Quiz 1 Feedback

Avg: 87% (good job!), St. Dev.: 2.5

A) How many electrons can be described by the following quantum numbers:

I = 2 means a d orbital, there are 5 4d orbitals, so 10 electrons can be described by n=4 and l=2

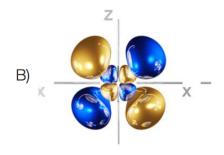
B) What are the values for n (principal quantum number) and I (angular momentum quantum number) for a 7h orbital?

s:
$$I = 0$$
 f: $I = 3$

$$f: I = 3$$

p:
$$I = 1$$
 g: $I = 4$

$$h: I = 5$$


۸١	50
$\overline{}$	US

Angular nodes

s: I = 0, zero angular nodes

Radial nodes

n = 5, n-1 = 4 = total number of nodes. Radial nodes = 4

Angular nodes

This looks like a d orbital, there are 2 angular nodes along the depicted axes

Radial nodes

Each 'branch' of the d orbital contains 2 lobes of different phases, this means there is 1 radial node.

C) A 4f orbital

Angular nodes

f: I = 3, 3 angular nodes

Radial nodes

n = 4, n-1 = 3 = total number of nodes. Radial nodes = 0

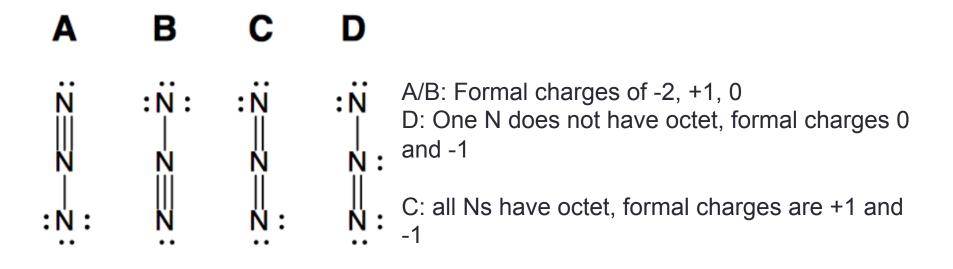
Select the best choice for the following:

A) Smallest radius: K⁺, Ar, Cl⁻

Each atom/ion contains same number of electrons, but K+ has most positive charge, will pull in electrons most tightly

K+	83 respondents	74 %	✓
Ar	22 respondents	20 %	
CI-	6 respondents	5 %	
No Answer	1 respondents	1 %	

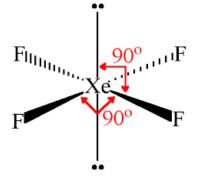
Ionization energy increases as you go across a period due to increasing Zeff


B) Highest ionization energy: Mo, Ru, Pd Pd

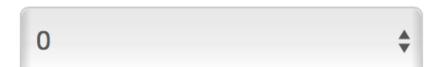
C) Largest radius: Fe⁺, Fe²⁺, Fe³⁺ Fe+

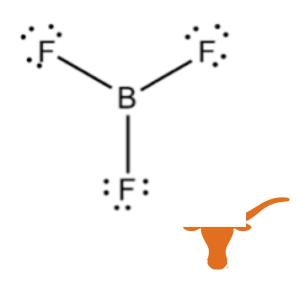
When comparing ions of the same element, the most positively charged species will have the smallest radius, the least positively charged species will have the largest radius (see reasoning for 'A')

A) Which of the following structures would you predict to be favored for N_3^- ?

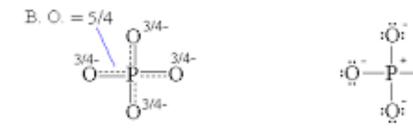

C

Α		0 %	
В	1 respondents	1 %	
С	89 respondents	79 %	
D	15 respondents	13 %	
A and B	5 respondents	4 %	
A and C	1 respondents	1 %	
B and D	1 respondents	1 %	


B) In the Lewis dot structure for XeF4, how many lone pairs are found around the cen

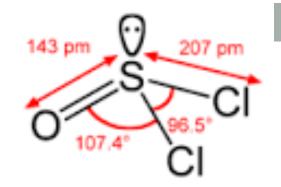

atom?


D) What is the formal charge of boron in BF3?



C) What is the best description for the P-O bonds found in PO_4^{3-} ?

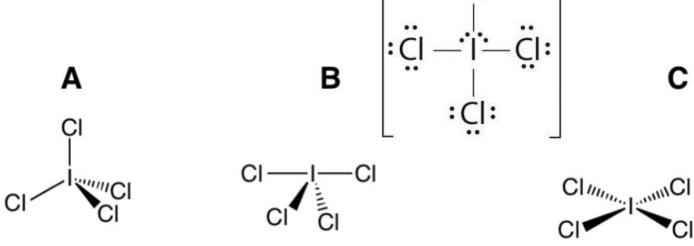
in between single and double \$



single	5 respondents	4 %	
double	4 respondents	4 %	
triple		0 %	
both single and double	39 respondents	35 %	
in between single and double	64 respondents	57 %	

A) Compare the following bond angles in SOCl₂:

S=O double bond is more repulsive, pushes S-Cl bonds together


B) Which of the following structures corresponds to ICl_4^- ? (Note: any lone pairs in the molecule are not shown)

