 

   

2 × 3 = 1 × 1 + (–1) × 1 + 1 × (–1) + (–1) × (–1) + (–1) × (–1) + 1 × (–1)  
+ (–1) × 1 + 1 × 1 = 0  
 

4.22 a. h = 8 (the total number of symmetry operations) 
 
 b. A1 × E = 1 × 2 + 2 × 1 × 0 +1 × (–2) + 2 × 1 × 0 + 2 × 1 × 0 = 0 
  A2 × E = 1 × 2 + 2 × 1 × 0 +1 × (–2) + 2 × (–1) × 0 + 2 × (–1) × 0 = 0 
  B1 × E = 1 × 2 + 2 × (–1) × 0 +1 × (–2) + 2 × 1 × 0 + 2 × (–1) × 0 = 0 
  B2 × E = 1 × 2 + 2 × (–1) × 0 +1 × (–2) + 2 × (–1) × 0 + 2 × 1 × 0 = 0 
 
 c. E:  4 + 2 × 0 + 4 + 2 × 0 + 2 × 0 = 8 
  A1: 1 + 2 × 1 + 1 + 2 × 1 + 2 × 1 = 8 
  A2: 1 + 2 × 1 + 1 + 2 × 1 + 2 × 1 = 8 

B1: 1 + 2 × 1 + 1 + 2 × 1 + 2 × 1 = 8 
  B2: 1 + 2 × 1 + 1 + 2 × 1 + 2 × 1 = 8 

C C

H

H

H

H
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 d. 1 = 2A1 + B1 + B2 + E: 
 
  A1: 1/8[1 × 6 + 2 × 1 × 0 + 1 × 2 + 2 × 1 × 2 + 2 × 1 × 2] = 2 
  A2: 1/8[1 × 6 + 2 × 1 × 0 + 1 × 2 + 2 × (–1) × 2 + 2 × (–1) × 2] = 0 
  B1: 1/8[1 × 6 + 2 × (–1) × 0 + 1 × 2 + 2 × 1 × 2 + 2 × (–1) × 2] = 1 
  B2: 1/8[1 × 6 + 2 × (–1) × 0 + 1 × 2 + 2 × (–1) × 2 + 2 × 1 × 2] = 1 
  E:  1/8[2 × 6 + 2 × 0 × 0 + (–2) × 2 + 2 × 0 × 2 + 2 × 0 × 2] = 1 
 
  2 = 3 A1 + 2A2 + B1: 
 

  A1: 1/8[1 × 6 + 2 × 1 × 4 + 1 × 6 + 2 × 1 × 2 + 2 × 1 × 0] = 3 
  A2: 1/8[1 × 6 + 2 × 1 × 4 + 1 × 6 + 2 × (–1) × 2 + 2 × (–1) × 0] = 2 
  B1: 1/8[1 × 6 + 2 × (–1) × 4 + 1 × 6 + 2 × 1 × 2 + 2 × (–1) × 0] = 1 
  B2: 1/8[1 × 6 + 2 × (–1) × 4 + 1 × 6 + 2 × (–1) × 2 + 2 × 1 × 0] = 0 
  E:  1/8[2 × 6 + 2 × 0 × 4 + (–2) × 6 + 2 × 0 × 2 + 2 × 0 × 0] = 0 
 
4.23 C3v 

 1 = 3A1 + A2 + E: 
 
 A1: 1/6[1 × 6 + 2 × 1 × 3 + 3 × 1 × 2] = 3 
 A2: 1/6[1 × 6 + 2 × 1 × 3 + 3 × (–1) × 2] = 1 
 E:  1/6[2 × 6 + 2 × (–1) × 3 + 3 × 0 × 2] = 1 
 
 2 = A2 + E: 
 
 A1: 1/6[1 × 5 + 2 × 1 × (–1) + 3 × 1 × (–1)] = 0 

A2: 1/6[1 × 5 + 2 × 1 × (–1) + 3 × (–1) × (–1)] = 1 
E:  1/6[2 × 5 + 2 × (–1) × (–1) + 3 × 0 × (–1)] = 2 
 
Oh 
3 = A1g + Eg + T1u: 
 
