CH 431: SYMMETRY

MFT Chapter 4

Symmetry all around us

Why care about symmetry?

- The symmetry of a molecule tells us about the structure of a molecule
- Structure is important for defining the properties and functions of molecules
- In inorganic chemistry, and specifically transition metal chemistry, the geometry and symmetry of a molecule help define the electronic and magnetic properties, and the reactivity → FUNCTION

Why care about symmetry?

- We can use symmetry to solve problems:
- 1) Interpret spectroscopic data
 - NMR and IR spectra

- 2) Describe bonding
 - Molecular orbitals
- 3) Determine chirality of a molecule

Terminology for this unit

- Symmetry operation
- Symmetry element
- Point group
- Character Table
- Reducible and irreducible representations

Helpful symmetry websites/tools

http://symmetry.otterbein.edu/index.html

https://sites.cns.utexas.edu/jones ch431

3D visualization can be hard! Molecular model sets, or toothpicks and marshmallows (or the equivalent!) can be very helpful to help you visualize

Which shape is more symmetric?

This rotation represents a *symmetry operation*. The triangle looks the same before and after after the rotation is performed, however the points are in different places.

