• The following slides are composed of a selection of slides from Lecture 10 through Lecture 17.

VIBRATIONAL MODES

Application 2: Molecular Vibrations and Vibrational Spectroscopy

- A molecule with N atoms has 3N degrees of freedom
 - Translational modes: T_x , T_y , and T_z (movement of the whole body)
 - Rotational modes: R_x , R_y , and R_z (rotations of the whole body)
 - Vibrational modes: displacement of atoms from their mean positions
- H_2O , N = 3 has 3 x 3 = 9 degrees of freedom

Normal modes/fundamental vibrations

- A vibrational mode is a molecular vibration where some or all atoms vibrate together with the same frequency in a defined manner (and some can be detected by IR, Raman)
- Non-linear molecules have 3N 6 vibrational modes
 - $3N (T_x, T_y, T_z) (R_x, R_y, R_z)$
- Linear molecules have 3N 5 vibrational modes

• $3N - (T_x, T_y, T_z) - (R_x, R_y)$

(rotation around z-axis does not change molecule, so doesn't count)

•
$$H_2O: 3 \times 3 - 6 = 3$$
 vibrational modes

Finding vibrational modes

- 1) Find Γ_{3N} The first step in this process is making a *reducible representation* of all possible molecular motions Γ_{3N} (aka Γ_{total})
- 2) Use the reduction formula to determine irreducible representations that make up reducible representation Γ_{3N}
- 3) Determine which representations represent translational and rotational movements, the remaining are vibrations
- 4) Determine if any of the vibrations are IR or Raman active

This procedure takes into account ALL of the atoms in a molecule

Simplified procedure for looking only at selected vibrational modes

This procedure is much simpler, looks only at specific bonds in a molecule:

- 1) Determine Γ_{A-B} (how many A-B bonds are unmoved?) In the case of CO bonds, we call this Γ_{CO}
- 2) Use reduction formula to find irreducible representations.
- 3) Determine how many IR and Raman active stretches there are based off the irreducible representations

	E	2C ₄ (z)	C ₂	2C'2	2C''2	i	2S ₄	σ _h	2σ _v	2σ _d	linears, rotations	quadratic
A _{1g}	1	1	1	1	1	1	1	1	1	1		x^2+y^2, z^2
A _{2g}	1	1	1	-1	-1	1	1	1	-1	-1	Rz	
B _{1g}	1	-1	1	1	-1	1	-1	1	1	-1		x ² -y ²
B _{2g}	1	-1	1	-1	1	1	-1	1	-1	1		ху
Eg	2	0	-2	0	0	2	0	-2	0	0	(R_x, R_y)	(xz, yz)
A _{1u}	1	1	1	1	1	-1	-1	-1	-1	-1		
A _{2u}	1	1	1	-1	-1	-1	-1	-1	1	1	Z	
B _{1u}	1	-1	1	1	-1	-1	1	-1	-1	1		
B _{2u}	1	-1	1	-1	1	-1	1	-1	1	-1		
Eu	2	0	-2	0	0	-2	0	2	0	0	(x, y)	

Character table for D_{4h} point group

Y

	E	$C_2(z)$	σ _v (xz)	σ _v (yz)	linear, rotations	quadratic
A ₁	1	1	1	1	Z	x^2, y^2, z^2
A ₂	1	1	-1	-1	Rz	xy
B ₁	1	-1	1	-1	x, R _y	XZ
B ₂	1	-1	-1	1	y, R _x	yz

Character table for C_{2v} point group

Steps for determining SALCs/group orbitals

- 1) Determine the point group of your molecule. If the molecule is D_{wh} , use the D_{2h} character table. C_{wv} , use C_{2v} .
- Take stock of the valence orbitals of both the central and non-central atoms in the molecule
- 3) **Find** Γ_{orbital} for all the valence orbitals of the non-central atoms. If they are H's, you only determine Γ_{1s} . If it is a 2nd row p-block element, you calculate Γ_{2s} , Γ_{2pz} , Γ_{2px} , Γ_{2py}
- 4) Use the reduction formula to determine the irreducible representations that make up the Γ_{orbital} 's
- 5) Determine the orbitals on the central atom that match the irreducible representations from 3. These are the orbitals that can interact with the outer atoms
- 6) Determine what the group orbitals look like by matching them with the central atom orbitals determined in 4.

