Reaction coordinate for ligand substitution

Extent of reaction

Labile and inert electronic configurations

Slow Reactions (Inert)

 d^3 , low-spin d^4 , d^5 , and d^6 Strong-field d^8 (square planar)

Moderate Rate

Weak-field d^8

Fast Reactions (Labile)

 $d^1,\,d^2,\,\mathrm{high}\text{-spin}\,d^4,\,d^5,\,\mathrm{and}\;d^6$ $d^7,\,d^9,\,d^{10}$

The trans effect

• Final ligand ranking a result of both pi and sigma effects

Ligand ranking for trans effect

 $CN^{-} \sim CO \sim C_2H_4 > PH_3 \sim SH_2 > NO_2^{-} > I^{-} > CI^{-} > NH_3 \sim py > OH^{-} > H_2O$

Large trans effect

Small trans effect

Strong pi acceptor → strong sigma donor → neither strong sigma donor or pi acceptor

TABLE 6.14 Hard and Soft Bases

Hard Bases	Borderline Bases	Soft Bases
		H^-
F ⁻ , Cl ⁻	Br ⁻	I ⁻
H_2O, OH^-, O^{2-}		H_2S, SH^-, S^{2-}
ROH, RO ⁻ , R ₂ O, CH ₃ COO ⁻		RSH, RS ^{$-$} , R ₂ S
NO_3^-, ClO_4^-	NO_2^{-}, N_3^{-}	SCN ⁻ , CN ⁻ , RNC, CO
CO ₃ ²⁻ , SO ₄ ²⁻ , PO ₄ ³⁻	SO3 ²⁻	S ₂ O ₃ ²⁻
NH ₃ , RNH ₂ , N ₂ H ₄	C ₆ H ₅ NH ₂ , C ₅ H ₅ N, N ₂	PR ₃ , P(OR) ₃ , AsR ₃ , C ₂ H ₄ , C ₆ H ₆

Classifications from R. G. Pearson, J. Chem. Educ, 1968, 45, 581.

TABLE 6.15 Hard and Soft Acids

Hard Acids	Borderline Acids	Soft Acids
H ⁺ , Li ⁺ , Na ⁺ , K ⁺		
Be ²⁺ , Mg ²⁺ , Ca ²⁺ , Sr ²⁺		
BF ₃ , BCl ₃ , B(OR) ₃	B(CH ₃) ₃	BH ₃ , Tl ⁺ , Tl(CH ₃) ₃
Al ³⁺ , Al(CH ₃) ₃ , AlCl ₃ , AlH ₃		
Cr ³⁺ , Mn ²⁺ , Fe ³⁺ , Co ³⁺	Fe ²⁺ , Co ²⁺ , Ni ²⁺ , Cu ²⁺ , Zn ²⁺ , Rh ³⁺ , Ir ³⁺ Ru ³⁺ , Os ²⁺	$\begin{array}{l} Cu^+, Ag^+, Au^+, Cd^{2+}, Hg_2{}^{2+}, Hg^{2+}, CH_3Hg^+,\\ [CO(CN)_5]^{2-}, Pd^{2+}, Pt^{2+}, Pt^{4+}, Br_2, I_2 \end{array}$
Ions with formal oxidation states of 4 or higher		Metals with zero oxidation state
HX (hydrogen-bonding molecules)		π acceptors: e.g., trinitrobenzene, quinines, tetracyanoethylene
Classifications from R. G. Pearson, J. Chem. Educ, 1968, 45, 58	1.	

OXIDATION-REDUCTION REACTIONS

CH 431 MFT Ch 12 Review material from CH302

Oxidation-reduction reactions

- In addition to ligand substitution, metal complexes can undergo oxidation-reduction reactions
- These involve electron transfer one metal complex to another
- Example:

Terminology

• Redox: refers to oxidation/reduction chemistry

- Reduction: gain of electrons
- Oxidation: loss of electrons Pneumonic: OIL RIG (oxidation is loss, reduction is gain)
- Oxidizing agent: a substance that oxidizes a substrate by being reduced
- Reducing agent: a substance that reduces a substrate by being oxidized

https://ch302.cm.utexas.edu/echem/index.php#redox/intro-redox.html

Reduction potential

 A reduction potential is a measure of the tendency of a species to be reduced, reported in volts

$$A^{n+} + e^{-} \rightarrow A^{(n-1)+} \qquad E^{\circ} = \qquad V$$

- More positive reduction potentials indicate greater tendency to be reduced
- Standard reduction potentials are measured vs. the standard hydrogen electrode (SHE)

