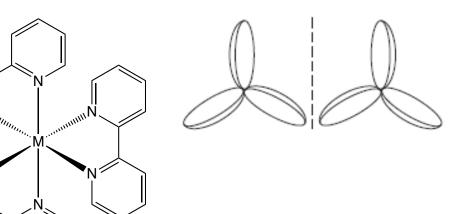
APPLICATIONS OF POINT GROUPS AND CHARACTER TABLES

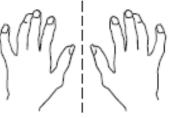
MFT Ch 4

Application 1: Chirality

- A chiral molecule does not necessarily have no symmetry
- No mirror planes or inversion centers
- Either contains only the identity E, or only C_n (proper) rotation axes (belong to point groups C_n, where n = 1,2,3,4, etc., or D_n)

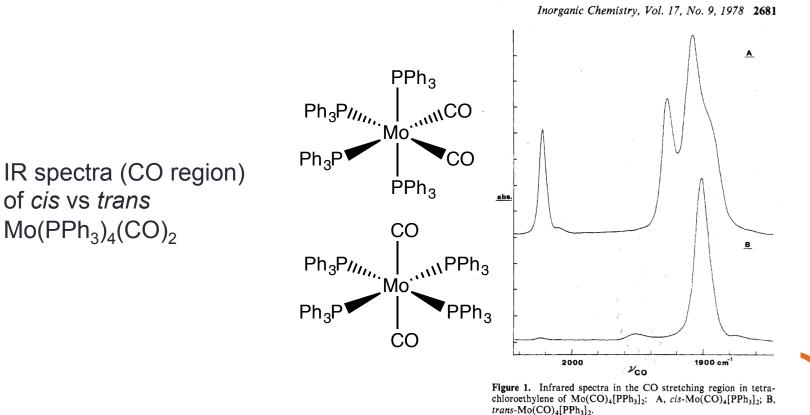






Application 2: Molecular Vibrations and Vibrational Spectroscopy

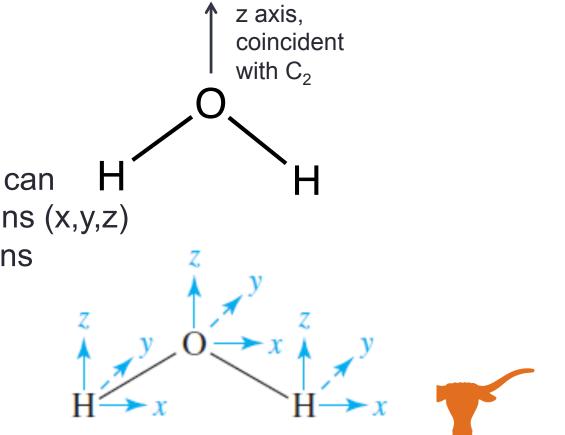
 Character tables are very useful for analyzing molecular vibrations and predicting peaks in Infrared and Raman spectra of a molecule



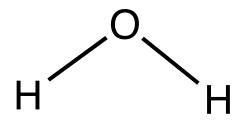
T

Application 2: Molecular Vibrations and Vibrational Spectroscopy

- Character tables are very useful for analyzing molecular vibrations and predicting peaks in Infrared and Raman spectra of a molecule
- Example: $H_2O(C_{2v})$
- Each of the three atoms can H move in all three directions (x,y,z) a total of 9 transformations
- Also known as
 9 degrees of freedom



Application 2: Molecular Vibrations and Vibrational Spectroscopy



- A molecule with N atoms has 3N degrees of freedom
 - Translational modes: T_x , T_y , and T_z (movement of the whole body)
 - Rotational modes: R_x , R_y , and R_z (rotations of the whole body)
 - Vibrational modes: displacement of atoms from their mean positions
- H_2O , N = 3 has 3 x 3 = 9 degrees of freedom

Normal modes/fundamental vibrations

- A vibrational mode is a molecular vibration where some or all atoms vibrate together with the same frequency in a defined manner (and some can be detected by IR, Raman)
- Non-linear molecules have 3N 6 vibrational modes
 - $3N (T_x, T_y, T_z) (R_x, R_y, R_z)$
- Linear molecules have 3N 5 vibrational modes

• $3N - (T_x, T_y, T_z) - (R_x, R_y)$

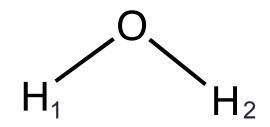
(rotation around z-axis does not change molecule, so doesn't count)

