COORDINATION COMPLEXES

d orbital splitting in octahedral complexes

MFT Chapters 6,9,10

Sigma SALCs for octahedral complexes

MO diagram of octahedral metal complex, sigma interactions only

MO diagram of octahedral metal complex, sigma interactions only

d orbital splitting in octahedral

crystal field theory

ligand field theory

Δ_{o} contributes to many different properties of metal complexes

- The magnitude of Δ_{o} , in other words, the size of the energy gap between the t2g and eg* orbitals, can contribute to many different properties of metal complexes
- Magnetic moment (high spin vs low spin)
 - lab this week
- Electronic spectra (UV-vis)
 - lab next week
- Kinetic stability (later lectures...)

Magnetic moment: High spin vs low spin complexes

- Low spin complexes: electrons fill lower energy d orbitals first (pairing energy < Δ_0)
- High spin complexes: electrons fill into lower and higher energy d orbitals before pairing (pairing energy > Δ_o)

LFSE: stabilization energy associated with a specific electronic configuration

• LFSE = $(-2/5\Delta_o) \times (\# \text{ of } t_2 \text{g electrons}) + (3/5\Delta_o) \times (\# \text{ of } e_g \text{ electrons})$

This is for octahedral geometry! Other geometries will have similar types of calculations but numbers are different

2g

- LFSE for low spin d⁵: $(-2/5\Delta_0)^*5 = -2\Delta_0$
- LFSE for high spin d⁵: $(-2/5\Delta_o)^*3 + (3/5\Delta_o)^*2 = 0$
- More negative values are more stable, (however if Δ_0 is small, so is the LFSE, so h.s. complexes are observed!)

Magnetic susceptibility

- The magnetic properties of a coordination compound help determine number of unpaired electrons in a compound
- Helps us indirectly understand orbital energy levels and how electrons fill the orbitals
- d orbitals are all the same energy in a free atom or ion, BUT once you put them in a coordination environment, the relative energy of the different orbitals can change
- This results in a varied numbers of unpaired electrons depending on metal ion and its coordination environment

Magnetic susceptibility

- Diamagnetic compounds contain zero unpaired electrons
 - Diamagnetic compounds are slightly repelled by a magnetic field
- Paramagnetic compounds contain one or more unpaired electrons
 - Paramagnetic compounds are attracted into a magnetic field
- Magnetic susceptibility (χ^2) is the measure of this magnetism
- Higher susceptibility = more unpaired electrons

Magnetic moment

Magnetic moment is the quantity that describes the torque a molecule or object will experience in an external magnetic field

 $\mu = 2.828 (\chi T)^{1/2}$

μ: magnetic moment in Bohr magnetons (μ_B)
χ: magnetic susceptibility (cm³/mol)
Τ: temperature (in Kelvin)

 $1 \mu_{B} = 9.27 \times 10^{-24}$ joules/tesla

Magnetic moment

- Electrons (negative charges in motion) behave like tiny magnets, generate a spin magnetic moment
- $\mu_s = -1/2$ 'negative' electron spin
- $\mu_s = +1/2$ 'positive' electron spin
- Total spin magnetic moment = S = sum of μ_s values = spin quantum number
- Orbital angular momentum can also affect magnetism
- Orbital quantum number = L = sum of m_I

Calculating magnetic moment

 $\mu_{S+L} = g\sqrt{[S(S+1)] + \frac{1}{4}[L(L+1)]}$

- μ = magnetic moment
- g = gyromagnetic ratio (= 2.00023 μ_B /Bohr magnetons)
- S = spin quantum number
- L = orbital quantum number

Orbital contribution (L) is more important in molecules containing larger orbitals (metals from 4d, 5d...)

Spin only magnetic moment

 $\mu_{S} = g\sqrt{[S(S+1)]}$

You must know this equation!