$$2H^+ + 2e^- \rightarrow 2H_2$$

 $E^{\circ} = 0.00 V$

	Reduction Half-Reaction	1	E°(V)	
Stronger	$F_2(g) + 2e^-$	$\longrightarrow 2 F^{-}(aq)$	2.87	Weaker
oxidizing	$H_2O_2(aq) + 2H^*(aq) + 2e^-$	→ 2 H ₂ O(/)	1.78	reducing
agent	MnO ₄ -(aq) + 8 H*(aq) + 5 e-	\longrightarrow Mn ²⁺ (aq) + 4 H ₂ O(1)	1.51	agent
	Cl ₂ (g) + 2 e ⁻	$\longrightarrow 2 Cl^{-}(aq)$	1.36	
1	Cr2072-(aq) + 14 H+(aq) + 6 e	$r \longrightarrow 2 \operatorname{Cr}^{3+}(aq) + 7 \operatorname{H}_2O(1)$	1.33	
	$O_2(g) + 4H^+(aq) + 4e^-$	→ 2 H ₂ O(I)	1.23	
	$Br_2(aq) + 2e^-$	$\longrightarrow 2 Br^{-}(aq)$	1.09	
	Ag *(aq) + e-	$\longrightarrow Ag(s)$	0.80	
	$Fe^{3+}(aq) + e^{-}$	\longrightarrow Fe ²⁺ (aq)	0.77	
	$O_2(g) + 2 H^+(aq) + 2 e^-$	\longrightarrow H ₂ O ₂ (aq)	0.70	
	l ₂ (s) + 2 e ⁻	$\longrightarrow 2 I^{-}(aq)$	0.54	
	O2(g) + 2 H2O(l) + 4 e-		0.40	
	Cu ²⁺ (aq) + 2 e ⁻	\longrightarrow Cu(s)	0.34	
	Sn ⁴⁺ (<i>aq</i>) + 2 e ⁻	\longrightarrow Sn ²⁺ (aq)	0.15	
	2 H*(aq) + 2 e ⁻	$\longrightarrow H_2(g)$	0	
	$Pb^{2+}(aq) + 2e^{-}$	→ Pb(s)	- 0.13	
	Ni ²⁺ (aq) + 2 e ⁻	→ Ni(s)	- 0.26	
	Cd ²⁺ (aq) + 2 e ⁻	→ Cd(s)	- 0.40	
	Fe ²⁺ (aq) + 2 e ⁻	> Fe(s)	- 0.45	
	Zn ²⁺ (aq) + 2 e ⁻	\longrightarrow Zn(s)	- 0.76	
	2 H ₂ O(<i>l</i>) + 2 e ⁻	\longrightarrow H ₂ (g) + 2 OH ⁻ (aq)	- 0.83	
	Al ³⁺ (aq) + 3 e ⁻	\longrightarrow Al(s)	- 1.66	
Weaker	Mg ²⁺ (aq) + 2 e ⁻	\longrightarrow Mg(s)	- 2.37	Stronger
oxidizing	Na +(aq) + e-	→ Na(s)	- 2.71	reducing
agent	$Li^{+}(aq) + e^{-}$	→ Li(s)	- 3.04	agent

TABLE 17.1 Standard Reduction Potentials at 25 °C

https://ch302.cm.utexas.edu/echem/index.php#echem-cells/std-red-potentials.html

Measuring redox potentials

- Cyclic voltammetry (CV) is a method that can be used to measure redox potentials
- CV monitors electron flow (current) to and from a complex, electron flow increases around a complex's redox potential
- You will use (have used) this technique to characterize the ferrocene you make in lab.
 Ferrocene is a commonly used standard for CV

1. HSAB theory: softer ligands will shift potential more in favor of softer oxidation state, harder ligands will shift potential more in favor of harder oxidation state

Cu(II)–Cu(I) Reactions	E° (V)
$Cu^{2+} + 2 CN^- + e^- \implies [Cu(CN)_2]^-$	+1.103
$Cu^{2+} + e^- \iff Cu^+$	+0.153
$[Cu(NH_3)_4]^{2+} + e^- \iff [Cu(NH_3)_2]^+ + 2 NH_3$	-0.01