•
$$H_2O: 3 \times 3 - 6 = 3$$
 vibrational modes

Symmetry and vibrational motions

- We can use character tables to understand the different vibrational motions a molecule has
- Each of these motions will have a certain symmetry that will correspond to one of the irreducible representations

- 1) Find Γ_{3N} The first step in this process is making a *reducible representation* of all possible molecular motions Γ_{3N} (aka Γ_{total})
- a) Generate Γ_{xyz} , which represents the x, y, and z coordinate axes of the molecule. This tracks how the orientation of atoms change with each symmetry operation. Equal to the sum of irreducible representations for x, y, and z
- b) **Determine number of unmoved atoms.** How many atoms stay in the same place when a symmetry operation is applied?
- c) Multiply 1 and 2 to generate Γ_{3N}

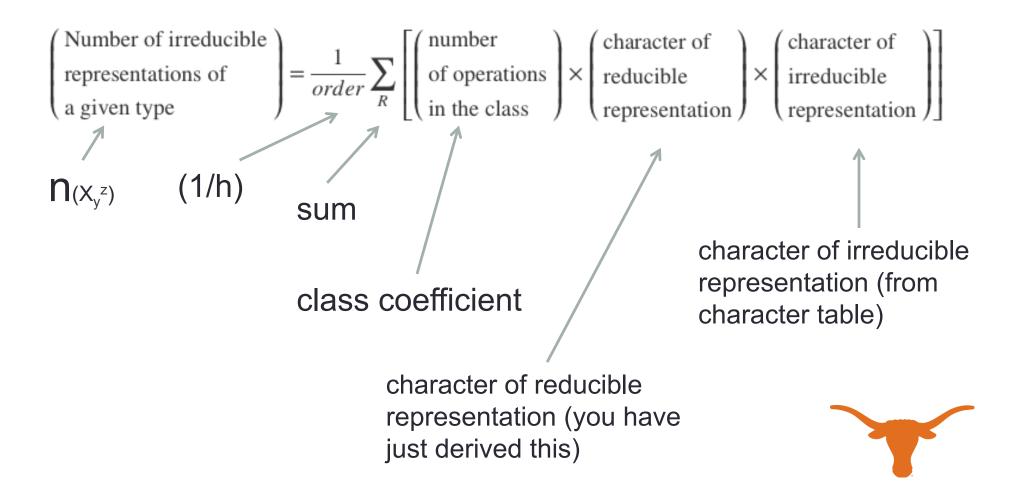


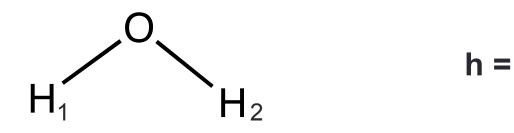
Character Table

C_{2v}	Ε	C_2	$\sigma_v(xz)$	$\sigma_{v}'(yz)$	Matchir	ng Functions
A_1	1	1	1	1	Z	x^2, y^2, z^2
A_2	1	1	-1	-1	Rz	xy
B_1	1	-1	1	-1	x, R_y	ХZ
B_2	1	-1	-1	1	y, R_x	yz

Γ _{xyz}		
unmoved atoms		
Γ _{3N}		

2) Use the reduction formula to determine irreducible representations that make up reducible representation Γ_{3N}





Character Table

C _{2v}	Ε	C ₂	$\sigma_v(xz)$	$\sigma_{v}'(yz)$	Matchir	ng Functions
A_1	1	1	1	1	z	x^2, y^2, z^2
A_2	1	1	-1	-1	Rz	ху
B_1	1	-1	1	-1	x, R_y	XZ
B_2	1	-1	-1	1	y, R_x	уz

- n (A₁) = n (A₂) = n (B₁) =
- n (B₂) =

 $\Gamma_{3N} =$

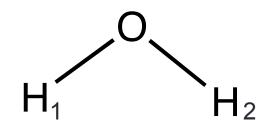
3) Determine which representations represent translational and rotational movements, the remaining are vibrations

 $\Gamma_{3N} =$ $\Gamma_{translational} =$ (correspond to x,y,z representations) $\Gamma_{rotational} =$ $(correspond to R_x, R_y, R_z representations)$ $\Gamma_{vibrational} =$ (all remaining representations)

- 4) Determine if any of the vibrations are IR or Raman active
- a) Infrared (IR) active: if vibration results in a change in dipole moment of molecule

In terms of group theory, a vibrational mode is IR active if it corresponds to an irreducible representation that has the **same symmetry as x, y, and z** (the Cartesian coordinates)

