THE BASICS

Basic shapes of atomic orbitals

Aufbau principle

Periodic trends: ionization energy

Atomic number

Periodic trends: Atomic size

TABLE 2.8 Nonpolar Covalent Radii (pm)

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Н																	He
32																	31
Li	Be											В	C	N	O	F	Ne
123	89											82	77	75	73	71	69
Na	Mg											Al	Si	P	S	Cl	Ar
154	136											118	111	106	102	99	98
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
203	174	144	132	122	118	117	117	116	115	117	125	126	122	120	117	114	111
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
216	191	162	145	134	130	127	125	125	128	134	148	144	140	140	136	133	126
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Ra
235	198	169	144	134	130	128	126	127	130	134	149	148	147	146	(146)	(145)	

Source: Data from R. T. Sanderson, Inorganic Chemistry, Reinhold, New York, 1967, p. 74; and E. C. M. Chen, J. G. Dojahn, W. E. Wentworth, J. Phys. Chem. A, 1997, 101, 3088.

Lewis dot structures

H: 2 e-s from O-H bond O: 4 e-s from 2 O-H bonds 4 e-s from 2 lone pairs

$$0=C=0$$

O: 4 e⁻s from C=O double bond 4 e⁻s from 2 lone pairs C: 8 e⁻s from 2 C=O double bond

$$H-C\equiv C-H$$

H: 2 e-s from bonding pair
C: 2 e-s from C-H bond
6 e-s from C=C triple bond

VSEPR

The systems in this table have the same groups surrounding the central atom

Steric Number	Geometry	Examples	Calculated Bond Angles	
2	Linear	CO_2	180°	O=C=O
3	Trigonal (triangular)	SO ₃	120°	O
4	Tetrahedral	CH ₄	109.5°	H H
5	Trigonal bipyramidal	PCl ₅	120°, 90°	CI CI P—CI CI CI
6	Octahedral	SF_6	90°	F = F $F = F$ $F = F$
7	Pentagonal bipyramidal	IF ₇	72°, 90°	FFF
8	Square antiprismatic	$[\mathrm{TaF_g}]^{3-}$	70.5°, 99.6°, 109.5°	F F F

SYMMETRY

Symmetry all around us

Symmetry operations

n-fold improper rotation S_n

σ

mirror plane σ_v

mirror plane எd

Point group flow chart

Point group short cuts

Character Table

$C_{2\nu}$	Е	C_2	$\sigma_v(xz)$	$\sigma_{v}'(yz)$	Matching Functions	
A_1	1	1	1	1	z	x^2, y^2, z^2
A_2	1	1	-1	-1	R_z	xy
\boldsymbol{B}_1	1	-1	1	-1	x, R_y	XZ
B_2	1	-1	-1	1	y, R_x	yz

Molecular Vibrations and Vibrational Spectroscopy

 Character tables are very useful for analyzing molecular vibrations and predicting peaks in Infrared and Raman spectra of a molecule

IR spectra (CO region) of *cis* vs *trans* Mo(PPh₃)₄(CO)₂

Figure 1. Infrared spectra in the CO stretching region in tetrachloroethylene of Mo(CO)₄[PPh₃]₂: A, cis-Mo(CO)₄[PPh₃]₂; B, trans-Mo(CO)₄[PPh₃]₂.

MO diagram of octahedral metal complex, sigma interactions only

COORDINATION CHEMISTRY

Acid-Base Donor-Acceptor Chemistry

 In a coordination compound, the metal center (Mⁿ⁺) acts as a Lewis acid and the ligand (L) acts as a Lewis base

Hard Soft Acid Base Theory

- Metal-ligand bonds are a result of the interaction between a Lewis acid and a Lewis base
- These acids and bases can be described as either hard or soft
- Hard acid or base: small, compact, non-polarizable
 - Hard acids: typically cations with large postive charge (3+ or larger), cations whose d electrons aren't available for π bonding (e.g. alkali and alkaline earth cations)
 - Hard bases: smaller anions, like F⁻
- Soft acid or base: larger, less compact, more polarizable
 - Soft acids: typically cations with d electrons are available for π bonding, neutral metals, 1+ cations, 2+ cations that are heavier
 - Soft bases: larger anions, like I⁻

Octahedral crystal field splitting

Next week's lab will explore this!