A1g: 1/48[6 + 0 + 0 + 12 + 6 + 0 + 0 + 0 + 12 + 12] = 1 
A2g: 1/48[6 + 0 + 0 – 12 + 6 + 0 + 0 + 0 + 12 – 12] = 0 
Eg:  1/48[12 + 0 + 0 + 0 + 12 + 0 + 0 + 0 + 24 + 0] = 1 
T1g: 1/48[18 + 0 + 0 + 12 – 6 + 0 + 0 + 0 – 12 – 12] = 0 
T2g: 1/48[18 + 0 + 0 – 12 – 6 + 0 + 0 + 0 – 12 + 12] = 0 
A1u: 1/48[6 + 0 + 0 + 12 + 6 + 0 + 0 + 0 – 12 – 12] = 0 
A2u: 1/48[6 + 0 + 0 – 12 + 6 + 0 + 0 + 0 – 12 + 12] = 0 
Eu:  1/48[12 + 0 + 0 + 0 + 12 + 0 + 0 + 0 – 24 + 0] = 0 
T1u: 1/48[18 + 0 + 0 + 12 – 6 + 0 + 0 + 0 + 12 + 12] = 1 
T2u: 1/48[18 + 0 + 0 – 12 – 6 + 0 + 0 + 0 + 12 – 12] = 0 
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4.24 The dxy characters match the characters  The dx2-y2 characters match the characters 
 of the B2g representation:   of the B1g representation: 
 

             

E

C4

C2

C2

C2

i

S4

h

v

d

1

1

1

1

1

1

–1

–1

–1

–1

dxy        

x

y

dxy

                  

1

1

1

1

1

1

–1

–1

–1

–1

E

C4

C2

C2

C2

i

S4

h

v

d

                       dx2–y2          

x

y

  dx2–y2

 
 
4.25 Chiral:  4.5:  O2F2, [Cr(C2O4)3]

3–   4.6:  none  4.7:  screw, Wilkins Micawber   4.8:  recycle  
symbol  4.9:  set of three wind turbine blades, Flying Mercury sculpture, coiled  
spring 

 
4.26 a.   Point group:  C4v                    
  

C4v E 2C4 C2 2v 2d  

 18 2 –2 4 2  
A1 1 1 1 1 1 z 
A2 1 1 1 –1 –1 Rz 
B1 1 –1 1 1 –1  
B2 1 –1 1 –1 1  
E 2 0 –2 0 0 (x, y), (Rx, Ry) 

 
 b.  = 4 A1 + A2 + 2B1 + B2 + 5E 

 
c. Translation:  A1 + E    (match x, y, and z) 

  Rotation:  A2 + E    (match Rx, Ry, and Rz) 
  Vibration:  all that remain:  3 A1 + 2B1 + B2 + 3E 
 

   
d. The character for each symmetry operation for the Xe–O stretch is +1.  

This corresponds to the A1 irreducible representation, which matches 
the function z and is therefore IR-active. 

 
 

Xe
F F

F F

O

Xe

O

F F

F F
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4.27 For SF6, the axes of the sulfur should point at three of the fluorines.  The fluorine 
axes can be chosen in any way, as long as one from each atom is directed toward the sulfur atom. 

 There are seven atoms with three axes each, for a total of 21. 
 

  
 Reduction of  gives  = 3T1u + T1g + A1g + Eg + T2g + T2u. T1u accounts for translation and also 
 infrared active vibrational modes. T1g is rotation.  The remainder are infrared-inactive vibrations.  
 
 
4.28 a. cis-Fe(CO)4Cl2 has C2v symmetry.   
 

The vectors for CO stretching have the representation : 
   

  
 
 
  
 
 
 
 
   n(A1) = 1/4[4 × 1 + 0 × 1 + 2 × 1 + 2 × 1] = 2 
   n(A2) = 1/4[4 × 1 + 0 × 1 + 2 × (–1) + 2 × (–1)] = 0 
   n(B1) = 1/4[4 × 1 + 0 × (–1) + 2 × 1 + 2 × (–1)] = 1 
   n(B2) = 1/4[4 × 1 + 0 × (–1) + 2 × (–1) + 2 × 1] = 1 
    = 2 A1 + B1 + B2, all four IR active. 
 
