Web Programming Step by Step, 2nd Edition

Chapter 5

L Slides courtesy: Stepp, Miller & Kirst)

p
URLs and web servers

http://server/path/file
+ usually when you type a URL in your browser:
your computer looks up the server's IP address using DNS
your browser connects to that IP address and requests the given file

the web server software (e.g. Apache) grabs that file from the server's
local file system, and sends back its contents to you

- some URLs actually specify programs that the web server

should run, and then send their output back to you as the
result:

https://webster.cs.washington.edu/cse190m/quote.php

the above URL tells the server webster.cs.washington.edu to run the
program quote.php and send back its output

What is PHP?

+ PHP stands for "PHP Hypertext Preprocessor"

- a server-side scripting language

+ used to make web pages dynamic:
provide different content depending on context
interface with other services: database, e-mail, etc
authenticate users

Php

process form information
+ PHP code can be embedded in XHTML code

ORLE”

~
5.1: Server-Side Basics

-+ 5.1: Server-Side Basics

- 5.2: PHP Basic Syntax

- 5.3: Embedded PHP

+ 5.4: Advanced PHP Syntax

p
Server-Side web programming

MMMMMM

- server-side pages are programs written using one of many
web programming languages/frameworks
- examples: PHP, Java/JSP, Ruby on
Rails, ASP.NET, Python, Perl

- the web server contains software that allows it to run those
programs and send back their output

- each language/framework has its pros and cons
- we use PHP for server-side programming in this textbook

p
Lifecycle of a PHP web request

Web Browser Web Server

http://example.com/hello.php | ++ GET PHP Script

hello.php

Hello world! 2]

User's Computer Server Computer

- browser requests a .html file (static content): server just
sends that file
- browser requests a .php file (dynamic content): server reads

it, runs any script code inside it, then sends result across the
network

script produces output that becomes the response sent back

p
Why PHP?

- There are many other options for server-side languages:
Ruby on Rails, JSP, ASP.NET, etc. Why choose PHP?

- free and open source: anyone can run a PHP-enabled
server free of charge

- compatible: supported by most popular web servers

- simple: lots of built-in functionality; familiar syntax

- available: installed on UCY's servers and most commercial
web hosts

- well-documented: type php.net/functionName in browser
Address bar to get docs for any function

p
Viewing PHP output

@ Mozilla Firefox [=T)E3|[@ Mozilla Firefox AEX]

File Edit View History Bookmarks Tools Help File Edit View History Bookmarks Tools Help

@-H-@ £} (G file:///C:/Dol=[®] G| Gooale [<] -»-@ 4% [http://localh = &) G- [4)
Hello, dl

Done o Done o

+ you can't view your .php page on your local hard drive; you'll
either see nothing or see the PHP source code

- if you upload the file to a PHP-enabled web server,
requesting the .php file will run the program and send you
back its output

p
PHP syntax template

HTML content
<?php
PHP code
?>
HTML content
<?php
PHP code
?>
HTML content ...

+ any contents of a .php file between <?php and ?> are
executed as PHP code

- all other contents are output as pure HTML
- can switch back and forth between HTML and PHP "modes"

e
Hello, World!

- The following contents could go into a file hello.php:

<?php
print “"Hello, world!";
2>

i—Iello, world! output

* a block or file of PHP code begins with <?php and ends with ?>
» PHP statements, function declarations, etc. appear between these
endpoints

p
5.2: PHP Basic Syntax

- 5.1: Server-Side Basics

+ 5.2: PHP Basic Syntax

+ 5.3: Embedded PHP

+ 5.4: Advanced PHP Syntax

(Console output: W

print "text";
print "Hello, World!\n";
print "Escape \"chars\" are the SAME as in Java!\n";

print "You can have
line breaks in a string.";

print 'A string can use "single-quotes". It\'s cool!';
Hello, World! Escape "chars" are the SAME as in Java! You can have line breaks in a string. A string can

use "single-quotes". It's cool! output
- some PHP programmers use the equivalent echo instead
of print
\\ /12

p
Arithmetic operators

+-*1%
e
= += -= = /:: 96: =

many operators auto-convert types: 5 + "7" is 12

- I
4 N
Types
+ basic types: int, , ,))
test what type a variable is with is_type functions,
e.g.
function returns a variable's type as a string (not
often needed)
PHP in many cases:
string — int auto-conversionon + ("1"+1==2)
int — float auto-conversionon/ (3/2==1.5)
- type-cast with (type):
$age = (int) "21";
\\ /15
(loop w

for (initialization; condition; update) {
statements;

for ($i = 0; $i < 10; $i++) {
print "$i squared is " . $i * $i . ".\n";