The spectrochemical series

 The spectrochemical series ranks ligands in the order of their 'field strength'

- Strong field ligands produce complexes with a large Δ_o
- Weak field ligands produce complexes with a small Δ_{o}
- Strong field ligands are pi acceptors, weak field ligands are pi donors

Electronic spectra: UV-vis

Energy

 Remember: color of light absorbed by the compound is complementary to the color it is (see color wheel)

Spin only magnetic moment

$$\mu_S = g\sqrt{[S(S+1)]}$$

You must know this equation!

 μ = magnetic moment

g = gyromagnetic ratio (= $2.00023 \mu_B/Bohr magnetons$)

S = spin quantum number

Orbital contribution (L) is more important in molecules containing larger orbitals (metals from 4d, 5d, 4f...)

Ligand Field Stabilization Energy (LFSE)

- LFSE: stabilization energy associated with a specific electronic configuration
- LFSE = $(-2/5\Delta_o)$ x (# of t_2 g electrons) + $(3/5\Delta_o)$ x (# of e_g electrons)

This is for octahedral geometry! Other geometries will have similar types of calculations but numbers are different

- LFSE for low spin d⁵: $(-2/5\Delta_o)^*5 = -2\Delta_o$
- LFSE for high spin d⁵: $(-2/5\Delta_{o})*3 + (3/5\Delta_{o})*2 = 0$
- More negative values are more stable, (however if Δ_o is small, so is the LFSE, so h.s. complexes are observed!)

d orbital splitting in Tetrahedral geometry

- Tetrahedral splitting, Δ_t , is not as large as Δ_o because only 4 ligands in tetrahedral vs. 6 ligands in octahedral
- $\Delta_{\rm t} \approx 4/9\Delta_{\rm o}$
- As a result of this smaller splitting, in practice tetrahedral complexes are high spin

LFSE can be calculated in tetrahedral just as in octahedral, except using the coefficients shown here

Note: coefficients used for LFSE calculations will give a LFSE = 0 d¹⁰ and high spin d⁵ complexes

Reaction coordinate for ligand substitution

Labile and inert electronic configurations

Slow Reactions (Inert)

 d^3 , low-spin d^4 , d^5 , and d^6

Strong-field d^8 (square planar)

Moderate Rate

Weak-field d^8

Fast Reactions (Labile)

 d^1 , d^2 , high-spin d^4 , d^5 , and d^6 d^7 , d^9 , d^{10}

Reaction coordinates

Dissociative mechanism

 $\frac{1}{2} \frac{1}{2} \frac{1}$

Extent of reaction (a)

Associative mechanism

Extent of reaction (b)

Substitution reactions in square-planar complexes

- In square planar complexes, substitution reactions tend to follow an associative-type mechanism
- Evidence for this comes from the large effect the incoming ligand has on reaction rates (Table 12.12)

$$ML_2TX + Y \rightarrow ML_2TXY \rightarrow ML_2TY$$

For example, if M is Pt(II): the identity of Y affect rate of reaction:

$$Cl^- < Br^- < l^- < SCN^- < PR_3$$

Trend follows HSAB (Pt(II) is soft)

The *trans* effect

Final ligand ranking a result of both pi and sigma effects

Ligand ranking for trans effect

 $CN^{-} \sim CO \sim C_2H_4 > PH_3 \sim SH_2 > NO_2^{-} > I^{-} > CI^{-} > NH_3 \sim py > OH^{-} > H_2O$

Large trans effect

Small trans effect

Strong pi acceptor → strong sigma donor → neither strong sigma donor or pi acceptor

Redox

Redox: refers to oxidation/reduction chemistry

Reduction: gain of electrons

Oxidation: loss of electrons

Pneumonic: OIL RIG (oxidation is loss, reduction is gain)

- Oxidizing agent: a substance that oxidizes a substrate by being reduced
- Reducing agent: a substance that reduces a substrate by being oxidized

ORGANOMETALLIC CHEMISTRY

History of organometallic chemistry: Zeise' salt

• The first reported organometallic compound: Zeise's salt (1827), structure was not verified until 1868

- This was the first compound identified in which an organic molecule was attached to a metal center through it's pi electrons
- →What do you think the orbital interactions look like in the alkene-metal bond?

