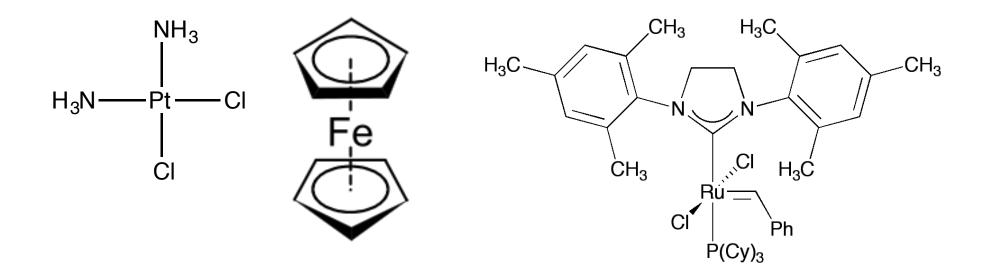
MOLECULAR ORBITALS

Chapter 5

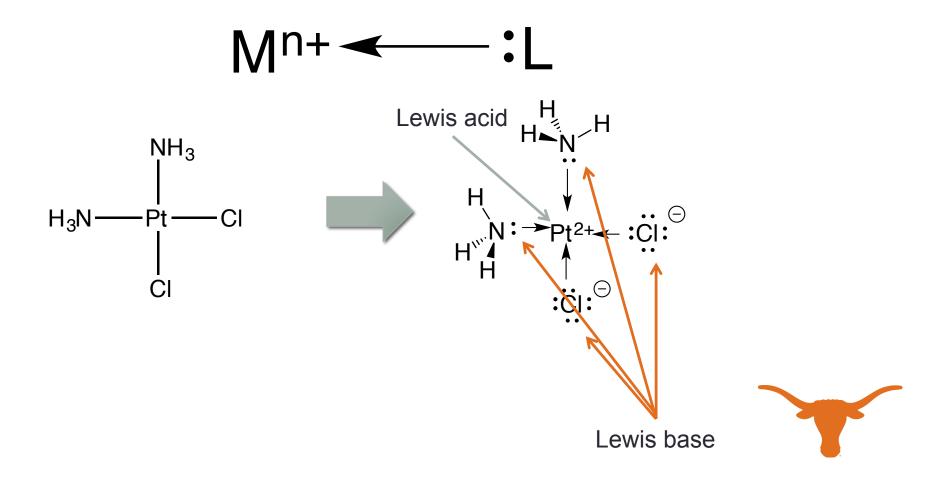
Expectations for MOs

- Draw correct MO diagrams for homonuclear diatomic molecules
- Know the definitions of bond order, HOMO, LUMO, paramagnetic, diamagnetic
- Derive SALCs for a given molecule, be able to match SALCs to central atom orbitals based on symmetry
- Predict an MO diagram for molecules with 3 atoms or more, based on interactions between central atom orbitals and SALCs.
 - We do not expect you to get the relative energy levels exactly right, however, you should properly indicate which orbitals and SALCS participate in bonding/ antibonding interactions and which orbitals and SALCs are non bonding
- Orbital energy levels will be provided on the exam, you do not have to memorize these.
- You do not need to know how to use the 'projection operator' (in MFT)


COORDINATION COMPLEXES

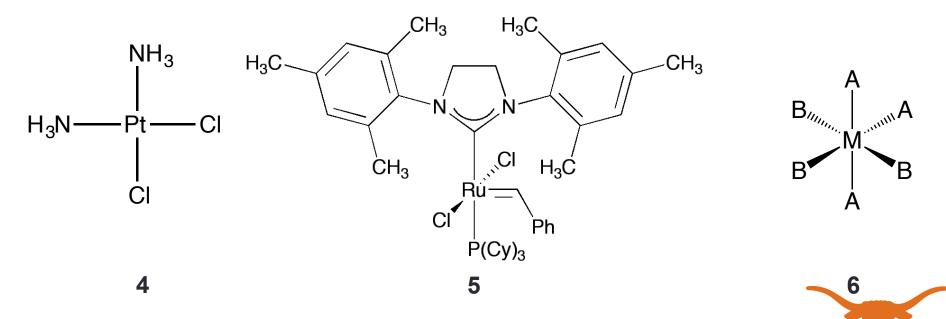
MFT Chapters 6,9,10

Coordination complexes


 Compounds that are composed of a metal atom or ion and one or more *ligands* (atoms, ions, or molecules) that donate electrons to the metal

Acid-Base Donor-Acceptor Chemistry

 In a coordination compound, the metal center (Mⁿ⁺) acts as a Lewis acid and the ligand (L) acts as a Lewis base