(Variables
|

$name = expression;

$user_name = "PinkHeartLuvr78";

$age = 16;

$drinking_age = $age + 5;

$this_class_rocks = TRUE;
+ names are case sensitive; separate multiple words with _
- names always begin with $, on both declaration and usage
- implicitly declared by assignment (type is not written; a

"loosely typed" language)

p
Comments

single-line comment

// single-line comment

/*
multi-line comment
*/

- like Java, but # is also allowed
a lot of PHP code uses # comments instead of /
we recommend # and will use it in our examples

(statement
[

if (condition) {
statements;

elseif (condition) {
statements;

else

statements;

e

NOTE: although elseif keyword is much more
common, else if is also supported

e

loop (same as Java)

while (condition) {
statements;

do {
statements;
} while (condition);

. and keywords also behave as in Java
- break ends execution of the current for, foreach, while, do-while
or switch structure
- continue is used within looping structures to skip the rest of the
current loop iteration and continue execution at the condition
evaluation and then the beginning of the next iteration.

- e
(s

int and float types

$a =7/ 2; # float: 3.5 ‘

$b = (int) $%$a; # int: 3

$c = round(%$a); # float: 4.0

$d = "123"; # string: "123"

$e = (int) $d; # int: 123

- int for integers and £loat for reals
- division between two int values can produce a float

.
Interpreted strings

$age = 16;
print—You—are—"——% - e

$age— af
print "You are $age years old.\n";

A
You are 16 years old.

- strings inside " " are interpreted

variables that appear inside them will have their values
inserted into the string

- strings inside ' ' are not interpreted:

print 'You are $age years old.\n'; # You are $age years old.\n

$a = 3;

$b = 4;

$c = sqrt(pow($a, 2) + pow($b, 2));
abs | ceil | cos |floor |log|logl® | max
min [pow |rand|round|sin|sgrt |tan

math functions

math constants

- the syntax for method calls, parameters, returns is the same
as Java

\\ /zo
I
type
$favorite_food = "Ethiopian";
print $favorite_food[2]; # h
+ zero-based indexing using bracket notation
- string concatenation operator is . (period), not +
5 + "2 turtle doves" produces 7
5. "2 turtle doves" produces "52 turtle doves"
- can be specified with "" or '
\\ /zz
N

p
String functions

Name Java Equivalent

length
indexOf

substring

3 toLowerCase, toUpperCase

trim

b split, join

compareTo

index ©123456789012345

$name = "Stefanie Hatcher";
$length = strlen($name);

$cmp = stremp($name, "Brian Le");
$index = strpos($name, "e");
$first = substr($name, 9, 5);
$name = strtoupper($name);

16
>0
2

EE

Hatch"
"STEFANIE HATCHER"

. . N
String functions (ctd)
Name
array (string, string)
string (string, array)
[,string])
rtrim
ltrim
\\ A/és
g N
5.3: Embedded PHP
- 5.1: Server-Side Basics
- 5.2: PHP Basic Syntax
+ 5.3: Embedded PHP
+ 5.4: Advanced PHP Syntax
\\ A/€7
N

e
Embedding PHP in HTML

<IDOCTYPE html>

<html> < HTML Mode

<head><title>My web page</title></head>

<body>

(<?php) Encer PHP Mode
for ($i = 1; $i <= 100; $i++) {

2>) : Exit PHP Mode
<p>Hello world!</p> HTML Mode

(<?php h - Enter PHP Mode

\'_3>) < Exit PHP Mode

</body>

i < HTML Mode

o o

(Boolean) type W

$feels_like_summer = FALSE;
$php_is_rad = TRUE;

$student_count = 217;

$nonzero = (bool) $student_count; # TRUE
- the following values are considered to be FALSE (all others
are TRUE):
0and 0.0

" "0", and NULL (includes unset variables)
arrays with 0 elements
- can cast to boolean using (bool)

FALSE prints as an empty string (no output); TRUE prints as
al

p
Printing HTML tags in PHP = bad style

<?php

print "<IDOCTYPE html PUBLIC \"-//W3C//DTD XHTML 1.1//EN\"\n";
print " \"http://www.w3.0org/TR/xhtml11/DTD/xhtmlll.dtd\">\n";
print "<html xmlns=\"http://www.w3.org/1999/xhtml\">\n";

print " <head>\n";

print " <title>Geneva's web page</title>\n";

for ($i = 1; $i <= 10; $i++) {
print "<p> I can count to $i! </p>\n";

- printing HTML tags with print statements is bad style and
error-prone:
must quote the HTML and escape special characters, e.g. \"
+ but without print, how do we insert dynamic content into the
page?