 
 

 
 
b. trans-Fe(CO)4Cl2 has D4h symmetry. 
 

D4h E 2C4 C2 2C2 2C2 i 2S4 h 2v 2d  

 4 0 0 2 0 0 0 4 2 0  
A2u 1 1 1 –1 –1 –1 –1 –1 1 1 z 
Eu 2 0 –2 0 0 –2 0 2 0 0 (x,y) 

 
 

Oh E 8C3 6C2 6C4 3C2 i 6S4 8S6 3h 6d   

 21 0 –1 3 –3 –3 –1 0 5 3   
T1u 3 0 –1 1 –1 –3 –1 0 1 1 (x,y,z)  
T1g 3 0 –1 1 –1 3 1 0 –1 –1 (Rx, Ry, Rz)  
A1g 1 1 1 1 1 1 1 1 1 1   
A2u 1 1 –1 –1 1 1 –1 1 1 –1   
Eg 2 –1 0 0 2 2 0 –1 2 0  (2z2 – x2 – y2, 
            x2 – y2) 

T2u 3 0 1 –1 –1 –3 1 0 1 –1   
T2g 3 0 1 –1 –1 3 –1 0 –1 1  (xy, xz, yz) 

C2v E C2 v(xz) v(yz)  
 4 0 2 2  
A1 1 1 1 1 z 
A2 1 1 –1 –1  
B1 1 –1 1 –1 x 
B2 1 –1 –1 1 y 

Fe

C

C

Cl C
Cl C O

O

O

O

Fe

Cl

Cl

C C
C C OO

O O
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 Omitting the operations that have zeroes in : 
 

n(A2u) = 1/16[4 × 1 + 2 × 2 × (–1) + 4 × (–1) + 2 × 2 × 1] = 0 
n(Eu) = 1/16[4 × 2 + 2 × 2 × 0 + 4 × 2 + 2 × 2 × 0] = 1  (IR active) 

 

Note: In checking for IR-active bands, it is only necessary to check the  
irreducible representations having the same symmetry as x, y, or z, or a  
combination of them. 

 

 c. Fe(CO)5 has D3h symmetry.  
 

The vectors for C–O stretching have the following representation : 
 

D3h E 2C3 3C2 h 2S3 3v  

 5 2 1 3 0 3  

E 2 –1 0 2 –1 0 (x, y) 
A2 1 1 –1 –1 –1 1 z 

 
n(E) = 1/12 [ (5 × 2) + (2 × 2 × –1) +  (3 × 2)] = 1 

  n(A2) = 1/12 [(5 × 1) + (2 × 2 × 1) +  (3 × 1 × –1) + (3 × –1) + (3 × 3 × 1)] = 1 
 

  There are two bands, one matching Eand one matching A2.  These are the only  
irreducible representations that match the coordinates x, y, and z. 

 

4.29 In 4.28a, the symmetries of the CO stretching vibrations of cis-Fe(CO)4Cl2 (C2v symmetry) are 
determined as 2 A1 + B1 + B2. Each of these representations matches Raman-active functions:  A1 
(x2, y2, z2) ; A2 (xy), B1

 (xz); and B2 (yz), so all are Raman-active. 
 

 In 4.28b, the symmetries of the CO stretching vibrations of trans-Fe(CO)4Cl2 (D4h symmetry) are 
A1g + B1g + Eu. Only A1g (x2 + y2, z2) and B1g (x2 – y2) match Raman active functions; this complex 
exhibits two Raman-active CO stretching vibrations. 

 

 In 4.28c, the symmetries of the CO stretching vibrations of Fe(CO)5 (D3h symmetry) are 2 A1 + 
E + A2. Only A1 (x2 + y2, z2) and E(x2 – y2, xy) match Raman-active functions; this complex 
exhibits four Raman-active CO stretching vibrations. 