D_{3h}	Ε	$2C_3$	$3C_{2}$	σ_h	$2S_3$	$3\sigma_v$		
A_1'	1	1	1	1	1	1		$x^2 + y^2, z^2$
A'_2	1	1	-1	1	1	-1	R _z	
E'	2	$^{-1}$	0	2	-1	0	(x, y)	$(x^2 - y^2, xy)$
A_1''	1	1	1	-1	-1	-1		and the second
A_2''	1	1	-1	-1	-1	1	z	
E''	2	-1	0	$^{-2}$	1	0	(R_x, R_y)	(xz, yz)

Crystal Field Theory

- Repulsive Forces
- 1) d orbitals "feel" a repulsive interaction from ligands that change the energy levels of the d orbitals
- 2) Extent of the repulsive interaction for each d orbital depends on where the ligands are in space (geometry!!!)
- The result is that depending on the geometry, different d orbitals will have different relative energies

LFT approach to octahedral metal complex bonding (MO approach)

- Time to derive SALCs for an ML₆ complex!
- For now, we will just consider σ interactions between ligand and metal. You can derive SALCs by finding $\Gamma_{\rm s}$

- The end result after using reduction formula?
- $\Gamma_s = A_{1g} + T_{1u} + E_g$

O_h	Ε	8 <i>C</i> ₃	$6C_2$	$6C_4$	$3C_2 (= C_4^2)$	i	$6S_4$	8 <i>S</i> ₆	$3\sigma_h$	$6\sigma_d$		
A_{1g}	1	1	1	1	1	1	1	1	1	1		$x^2 + y^2 + z^2$
T_{1u}	3	0	-1	1	-1	-3	-1	0	1	1	(x, y, z)	
E_g	2	-1	0	0	2	2	0	-1	2	0		$(2z^2 - x^2 - y^2, x^2 - y^2)$

MO diagram of octahedral metal complex, sigma interactions only

The spectrochemical series

Next week's lab will explore this!

 The spectrochemical series ranks ligands in the order of their 'field strength'

- Strong field ligands produce complexes with a large Δ_o
- Weak field ligands produce complexes with a small Δ_o
- Strong field ligands are pi acceptors, weak field ligands are pi donors

Δ_{o} contributes to many different properties of metal complexes

- The magnitude of Δ_{o} , in other words, the size of the energy gap between the t2g and eg* orbitals, can contribute to many different properties of metal complexes
- Magnetic moment (high spin vs low spin)
 - lab this week
- Electronic spectra (UV-vis)
 - lab next week
- Kinetic stability (later lectures...)

Octahedral d-d splitting

- For **M**:
 - Δ_{o} increases with increasing charge on metal (shorter, stronger bonds = more interaction = more splitting)

• Δ_{o} (Fe²⁺) < Δ_{o} (Fe³⁺)

- Δ_{o} increases going down a group (larger d orbitals = more interaction with ligands = more splitting)
 - Δ_o (Fe²⁺) < Δ_o (Ru²⁺)
 - Note: 4d, 5d metals typically have only low configurations because of their large Δ_{o}

Octahedral d-d splitting

- For **L**:
 - Δ_o will depend on a number of characteristics of the ligand, most importantly, whether it can interact with the metal as a
 - sigma-only donor
 - sigma and pi donor
 - sigma donor and pi acceptor

Magnetic moment: High spin vs low spin complexes

- Low spin complexes: electrons fill lower energy d orbitals first (pairing energy < Δ_0)
- High spin complexes: electrons fill into lower and higher energy d orbitals before pairing (pairing energy > Δ_o)

Example d orbital splitting questions:

What would the d orbital splitting look like for these octahedral complexes compared to $M(NH_3)_6$? Take into account pi interactions from the CO ligands at either the axial or equatorial positions