(PHP expression blocks W

<?= expression ?>

<h2> The answer is <?= 6 * 7 ?> </h2>
The answer is 42 output]

PHP expression block: evaluates and embeds an
expression's value into HTML
<?=expr ?> isequivalentto <?php print expr; ?>

q .
Expression block example

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtml11l.dtd">
<html xmlns="http://www.w3.0org/1999/xhtml">
<head><title>CSE 190 M: Embedded PHP</title></head>
<body>
<?php for ($i = 99; $i >= 1; $i--) { ?>
<p> <?= $i ?> bottles of beer on the wall,

<?= $i ?> bottles of beer.

Take one down, pass it around,

<?= $i - 1 ?> bottles of beer on the wall. </p>
<?php } ?>
</body>
</html>

(Complex expression blocks

<body>
<php for ($i = 1; $i <= 3; $i++) { >
<h<?= $i ?>>This is a level <?= $i ?> heading.</h<?= $i ?>>
<?php } 2>
</body>
This is a level 1 heading.
This is a level 2 heading.
This is a level 3 heading.

+ expression blocks can even go inside HTML tags and
attributes

output

"NULL

$name = "Victoria";
$name = NULL;
if (isset($name)) {

print "This line isn't going to be reached.\n";

+ avariable is NULL if
it has not been set to any value (undefined variables)
it has been assigned the constant NULL
it has been deleted using the function

-+ can test if a variable is NULL using the

+ NULL prints as an empty string (no output)

function

(Common errors: unclosed braces, missing = sign

<body>
<p>Watch how high I can count:
<?php for ($i = 1; $i <= 10; $i++) { 2>
<? $i >
</p>
</body>
</html>

- </body> and </html> above are inside the for loop, which
is never closed

- if you forget to close your braces,
'unexpected $end'’

about

- if you forget = in <?=, the expression

p
5.4: Advanced PHP Syntax

- 5.1: Server-Side Basics

- 5.2: PHP Basic Syntax

+ 5.3: Embedded PHP

+ 5.4: Advanced PHP Syntax

+ 6.1: Parameterized Pages

(

$name = array(); # create
$name = array(value0, valuet, ..., valueN);
$name[index]
$name[index] = value;
$name[] = value;

get element value
set element value
append

$a = array(); # empty array (length @)

$a[0] = 23; # stores 23 at index © (length 1)

$a2 = array("some", "strings", "in", "an", "array");

$a2[] = "Ooh!"; # add string to end (at index 5)

- array () :creates empty array
- to append, use bracket notation without specifying an index
- element type is not specified; can mix types

- element indexes can be non-consecutive
- if you assign a value at an index that is past the end of the
array, the array creates a new index and element at that index

4 . N

Array functions

function name(s) description
number of elements in the array
print array's contents
2 b using array as a stack/queue
A ; 5 searching and reordering
b b s creating, filling, filtering
b y , |processing elements

\\ /37
(. N

The foreach loop

foreach ($array as $variableName) {

=

$5tocggs = ar‘r?y("Lar‘r‘y", "Moe", "Cur_‘ly", "Shemp") ;

JPrineosslaps—isstsogeatiiiiinty

foreach ($stooges as $stooge) {

print "Moe slaps $stooge\n”; # even himself!

+ a convenient way to loop over each element of an array

without indexes

\\ /39

(Example with explode w
\

Martin D Stepp contents of input file names . txl

Jessica K Miller
Victoria R Kirst

foreach (file("names.txt") as $name) {
$tokens = explode(™ ", $name);

?>
<p> author: <?= $tokens[2] ?>, <?= $tokens[@] ?> </p>
<?php

author: Stepp, Marty
author: Miller, Jessica

author: Kirst, Victoria output

file: Returns the file in an array.
Each element of the array corresponds to a line in the file, with
the newline still attached.

(Array function example W

$tas = array("MD", "BH", "KK", "HM", "JP");
for ($i = 0; $i < count($tas); $i++) {

$tas[$i] = strtolower($tas[$i]);
)

("md", "bh", "kk", "hm", "jp")
$morgan = array_shift($tas); # ("bh", "kk", "hm", “"jp")
array_pop($tas); # ("bh", "kk", "hm")
array_push($tas, "ms"); # ("bh", "kk", "hm", "ms")
array_reverse($tas); # ("ms", "hm", "kk", “"bh")
sort($tas); # ("bh", "hm", "kk", "ms")
$best = array_slice($tas, 1, 2); # ("hm", "kk")

- the array in PHP replaces many other collections in Java
list, stack, queue, set, map, ...