 
4.30 a. The point group is C2h. 
 

b. Using the Si–I bond vectors as a basis generates the representation: 
 

C2h E C2 i h   

 4 0 0 0   
Ag 1 1 1 1  x2 + y2, z2 
Bg 1 –1 1 –1  xz, yz 
Au 1 1 –1 –1 z  
Bu 1 –1 –1 1 x, y  

 
    = Ag + Bg + Au + Bu  
 

  The Au and Bu vibrations are infrared active. 
 

 c. The Ag and Bg vibrations are Raman active. 

Fe

C

C

C
C

CO
O

O

O

O
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4.31 trans isomer (D4h):                   cis isomer (C2v):       

 
  

 The simplest approach is to consider if the number of infrared-active I–O stretches is different for  
these structures.  (Alternatively, one could also determine the number of IR-active I–F stretches, a  
slightly more complicated task.) 
 

trans: 
 

D4h E 2C4 C2 C2 C2 i 2S4 h 2v 2d  

 2 2 2 0 0 0 0 0 2 2  
A1g 1 1 1 1 1 1 1 1 1 1  
A2u 1 1 1 –1 –1 –1 –1 –1 1 1 z 

 
There is only a single IR-active I–O stretch (the antisymmetric stretch), A2u. 
 

cis: 
C2v E C2  (xz)  (yz)  

 2 0 2 0  
 A1 1 1 1 1 z 
B1 1 –1 1 –1 x 

 
 There are two IR-active I–O stretches, the A1 and B1 (symmetric and antisymmetric).  Infrared  

spectra should therefore be able to distinguish between these isomers.  (Reversing the x and y  
axes would give A1 + B2.  Because B2 matches y, it would also represent an IR-active vibration.) 
 

Because these isomers would give different numbers of IR-active absorptions, infrared spectra  
should be able to distinguish between them.  The reference provides detailed IR data. 

 
4.32 a.  One  way to deduce the number of Raman-active vibrations of AsP3 is to first  

determine the symmetries of all the degrees of freedom. This complex exhibits  
C3  symmetry, with the C3 axis emerging from the As atom. The (E) is 12; the  
x, y, and z axes of the four atoms do not shift when the identity operation is carried out.  
Only the As atom contributes to the character of the C3 transformation matrix; the P  
atoms shift during rotation about the C3 axis. The general transformation matrix for  
rotation about the z axis (Section 4.3.3) affords 0 as (C3) for The As atom and  
one P atom do not shift when a v reflection is carried out, and (v) = 2 (see the v(xz)  

transformation matrix in Section 4.33 for the nitrogen atom of NH3 as a model of how the  
two unshifted atoms of AsP3 will contribute to the character of the v  transformation  
matrix). 

 
C3v E C3 v   

 12 0 2   
  A1 1 1 1 z x2 + y2, z2 
A2 1 1 –1 Rx  
E 2 –1 0 (x, y), (Rx, Ry) (x2 – y2, xy), (xz, yz) 

P
P

As

P
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Reduction of the reducible representation affords 3 A1 + A2 + 4 E. 

 

On the basis of the character table, the translational modes of AsP3 have the  
symmetries A1 + E, and the rotational modes have the symmetries A2 + E. The six  
vibrational modes of AsP3 subsequently have the symmetries 2 A1 + 2 E. These  
vibrational modes are Raman-active, and four absorptions are expected (and observed)  
since the sets of E modes are degenerate. B. M. Cossairt, M.C. Diawara, C. C. Cummins,  
Science 2009, 323, 602 assigns the bands as: 313 (a1), 345 (e), 428 (a1), 557 (e) cm-1.  
 

Alternatively, the set of six bonds may be selected as the basis for a representation  
focused specifically on stretches of these bonds.  This approach generates the following  
representation: 
 
C3v E C3 v   

 6 0 2   
 

 This representation reduces to 2 A1 + 2 E, the same result as obtained by first considering  
all degrees of freedom, then subtracting the translational and rotational modes. 

 
b.  As2P2 exhibits C2v symmetry, and (like AsP3) will have six vibrational modes  

(3N – 6).  Inspection of the C2v character table indicates that all vibrational  
modes will be Raman active. Since each irreducible representation has a 
dimension of 1, the number of Raman absorptions expected is 6 (that is, there will be no 
degenerate vibrational modes). 