μ = magnetic moment

- g = gyromagnetic ratio (= 2.00023 μ_B /Bohr magnetons)
- S = spin quantum number

Orbital contribution (L) is more important in molecules containing larger orbitals (metals from 4d, 5d, 4f...)

lon	п	5	L	μ_{S}	$\mu_{\mathrm{S+L}}$	Observed
V^{4+}	1	$\frac{1}{2}$	2	1.73	3.00	1.7 - 1.8
Cu ²⁺	1	$\frac{1}{2}$	2	1.73	3.00	1.7-2.2
V ³⁺	2	1	3	2.83	4.47	2.6-2.8
Ni ²⁺	2	1	3	2.83	4.47	2.8-4.0
Cr ³⁺	3	$\frac{3}{2}$	3	3.87	5.20	~3.8
Co ²⁺	3	$\frac{3}{2}$	3	3.87	5.20	4.1-5.2
Fe ²⁺	4	2	2	4.90	5.48	5.1-5.5
Co ³⁺	4	2	2	4.90	5.48	~5.4
Mn^{2+}	5	<u>5</u> 2	0	5.92	5.92	~5.9
Fe ³⁺	5	$\frac{5}{2}$	0	5.92	5.92	~5.9

TABLE 10.3 Calculated and Experimental Magnetic Moments

Data from F. A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry, 4th ed., Wiley, New York, 1980, pp. 627–628. NOTE: All moments are given in Bohr magnetons.

Guoy balance

Old method for measuring µ

Refer to MFT to read up on how magnetic moment is measured

Evans susceptibility balance

 \bullet More modern method for measuring μ

Moving Magnetic Field and Null Point Detection

Δ_{o} contributes to many different properties of metal complexes

- The magnitude of Δ_{o} , in other words, the size of the energy gap between the t2g and eg* orbitals, can contribute to many different properties of metal complexes
- Magnetic moment (high spin vs low spin)
 - lab this week
- Electronic spectra (UV-vis)
 - lab next week
- Kinetic stability (later lectures...)

Electronic spectra

- Electronic spectra (UV-vis) can give you information about the orbital energy levels in a coordination complex
- Different colors are due to different electronic transitions, different structures in complexes

What kind of electronic transitions make up a UV-vis spectrum?

• UV-vis spectra show transitions of electrons from one orbital to another.

What transitions give rise to colors in metal complexes?

- Ligand to metal charge transfer (LMCT)
- Metal to ligand charge transfer (MLCT)
- Both are transitions between orbitals with more ligand character and orbitals with more metal character
- If they exist in the complex, these tend to be strong absorbances (extinction coefficient is large, ε = 500-10,000 M⁻¹cm⁻¹)
- Remember: A = εbc
- (A is absorbance, b is pathlength, c is concentration)

Charge transfer spectra

Much more intense bands

LMCT

What transitions give rise to colors in metal complexes?

- For this class, we are most interested in **d-d transitions**, which relate to Δ_{o}
- These transitions are forbidden by quantum mechanics because quantum number I does not change
- However, they happen anyway, although their ε values are low (ε ~100 M⁻¹cm⁻¹ or lower)

What transitions give rise to colors in metal complexes?

Electronic spectra: UV-vis

- Observation: three octahedral nickel complexes have three different colors.
- This is due to the fact that each of has a different $\Delta_{\! o}$
- As splitting increases, energy difference increases, and the wavelength of light required for the electronic transition from t_{2g} to e_g gets shorter.

Electronic spectra: UV-vis

 Remember: color of light absorbed by the compound is complementary to the color it is (see color wheel)

What factors contribute to different Δ_o values?

- Nature of the metal M
- Nature of the ligand L
- The coordination environment (will discuss soon)

Octahedral d-d splitting

- For **M**:
 - Δ_{o} increases with increasing charge on metal (shorter, stronger bonds = more interaction = more splitting)

• Δ_{o} (Fe²⁺) < Δ_{o} (Fe³⁺)

- Δ_{o} increases going down a group (larger d orbitals = more interaction with ligands = more splitting)
 - Δ_o (Fe²⁺) < Δ_o (Ru²⁺)
 - Note: 4d, 5d metals typically have only low configurations because of their large Δ_{o}

Octahedral d-d splitting

- For **L**:
 - Δ_o will depend on a number of characteristics of the ligand, most importantly, whether it can interact with the metal as a
 - sigma-only donor
 - sigma and pi donor
 - sigma donor and pi acceptor

The spectrochemical series

Next week's lab will explore this!

 The spectrochemical series ranks ligands in the order of their 'field strength'

The spectrochemical series

Next week's lab will explore this!

 The spectrochemical series ranks ligands in the order of their 'field strength'

- Strong field ligands produce complexes with a large Δ_o
- Weak field ligands produce complexes with a small Δ_o
- Strong field ligands are pi acceptors, weak field ligands are pi donors