/Splitting/joining strings w

$array = explode(delimiter, string);
$string = implode(delimiter, array);

"CSE 190 M";

$s =
$a = explode(" ", $s); # ("CSE", "190", "M")
$s2 = implode("...", $a); # "CSE...190...M"

- explode and implode convert between strings and arrays

- for more complex string splitting, you can use regular
expressions (later)

<?php <2php
$pizza - "piecel piece2 pieced piecet pieces pieces”;

$array = array('lastname’, ‘email’, 'phone'); $pieces = explode(” °, $pizza);

$comma_separated = implode(",", $array); echo $pieces[0]; // piecel

echo $pieces(1];
echo $comma_separated; m il,ph
anp

$data = *foo:+:1023:1000: :/home/foo: /bin/sh";

mpt g when ing an empty y list($user, $pass, $uid, $gid, $gecos, $home, $shell) = explode(":", $data);
var_dump(implode(‘hello’, array())); ring(echo $user; // o
echo $pass;
7>
¢ .
Query strings and parameters

URL?name=value&name=value. . .
http://www.google.com/search?q=0bama

http://example.com/student_login.php?username=stepp&id=1234567

+ query string: a set of parameters passed from a browser to a
web server
often passed by placing name/value pairs at the end of a
URL
above, parameter username has value stepp, and id has
value 1234567
+ PHP code on the server can examine and utilize the value of
parameters
- a way for PHP code to produce different output based on
values passed by the user

p
Query parameters: w

$user_name = $_REQUEST["username"];

$id_number = (int) $_REQUEST["id"];

$eats_meat = FALSE;

if (isset($_REQUEST["meat"])) {
$eats_meat = TRUE;

$_REQUEST ["parameter name"] returns a parameter's
value as a string

- test whether a given parameter was passed with isset

p
Calling functions W

name(expression, ..., expression);

$w = 163; # pounds

$h 70; # inches
$my_bmi = bmi($w, $h);

parameters are passed “by value” (kat’ a&ia / pue Tiun),
meaning that the actual parameter values are copied into the
functions

parameters are also passed “by reference” (kat’ avapopa),
which causes the function’s parameters to be an alias or link
to the original parameter

- to do this, place a & before the $ in front of its name

if the wrong number of parameters are passed, it's an error

\\ 4/&
Vs
Default parameter values
function name(parameterName = value, ..., parameterName = value) { ‘
statements;
function print_separated($str, $separator = ", ") {

if (strlen($str) > 0) {
print $str[e];
for ($1 = 1; $i < strlen($str); $i++) {

print $separator . $str[$i];
}
}
print_separated("hello"); #h,e, 1,1, 0
print_separated("hello", "-"); # h-e-1-1-0

if no value is passed, the default will be used (defaults must
come last)

e .
Functions

function name(parameterName, ..., parameterName) {
statements;

}

function bmi($weight, $height) {
$result = 703 * $weight / $height / $height;
return $result;

}

- parameter types and return types are not written
- a function with no return statements is implicitly "void"

-+ can be declared in any PHP block, at start/end/middle
of code

Ny
Variable scope: global and local vars

$school = "UW"; # global
function downgrade() {

global $school;

$suffix = "(Wisconsin)"; # local

$school = "$school $suffix";
print "$school\n";

- variables declared in a function are local to that
function; others are global

- PHP does not have a narrower scope than function-
level

- if a function wants to use a global variable, it must
have a global statement

but don't abuse this; mostly you should use
___ parameters

s

function make_bigger($num) { $num = $num * 2.2;}

B9: 38

make_bigger($x);
print $x;

Mola Tiun Oa ekTunwOE(;

= 10.1

ENA42S

function make_bigger(&$num) { $num = $num * 2.2;}

8

make_bigger($x);
print $x;

e

3H

Motd Tiun Ba ekTunwOe(;

= 10.1

EIIA425

p
PHP file I/0 functions

function name(s) category

file, file_get_contents, reading/writing entire files

file_put_contents

basename, file_exists, filesize, asking for information
fileperms, filemtime, is_dir,

is_readable, is_writable, disk_free_space

copy, rename, unlink, chmod
chgrp, chown, mkdir, rmdir

manipulating files and directories

glob, scandir reading directories

(| . C g N
Reading an entire file
. returns entire contents of a file as a string
if the file doesn't exist, you will get a warning and an empty
return string
reverse a file
$text = file_get_contents("poem.txt");
$text = strrev($text);
file_put_contents("poem.txt", $text);
\\ ,Ax