<	82 respondents	73 %	✓
=	17 respondents	15 [%]	
>	12 respondents	11 %	
No Answer	1 respondents	1 %	

B) Which of the following structures corresponds to ICl_4^- ? (Note: any lone pairs in the

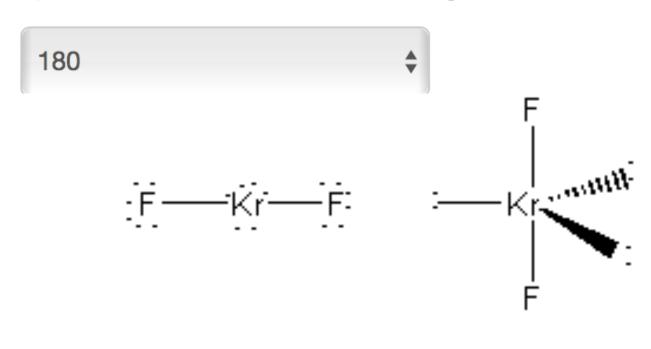
Bond angles 109.5°

Bond angles 90 and 180°

Bond angles 90 and 180°

option C puts two lone pairs the farthest away from each other,

Option B has 90° interaction between two lone pairs: BAD


B 29 respondents 26 % C 75 respondents 67 %	Α	8 respondents	7 %			
C 75 respondents 67 %	В	29 respondents	26 [%]			
	С	75 respondents	67 %		~	

C) What is the geometry of SF₆?

steric number 6, octahedral!

D) In KrF₂, what is the F-Kr-F bond angle?

Quiz 2

- Find symmetry around Austin and UT!
- 4 pictures, each illustrating a different kind of symmetry operation

C₃, mirror planes

CH 431: SYMMETRY

MFT Chapter 4

Symmetry elements

- Symmetry element: a point, line, or plane in an object/ molecule about which a symmetry operation can be performed
 - Inversion center (a point)
 - Rotation axis (line)
 - Mirror plane (plane)

Symmetry operations

- Symmetry operation: the actual action that is performed on the object
 - Inversion
 - Rotation
 - Reflection
 - Improper rotation
- When operation performed, object should look exactly the same as before
 - Every point is coincident with an identical point before the operation

Symmetry operations and elements

Symmetry operation	Symbol	Symmetry Element
Identity	E	none
Proper rotation	C _n	axis
Reflection	σ (sigma)	plane
Inversion	i	point
Improper rotation	S _n	none

Identity, E

- The identity operation is characteristic of every molecule
- This causes no change in the molecule

$$(x,y,z) \rightarrow (x,y,z)$$

Proper rotation, C_n

- A C_n is a rotation by 360°/n
- $C_n^n = E$ (For example, three C_3 rotations, C_3^3 , results in original position of all points in object)
- Molecules can have multiple rotation axes (ex: snowflake)
- Principal rotation axis is the C_n with the highest value of n

Reflection, σ

- Molecule contains a mirror plane
- $(x,y,z) \rightarrow (x,-y,z)$ (reflection through the xz plane, σ_{xz})
- $\sigma^2 = E$
- σ_h = reflection across plane perpendicular to highest C_n
- σ_v = reflection across plane that contains (parallel) highest C_n , typically coincident with bonds in molecule
- $\sigma_d = \sigma_v$'s that bisect bonds, adjacent C_2 axes etc. (d = diagonal)

Inversion, i

 A molecule has inversion symmetry if each point in a molecule can pass through center to the opposite side and still look the same

•
$$(x,y,z) \rightarrow (-x,-y,-z)$$

•
$$i^2 = E$$

example: staggered ethane

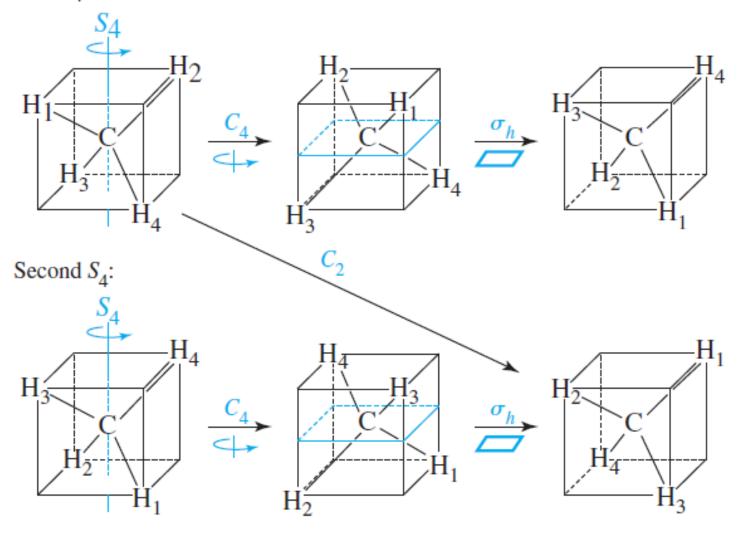
Improper rotation, S_n

 An improper rotation is a rotation by 360°/n followed by a reflection in the plane perpendicular to the rotation axis

•
$$S_n = \sigma_h \cdot C_n$$

•
$$S_2 = i$$

• When n is even: 1) $S_n^n = E$


2) There will be a collinear C_{n/2}

• When n is odd: $S_n^{2n} = E$

S₄ operation in methane

First S_4 :