 

This prediction can be confirmed via deduction of the symmetries of the vibrational modes. 
As in part a, we will first determine the symmetries of all the degrees of freedom. The (E) 
of the transformation matrix is 12. In As2P2, the C2 axis does not pass through any atoms, 
and all four atoms shift upon rotation; (C2)  = 0. Two atoms do not shift upon reflection 
through each of the v planes. The contribution to the character of the transformation matrix 
for each of these unshifted atoms is 1, and  (v(xz)) = (v(yz)) = 2. 

 
 

 
 
   
 
 
 

 
Reduction of the reducible representation affords 4 A1 + 2 A2 + 3 B1 + 3 B2. 

 

On the basis of the above character table, the translational modes of As2P2 have the 
symmetries A1 + B1 + B2, and the rotational modes have the symmetries A2 + B1 + B2. The 
six anticipated Raman-active vibrational modes of As2P2 subsequently have the 
symmetries 3 A1 + A2 + B1 + B2. 

 
                                                          (continued on next page) 

 
 
 
 

C2v E C2 v(xz) v(yz)   
 12 0 2 2   
A1 1 1 1 1 z x2, y2, z2 
A2 1 1 –1 –1 Rz xy 
B1 1 –1 1 –1 x, Ry xz 
B2 1 –1 –1 1 y, Rx yz 

P
P

As

As
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As in part a, an alternative approach is to select the set of six bonds as the basis for a  
representation focused specifically on stretching vibrations.  This approach generates the 
following representation: 
 
 
 
 

 
This representation reduces to 3 A1 + A2 + B1 + B2, the same result as obtained by first 
considering all degrees of freedom, then subtracting the translational and rotational 
modes. 

 
c.  The issue here is whether or not P4 (Td) exhibits 4 Raman-active vibrations as 

does AsP3. We will first determine the symmetries of all the degrees of 
freedom. The (E) of the transformation matrix is 12. Only one P4 atom is 
fixed upon rotation about each C3 axis; (C3)  = 0. All four atoms are shifted upon 
application of the C2 and S4 axes; (C2) = (S4) = 0. Two atoms do not shift upon 
reflection through each of the d  planes. The contribution to the character of the 
transformation matrix for each of these unshifted atoms is 1, and (d) = 2. 

 

 
Reduction of the reducible representation affords A1 + E + T1 + 2 T2. Since the 
symmetries of the translational modes and rotational modes are T2 and T1, respectively, 
the symmetries of the vibrational modes are A1 + E + T2, all of these modes are Raman-
active so three Raman absorptions are expected for P4, and P4 could potentially be 
distinguished from AsP3 solely on the basis of the number of Raman absorptions. 

 

The alternative approach, using the set of six P–P bonds as the basis for a representation  
focused specifically on bond stretches, generates the following representation: 
 

 
This representation reduces to A1 + E + T2, the same result as obtained by first 
considering all degrees of freedom, then subtracting the translational and rotational 
modes. 

 
 
 
 
 
 

C2v E C2 v(xz) v(yz)   
 6 2 2 2   

Td E 8C3 3C2 6 S4 6d   
 12 0 0 0 2   
A1 1 1 1 1 1  x2 + y2 + z2 
A2 1 1 1 –1 –1   
E 2 –1 2 0 0  (2z2 – x2 – y2, x2 – y2)
T1 3 0 –1 1 –1 (Rx, Ry, Rz)  
T2 3 0 –1 –1 1 (x, y, z) (xy, xz, yz) 

Td E 8C3 3C2 6 S4 6d   
 6 0 2 0 2   

P
P

P

P
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4.33 The possible isomers are as follows, with the triphenylphosphine ligand in either the axial (A) or 
equatorial (B) sites.  