The 18 electron rule

- In main group chemistry, we have the octet rule, namely compounds tend to have 8 electrons surrounding each atom to fill their valence shell
- For metal complexes, the valence shell consists of s, p, and d electrons, which gives us 18 total spots for electrons in the valence shell
- Organometallic complexes often follow the 18 electron rule, though just like the octet rule, there are exceptions

CO interactions with a metal center

Covered previously with crystal field theory and spectrochemical series

Experimental evidence for differences in M-CO interactions

- Sigma bond between CO and M takes electron density away from CO bond
- π backbonding donates electron density into π^* anti-bonding orbitals of CO
- →Both interactions will weaken the CO bond: this results in lower IR stretching energy and longer CO bond
- Example: free CO vs. Cr(CO)₆

	CO stretching frequency (IR)	C-O bond distance
Free CO	2143 cm ⁻¹	112.8 pm
Cr(CO) ₆	2000 cm ⁻¹	~115 pm

- →Smaller cm⁻¹ = lower energy = weaker bond
- →Longer bond = lower bond order = weaker bond

Orbital interactions in

ferrocene: FeCp₂

Ligand dissociation: CO dissociation

- CO can be lost from a metal complex either thermally (with heat) or photochemically (with light)
- The reaction will either cause the metal complex to rearrange or for CO to be replaced by another ligand

$$Fe(CO)_5 + P(CH_3)_3 \xrightarrow{\Delta} Fe(CO)_4(P(CH_3)_3) + CO$$

Oxidative addition and reductive elimination

- Oxidative addition (OA) involves both oxidation of the metal center and addition of ligands to the metal coordination sphere
- The reverse reaction is called reductive elimination (RE) which involves both reduction of the metal center elimination of ligands from the metal coordination sphere

$$L_nM + X - Y \qquad \stackrel{OA}{\rightleftharpoons} \qquad L_nM \stackrel{X}{\searrow}$$

Type of Reaction	Change in Coordination Number	Change in Formal Oxidation State of Metal	Change in Electron Count
Oxidative addition	Increase by 2	Increase by 2	Increase by 2
Reductive elimination	Decrease by 2	Decrease by 2	Decrease by 2

Sigma bond metathesis

 In this type of reaction, two sigma bonded ligands are exchanged on a metal center without a change in metal oxidation state

$$S_{c}-CH_{3}+CH_{4}$$

 In this reaction, C-H bond of methane is made and C-H bond of benzene is cleaved

1,1 insertions

Both new bonds formed are to the same atom

1,2 insertions

New bonds are made to adjacent (1,2) atoms

Hydride elimination

- In hydride eliminations, a hydrogen atom is transferred from a ligand to a metal
- The most common is Beta hydride elimination

- Metal-alkyl complexes without beta hydrogens are more stable because they cannot undergo beta hydride elimination
- Alpha, gamma, and other hydride eliminations are also possible

Abstraction reactions

- These are elimination reactions in which the coordination number of the metal does not change
- Mediated by an external reagent like a Lewis acid

Hydrogenation: Wilkinson's Catalyst

- First known homogeneous hydrogenation catalyst (1966)
- The choice of ligand plays an important role in selectivity of the catalyst
- The bulky PPh₃ ligands (cone angle) make the catalyst selective for unhindered positions on alkenes

Final

- Old Material (~50%)
- New Material (~50%)
- One question on final projects: short answer, will be asked to broadly describe the uses/functions of molecules people presented on for final projects-you do not need the fine details! Just a broad 1-2 sentence description of why the molecule is interesting in the real world.

