## Next Tuesday: Midterm 1: Welch 1.316

- ~15 pts on orbitals
- ~15 pts on electronic configurations and periodic trends
- ~30 pts on determining point group (and drawing lewis structure)
- ~20 pts on symmetry operations
- ~20 pts on character tables
- Bring your student ID!
- You will be provided a periodic table
- You are allowed to bring three simple models from your model kit: octahedral, tetrahedral, and trigonal bipyramidal. Have these assembled before class, you will not have access to your full kit during the exam



### Midterm 1 Office hours/Review Session

My office hours in 4.314
Today: 4:30 pm – 5:30 pm
Monday: 4:30 pm – 6:30 pm

Regular TA office hours: Thursday: 12:30 pm – 1:30 pm (Spencer) Friday: 4:00 pm – 5:00 pm (Rahul)

Review session: Sunday night, 7:00 pm (for ~1.5h)
 Welch 2.312
 Led by Kanchan, with help from other TAs

## Quiz 3

⊖ Average Score

**68%** 







#### +0.56

What is the product of the S<sub>6</sub> operation shown below?





4



#### Attempts: 113 out of 113

What rotation axes does a cube contain? Check all that apply.









Match the following items with another item in the same point group. If there is no match indicate choose "no match" in the drop-down menu.







B) Fluoroacetylene, C2HF [answerB]

C) A dx2-y2 orbital [answerC]

D) Br<sub>4</sub>cyclooctatetraene (pictured below) [answerD]





Point group short cuts



# CHARACTER TABLES, POINT GROUPS, AND THEIR APPLICATIONS

MFT section 4.4



# Mulliken symbols

- A: singly degenerate (1 under E operation), sym w.r.t. C<sub>n</sub>
- B: singly degenerate (1 under E operation), antisym w.r.t.  $C_n$
- E: doubly degenerate (2 under E operation)
- T: triply degenerate (3 under E operation)
- $_1$ : sym w.r.t.  $\sigma_v$  or a perpendicular  $C_2$
- $_2$  : antisym w.r.t.  $\sigma_{_{\! V}}$  or a perpendicular  $C_2$
- g: sym w.r.t. inversion center
- <sub>u</sub>: antisym w.r.t. inversion center
- ': sym w.r.t.  $\sigma_h$
- ": antisym w.r.t.  $\sigma_h$

Characters:

- + values = symmetric
- values = antisymmetric



# Properties of characters and irreducible representations (Table 4.7)

- Order (h) = sum of coefficients on symmetry operations
- Number of classes = number of columns
- Number of irreducible representations = number of classes
- Sum of square of dimensions (characters in the 'E' column) equals order (h)
- Within an irreducible representation (row), sum of square of characters multiplied by coefficient of the class equals order of group (h)
- Irreducible representations are orthodonal
- There is always a totally symmetric representation (all characters = 1)



#### A bit more explanation on the functions on the right hand side of character tables:

#### Character table for C<sub>4v</sub> point group

|                       | E | 2C <sub>4</sub> (z) | <b>C</b> <sub>2</sub> | $2\sigma_v$ | 2σ <sub>d</sub> | linear,<br>rotations                                                        | quadratic                      |
|-----------------------|---|---------------------|-----------------------|-------------|-----------------|-----------------------------------------------------------------------------|--------------------------------|
| <b>A</b> <sub>1</sub> | 1 | 1                   | 1                     | 1           | 1               | Z                                                                           | $x^2+y^2, z^2$                 |
| <b>A</b> <sub>2</sub> | 1 | 1                   | 1                     | -1          | -1              | Rz                                                                          |                                |
| <b>B</b> <sub>1</sub> | 1 | -1                  | 1                     | 1           | -1              |                                                                             | x <sup>2</sup> -y <sup>2</sup> |
| <b>B</b> <sub>2</sub> | 1 | -1                  | 1                     | -1          | 1               |                                                                             | xy                             |
| E                     | 2 | 0                   | -2                    | 0           | 0               | $(\mathbf{x},\mathbf{y}) (\mathbf{R}_{\mathbf{x}},\mathbf{R}_{\mathbf{y}})$ | (xz, yz)                       |

This portion of the table represents how rotations and different orbitals behave w.r.t. symmetry operations in this point group.

 $z = p_z$ ,  $xy = d_{xy}$  etc. Note: s orbital is always going to be in the group where all characters are 1's





 $p_x$  orbitals have the same symmetry as x (positive in half the quadrants, negative in the other half).  $d_{xy}$  orbitals have the same symmetry as the function xy(sign of the function in the four quadrants).





Ζ

#### Character table for $C_{4v}$ point group

|                       | E | 2C <sub>4</sub> (z) | <b>C</b> <sub>2</sub> | 2σ <sub>v</sub> | 2σ <sub>d</sub> | linear,<br>rotations                                                        | quadratic                      |
|-----------------------|---|---------------------|-----------------------|-----------------|-----------------|-----------------------------------------------------------------------------|--------------------------------|
| <b>A</b> <sub>1</sub> | 1 | 1                   | 1                     | 1               | 1               | Z                                                                           | $x^2+y^2, z^2$                 |
| <b>A</b> <sub>2</sub> | 1 | 1                   | 1                     | -1              | -1              | Rz                                                                          |                                |
| <b>B</b> <sub>1</sub> | 1 | -1                  | 1                     | 1               | -1              |                                                                             | x <sup>2</sup> -y <sup>2</sup> |
| <b>B</b> <sub>2</sub> | 1 | -1                  | 1                     | -1              | 1               |                                                                             | xy                             |
| E                     | 2 | 0                   | -2                    | 0               | 0               | $(\mathbf{x},\mathbf{y}) (\mathbf{R}_{\mathbf{x}},\mathbf{R}_{\mathbf{y}})$ | (xz, yz)                       |

- 1) Why is a specific orbital associated with a specific irreducible representation?
- 2) Why is a specific rotation associated with a specific irreducible representation?
- 3) What does (x,y) mean?