Bonding in coordination complexes

- You are familiar with covalent and ionic bonds
 - Covalent bond: electron pair in bond is shared between two atoms, typically one electron is donated from each atom
 - Ionic bond: electrostatic interaction between oppositely charge ions (electrons NOT shared)
- In transition metal complexes, the bonds are described as coordinate covalent or dative bonds
 - In the Lewis acid-Lewis base interactions in these compounds, the electron pair in the ligand (the ligand HOMO – highest occupied molecular orbital) is interacting with an empty orbital on the metal center (the LUMO – typically d orbitals)
 - In this bond, the electrons are shared by the metal and ligand, but both electrons come from the ligand

Coordination Complex Terminology:

- The following slides are the main terminology/nomenclature things I expect you to know, you do not need to memorize all the nomenclature rules in Ch 9
- Coordination number: how many ligands are attached to the metal center

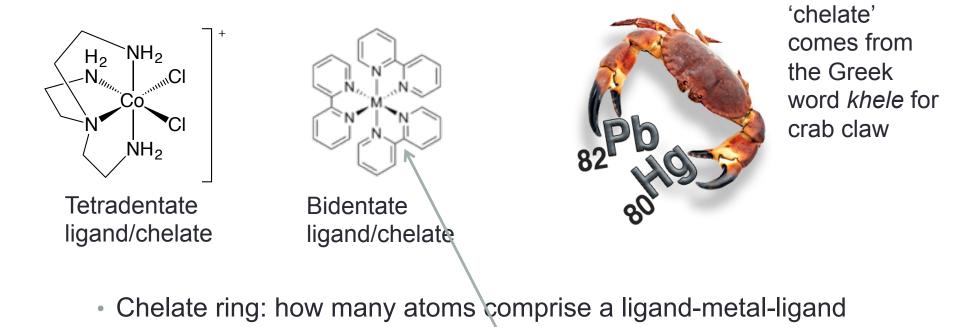
Ligand terminology

 $H_3N \longrightarrow Pt -$

Cl

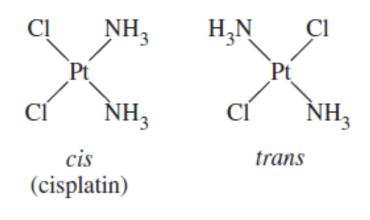
 Monodentate: ligand has only one point of attachment ('one tooth') NH₃

CI


All ligands in cis platin are monodentate

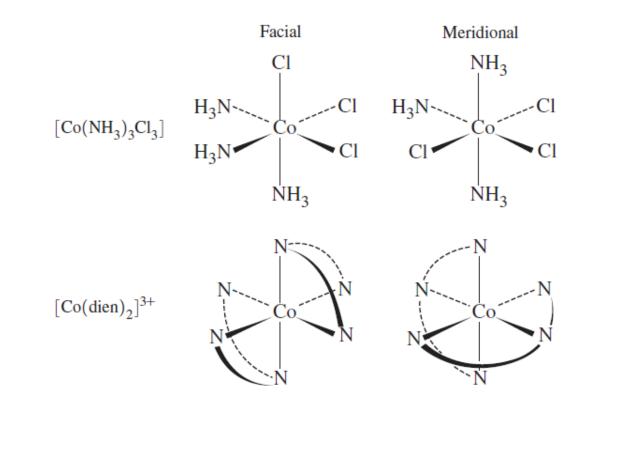
Ligand terminology

interaction in a chelating ligand


 Polydentate or chelating ligands: ligand contains multiple points of attachment to metal ions

5

Isomerism in coordination complexes


- A certain ligand set may be able to arrange itself in different ways around a metal center
- For full set of isomer types, see MFT Section 9.3
- Stereoisomers: cis and trans