OC Fe

CO

CO

Ph3P

CO

OC Fe

PPh3

CO

CO

CO

(A)     C3v (B)     C2v  
Note that the triphenylphosphine ligand is approximated as a simple L ligand for the sake of the 
point group determination. Rotation about the Fe–P bond in solution is expected to render the 
arrangement of the phenyl rings unimportant in approximating the symmetry of these isomers in 
solution. The impact of the phenyl rings would likely be manifest in the IR ν(CO) spectra of these 
isomers in the solid-state. 
 
For A, we consider each CO bond as a vector to deduce the expected number of carbonyl 
stretching modes. The irreducible representation is as follows: 
 

C3v E C3 v   

 4 1 2   
  A1 1 1 1 z x2 + y2, z2 
A2 1 1 –1 Rx  
E 2 –1 0 (x, y), (Rx, Ry) (x2 – y2, xy), (xz, yz) 

 
Reduction of the reducible representation affords 2 A1 + E. These stretching modes are IR-active 
and three ν(CO) absorptions are expected for A. 
 
For B, a similar analysis affords the following irreducible representation: 
 
 

 
 
 
 
 

 
 
Reduction of the reducible representation affords 2 A1 + B1 + B2. These stretching modes are IR-
active, and four ν(CO) absorptions are expected for A. 
 
The reported ν(CO) IR spectrum is consistent with formation of isomer A, with the 
triphenylphosphine ligand in the axial site. 

 
 
 
 
 
 
 

C2v E C2 v(xz) v(yz)   
 4 0 2 2   
A1 1 1 1 1 z x2, y2, z2 
A2 1 1 –1 –1 Rz xy 
B1 1 –1 1 –1 x, Ry xz 
B2 1 –1 –1 1 y, Rx yz 
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4.34 As in 4.33, we consider the triphenylphosphine ligand as a simple L group for point group 
determination. The point groups for isomers A, B, and C are as follows: 

 

OC Fe

PPh3

PPh3

CO

CO

OC Fe

CO

CO

PPh3

PPh3

(A)     C2v
(B)     D3h

OC Fe

CO

PPh3

PPh3

CO

(C)    Cs  
For A, the set of irreducible representations for the three CO stretching vibrational modes is 2 A1 
+ B1. These modes are all IR-active in the C2v character table, and three ν(CO) IR absorptions are 
expected for isomer A. 
 
For B, the set of irreducible representations for the three CO stretching vibrational modes is A1 + 
E. Only the E mode is IR-active in the D3h point group, and one ν(CO) IR absorption is 
expected for isomer B. 
 
For C, the set of irreducible representations for the three CO stretching vibrational modes is  
2 A These modes are all IR-active in the Cs point group, and three ν(CO) IR absorptions 
are expected for isomer C. 
 
The single ν(CO) IR absorption reported for Fe(CO)3(PPh3)2 supports the presence of the D3h 
isomer B. 
 
The trans isomer B is reported in R. L. Keiter, E. A. Keiter, K. H. Hecker, C. A. Boecker, 
Organometallics, 1988, 7, 2466, and the authors observe splitting of the absorption associated 
with the Emode in CHCl3. The forbidden A1 stretching mode was observed as a weak 
absorption. 

 
4.35 The IR spectrum exhibits two ν(CO) absorptions. The two proposed metal carbonyl fragments 

will be considered independently for analysis. 
 

Ti

OC

OC CO

CO

OC

OC

Ti
CO

CO

D4h C4v  
  

The reducible representation for the four vectors associated with the CO bonds in the C4v 
fragment is as follows: 
 

 
 
 
  

Reduction of this representation affords A1 + B1 + E. The A1 and E modes are IR-active, and a 
titanium complex with a square pyramidal titanium tetracarbonyl fragment is supported by the IR 
spectral data. 

C4v E 2C4 C2 2v 2d 
 4 0 0 2 0 
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For the D4h fragment, the reducible representation for the set of vectors associated with the CO 
bonds is: 

 
 

 
 

Reduction of the reducible representation affords A1g + B1g + Eu.  Only the E modes are IR-active, 
and a complex with a square planar titanium tetracarbonyl fragment is expected to exhibit a single 
IR ν(CO) stretching absorption. This D4h possibility can therefore be ruled out on the basis of the 
spectrum. 