CN- soft ligand, NH_3 hard Cu^+ soft metal ion, Cu^{2+} borderline metal ion

2. LFSE: species that has highest LFSE will be favored

Co(III)–Co(II) Reactions	E ° (V)
$[\mathrm{Co}(\mathrm{H}_{2}\mathrm{O})_{6}]^{3+} + e^{-} \iff [\mathrm{Co}(\mathrm{H}_{2}\mathrm{O})_{6}]^{2+}$	+1.808
$[\operatorname{Co}(\operatorname{NH}_3)_6]^{3+} + e^- \iff [\operatorname{Co}(\operatorname{NH}_3)_6]^{2+}$	+0.108
$[Co(CN)_6]^{3-} + e^- \iff [Co(CN)_6]^{4-}$	-0.83

 Δ_{o} H₂O < NH₃ < CN⁻ (spectrochemical series)

Co³⁺ complexes are low spin d⁶ (LFSE: -12/5 Δ_{o})

 Δ_{o} for CN⁻ complex is very large. Thus, even though the soft CN⁻ ligand forms more stable complexes with the softer Co²⁺, the Co³⁺ complex is favored (remember, reduction will add an electron to the e_g orbital set, which will be the most destabilized in the CN- complex)

3. Coordination geometry: The geometry and coordination number that a ligand set imposes can modulate the redox potential of a metal complex

Geometry:

Cu(II): prefers square planar geometry

Cu(I): prefers tetrahedral geometry

Bulky R groups favor more tetrahedral configuration, E° is the least negative (most positive) for tBu ligand

3. Coordination geometry: The geometry and coordination number that a ligand set imposes can modulate the redox potential of a metal complex

Coordination number:

Comparing a 5-coordinate vs. a 4-coordinate Cu²⁺ complex, which complex would you expect to have the higher reduction potential?

In this case, we can think of coordinate ligands around the metal center as electron density: the 5-coordinate complex has more electron density around the metal than the 4-coordinate complex. Which would be more likely to accept additional electrons?

Electron transfer reactions

- Two metal complexes can react by simply transferring an electron from one complex to another
- Favorable reactions have positive net E° value

$$\begin{array}{ll} A^{n+} + e^{-} \rightarrow A^{(n-1)+} & E^{\circ} = + \ 1.0 \ V \\ B^{m+} + e^{-} \rightarrow B^{(m-1)+} & E^{\circ} = + \ 0.7 \ V \\ B^{(m-1)+} \rightarrow B^{m+} + e^{-} & E^{\circ} = - \ 0.7 \ V \ (\text{oxidation potential}) \end{array}$$

$$A^{n+} + B^{(m-1)+} \rightarrow A^{(n-1)+} + B^{m+} & E^{\circ} = + \ 0.3 \ V \end{array}$$

https://ch302.cm.utexas.edu/echem/index.php#echem-cells/std-cell-potentials.html

Example question

Which of the following metallocenes is the strongest reducing agent?

Half-reaction

E° (V) (Ferrocene potential set to 0)

Ferrocene: $Fe(C_5H_5)_2^+ + e^- \rightleftharpoons Fe(C_5H_5)_2$	0
Decamethyl ferrocene: $Fe(C_5Me_5)_2^+ + e^- \Rightarrow Fe(C_5Me_5)_2$	-0.59
Cobaltocene: $Co(C_5H_5)_2^+ + e^- \Rightarrow Co(C_5H_5)_2$	-1.33
Decamethyl cobaltocene: $Co(C_5Me_5)_2^+ e^- \rightleftharpoons Co(C_5Me_5)_2$	-1.94

 Which of the above metallocene(s) could be used as a reducing agent for the following reaction?

$$A^{n+} + e^{-} \rightarrow A^{(n-1)+} E^{\circ} = -1.0 V$$

Mechanisms of electron transfer: Outer sphere

In outer sphere electron transfer, transfer occurs between two separate coordination spheres (no linking ligand)

Mechanisms of electron transfer: Inner sphere

In inner sphere electron transfer, two molecules are connected by a ligand through which the electron is transferred

Mechanisms of electron transfer: Inner sphere

Inner sphere electron transfer can sometimes be accompanied by exchange of bridging ligand between metal complexes

Take away messages

- Reduction is gain of electrons, oxidation is loss of electrons
- Reductions with more positive reduction potentials are more thermodynamically favored
- Ligand coordination environment can tune reduction potentials
- Electron transfer reactions involve the reduction of one species and the oxidation of another
- Inner sphere and outer sphere mechanisms exist for electron transfer (know the basics from this lecture but you do not need to know all the material in MFT 12.8.1)