- b) Raman active: if vibration results in change in polarizability of molecule In terms of group theory, a vibrational mode is Raman active if it corresponds to an irreducible representation that has the same symmetry as xy, xz, yz, x², y², z², or a combination of these
- c) Some vibrations can be both IR and Raman active



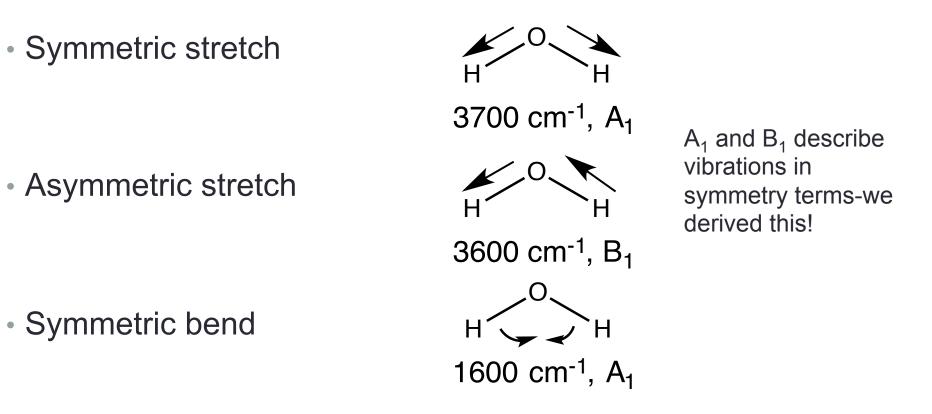
Character Table

C _{2v}	Ε	C ₂	$\sigma_v(xz)$	$\sigma_{v}'(yz)$	Matchir	ng Functions
A_1	1	1	1	1	Z	x^2, y^2, z^2
A_2	1	1	-1	-1	Rz	ху
B_1	1	-1	1	-1	x, R_y	xz
B_2	1	-1	-1	1	y, R_x	yz

 $\Gamma_{\rm vib}$ =

IR active? Raman Active?

The three vibrational modes of H₂O



- 1) Find Γ_{3N} The first step in this process is making a *reducible representation* of all possible molecular motions Γ_{3N} (aka Γ_{total})
- 2) Use the reduction formula to determine irreducible representations that make up reducible representation Γ_{3N}
- 3) Determine which representations represent translational and rotational movements, the remaining are vibrations
- 4) Determine if any of the vibrations are IR or Raman active

Beyond H₂O

- H₂O is a very simple example that can be handled 'by inspection'
- However, things get more complicated ones larger molecules are involved

Molecule	# of atoms	# of molecular motions (3N)	# of vibrations (3N – 6 or 3N -5)
H ₂ O			
PH ₃			
CO ₃ ²⁻			
XeF ₄			
B_2H_6			

http://www.chemeddl.org/resources/models360/models.php?pubchem=11533782

	<u> </u>									
	E	2C ₃	3C'2	σ _h	2S ₃	3σ _v	linear, rotations	quadratic		
A'1	1	1	1	1	1	1		x^2+y^2, z^2		
A'2	1	1	-1	1	1	-1	Rz			
E'	2	-1	0	2	-1	0	(x, y)	(x^2-y^2, xy)		
A''1	1	1	1	-1	-1	-1				
A''2	1	1	-1	-1	-1	1	Z			
E''	2	-1	0	-2	1	0	$(\mathbf{R}_{\mathbf{x}},\mathbf{R}_{\mathbf{y}})$	(xz, yz)		

Character table for D_{3h} point group

Example: BF₃

Character table for D_{2h} point group

		211 8 1									
	E	C ₂ (z)	C ₂ (y)	$C_2(x)$	i	σ (xy)	σ (xz)	σ (yz)	linear, rotations	quadratic	
Ag	1	1	1	1	1	1	1	1		x^2, y^2, z^2	
B _{1g}	1	1	-1	-1	1	1	-1	-1	Rz	xy	
B _{2g}	1	-1	1	-1	1	-1	1	-1	Ry	xz	
B _{3g}	1	-1	-1	1	1	-1	-1	1	R _x	yz	
Au	1	1	1	1	-1	-1	-1	-1			
B _{1u}	1	1	-1	-1	-1	-1	1	1	Z		
B _{2u}	1	-1	1	-1	-1	1	-1	1	У		
B _{3u}	1	-1	-1	1	-1	1	1	-1	x		