 
4.36 A reasonable product is the C4v molecule Mo(CO)5(P(OPh)3), with CO 

replacing a triphenylphosphite ligand.  
  
 The reducible representation for the five vectors associated with the CO bonds 

in this molecule is: 
 

 
 
 
   

Reduction of this representation affords 2 A1 + B1 + E. The A1 and E modes are IR-active, and 
three IR ν(CO) stretching absorptions are expected. The reported IR spectrum features three 
strong ν(CO) absorptions, and one “very weak” absorption attributed to the forbidden B1 mode in 
D. J. Darensbourg, T. L. Brown, Inorg. Chem., 1968, 7, 959. 

 
4.37 I has C2 symmetry, with a C2 axis running right to left, perpendicular to the Cl, N, Cl, N and  
 Cl, P, Cl, P faces. 
 II also has C2 symmetry, with the same C2 axis as I.  (Lower left corner occupied by Cl, not C.) 
 III has only an inversion center and Ci symmetry.  
 
4.38 An example for each of the five possible point groups: 
 

 Td: 

C

F

FF
F

 C3v: 

C

H

FF
F

 C2v: 

C

H

HF
F

 Cs: 

C

F

HBr
Br

 C1: 

C

F

HCl
Br

 

 
4.39 a. The S–C–C portion is linear, so the molecule has a C3 axis along the line of these three 
  atoms, three v planes through these atoms and an F atom on each end, but no  
  other symmetry elements. C3v 
 
 b. The molecule has only an inversion center, so it is Ci.  The inversion center is equivalent 
  to an S2 axis perpendicular to the average plane of the ring. 
 
 c. M2Cl6Br4 is Ci. 
 
 d. This complex has a C3 axis, splitting the three N atoms and the three P atoms (almost as 

drawn), but no other symmetry elements.  C3 

D4h E 2C4 C2 2C2 2C2 i 2S4 h 2v 2d 
 4 0 0 2 0 0 0 4 2 0 

C4v E 2C4 C2 2v 2d 
 5 1 1 3 1 

Mo

P

C

C C

C C

(OPh)3

O

O

O

O

O
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e. The most likely isomer has the less electronegative Cl atoms in 

equatorial positions.  Point group: C2v 
 
4.40 The structures on the top row are D2d (left) and Cs (right). Those on the 

bottom row are C2h (left) and C4v (right). 
 
4.41 a. C3v 
 
 b. D5h 

 

 c. Square structure: D2d (bottom ligand on lower left Re should be CO instead of L);  
Corner structure: Cs 

 
 d. D3d 

 
4.42 Web of Science and SciFinder Scholar should be helpful, but simply searching for these  
 symmetries using a general Internet search should provide examples of these point groups.  Some  

examples: 
 

a. S6: Mo2(SC6H2Me3)6  (M. H. Chisholm, J. F. Corning, and J. C. Huffman, 
  J. Am. Chem. Soc., 1983, 105, 5924) 
  Mo2(NMe2)6  (M. H. Chisholm, R. A. Cotton, B. A. Grenz, W. W. Reichert, 
  L. W. Shive, and B. R. Stults, J. Am. Chem. Soc., 1976, 98, 4469) 
  [NaFe6(OMe)12(dbm)6]

+  (dbm = dibenzoylmethane, C6H5COCCOC6H5) (F. 
  L. Abbati, A. Cornia, A. C. Fabretti, A. Caneschi, and D. Garreschi, Inorg. 
  Chem., 1998, 37, 1430) 

 
b. T Pt(CF3)4, C44 
 
c. Ih C20, C80 
 
d. Th [Co(NO2)6]

3–,  Mo(NMe2)6  
 
In addition to examples that can be found using Web of Science, SciFinder, and other Internet  
search tools, numerous examples of these and other point groups can be found in I. Hargittai and  
M. Hargittai, Symmetry Through the Eyes of a Chemist, as listed in the General References  
section. 

P

F

F

F
Cl
Cl