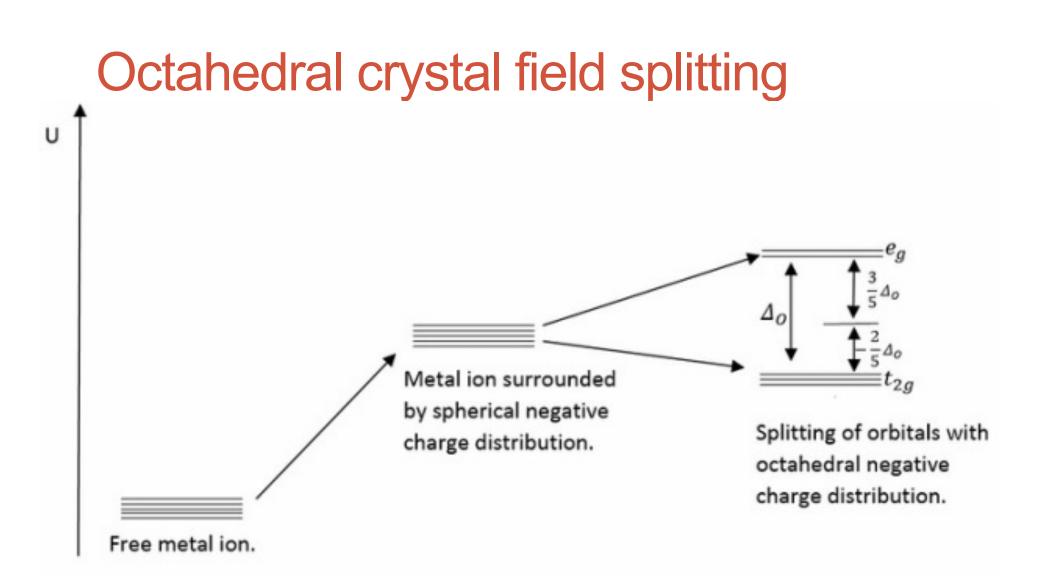
Isomerism in coordination complexes

 Isomerism in 6-coordinate ML₃L'₃ complexes: mer and fac isomers (meridional and facial)

Bonding in octahedral metal complexes

- We are going to focus our attention first on bonding in octahedral metal complexes and its effects on
 - d orbital energies of the metal centers
 - properties of these complexes (magnetic moment, electronic spectra)
- Simplified view: Crystal Field Theory
- Better description: Ligand Field Theory (uses molecular orbital theory!)

Crystal Field Thoery


- A purely electrostatic approach that treats metal complexes in an oversimplified manner:
 - Ligands are treated as points of negative charge
 - Metal is treated as a positive charge
 - Overall attractive interaction between the +/- charges leads to complex formation and stability
 - Also a repulsive interaction between electrons from the ligands and electrons from d orbitals
- (Think of CFT as a metal complex analogue to Lewis dot structures-it can get you to the right answer but isn't a full view of the actual bonding in a complex)

Crystal Field Theory

- Repulsive Forces
- 1) d orbitals "feel" a repulsive interaction from ligands that change the energy levels of the d orbitals
- 2) Extent of the repulsive interaction for each d orbital depends on where the ligands are in space (geometry!!!)
- The result is that depending on the geometry, different d orbitals will have different relative energies

Crystal Field vs. Ligand Field Theory

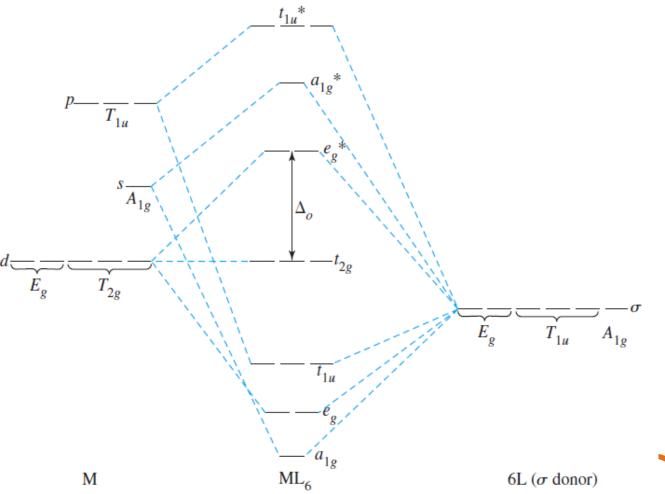
- Crystal Field Theory: oversimplified but useful approach, just uses electrostatics
- Ligand Field Theory: builds on CFT, but considers the shapes of both the metal and ligand orbitals, and their potential interactions, to further explain d orbital splitting (uses concepts from molecular orbital theory)

Sigma and pi interactions in octahedral complexes

L///// |L x

Sigma bonding interaction between two ligand orbitals and metal d_{z^2} orbital

Sigma bonding interaction between four ligand orbitals and metal $d_{x^2-y^2}$ orbital Pi bonding interaction between four ligand orbitals and metal d_{xy} orbital


LFT approach to octahedral metal complex bonding (MO approach)

- Time to derive SALCs for an ML₆ complex!
- For now, we will just consider σ interactions between ligand and metal. You can derive SALCs by finding $\Gamma_{\rm s}$
- The end result after using reduction formula?
- $\Gamma_s = A_{1g} + T_{1u} + E_g$

O_h	Ε	8 <i>C</i> ₃	$6C_2$	$6C_4$	$3C_2 (= C_4^2)$	i	$6S_4$	8 <i>S</i> ₆	$3\sigma_h$	$6\sigma_d$		
A_{1g}	1	1	1	1	1	1	1	1	1	1		$x^2 + y^2 + z^2$
T_{1u}	3	0	-1	1	-1	-3	-1	0	1	1	(x, y, z)	•
E_g	2	-1	0	0	2	2	0	-1	2	0		$(2z^2 - x^2 - y^2, x^2 - y^2)$

L////, |L

MO diagram of octahedral metal complex, sigma interactions only