<?php
$firstname=“Victoria”;

A

<?php

4 $fullname = “$firstname” .
7>

<p>Your full name is <?= $fullname ?></p>

3

“Kirst”; n

s

T 6a ekTUTIWOEL KATA TN HETAPOPTWON TOU apXeiou;

= Your full name is Victoria Kirst
= Your full name is Kirst

= Your full name is NULL Kirst

EIA42S

(- .
The function

. returns the lines of a file as an array of strings

- each ends with \n ;

- to strip it, use an optional second parameter:
$lines = file("todolist.txt", FILE_IGNORE_NEW_ LINES);

+ common idiom: foreach or for loop over lines of file

display lines of file as a bulleted list

$lines = file("todolist.txt");

foreach ($lines as $line) {
print "<1i>$line</1i>\n";

for ($1i = 0; $i < count($lines); $i++)

(" N
Reading files
contents of foo.txt file("foo.txt") file_get_contents("foo.txt")
Hello array("Hello\n", # 0 "Hello\n
how r u? "how r ul\n", # | how r ul\n # a single
"\n", #2 \n # string
I'm fine "I'm fine\n" #3) I'm fine\n"
\ u

(Unpacking an array: list w

list($vart, ..., $varN) = array;

Marty Stepp
(206) 685-2181
570-86-7326

contents of input file personal . txt

list($name, $phone, $ssn) = file("personal.txt");

the odd list function "unpacks" an array into a set of
variables you declare
when you know a file's exact length/format, use file and list
to unpack it
\\ ,ﬁs

(" N
Reading directories
function description
scandir returns an array of all file names in a given directory
(returns just the file names, such as "myfile.txt")
glob returns an array of all file names that match a given pattern
(returns a file path and name, such as "foolbar/myfile.txt")
glob can accept a general path with the * wildcard character
\\ A/@7
(scandlr example w

<?php
$folder = “"taxes/old";
foreach (scandir($folder) as $filename) {
print "$filename\n"
2>

« 2007 w2.pdf

« 2006_1099.doc output

scandir sucks; current directory (".") and parent ("..") are
included in the array

don't need basename with scandir; returns file names only
without directory

- s

(\Arwies . .
Writing / Appending to a file W
. writes a string into a file, replacing its old
contents
if the file doesn't exist, it will be created
add a line to a file

$new_text = "P.S. ILY, GTG TTYL!~";
file_put_contents("poem.txt", $new_text, FILE_APPEND);

old contents new contents

Roses are red, Roses are red,
Violets are blue. [Violets are blue.
All my base, All my base,

Are belong to you. |[Are belong to you.
P.S. ILY, GTG TTYL!~

p
glob example w

reverse all poems in the poetry directory

$poems = glob("poetry/poem*.dat");

foreach ($poems as $poemfile)
$text = file_get_contents($poemfile);
file_put_contents($poemfile, strrev($text));
print "<p>I just reversed " . basename($poemfile) . "</p>\n";

glob can match a "wildcard" path with the * character

glob("foo/bar/*.doc") returns all .doc files in the foo/
bar subdirectory

glob("food*") returns all files whose names begin with "food"

the basename function strips any leading directory from a
file path

basename("foo/bar/baz.txt") returns "baz.txt"

e
Why use classes and objects?

PHP is a primarily procedural language

small programs are easily written without adding any classes
or objects

larger programs, however, become cluttered with so many
disorganized functions

grouping related data and behavior into objects helps manage
size and complexity

e e
Constructing and using objects w Object example: Fetch file from web

construct an object # create an HTTP request to fetch student.php

$name = new ClassName(parameters); $req = new HttpRequest(“"student.php", HttpRequest::METH_GET);
$params = array("first_name" => $fname, "last_name" => $lname);

access an object's field (if the field is public) $req->addPostFields($params);

$name- >fieldName
send request and examine result

call an object's method $req->send();

$name->methodName (parameters) ; $http_result_code = $req->getResponseCode(); # 200 means OK
print "$http_result_code\n";

$zip = new ZipArchive(); print $req->getResponseBody();

$zip->open("moviefiles.zip");
$zip->extractTo("images/");
$zip->close();

- PHP's object can fetch a document from the
- the above code web

- test whether a class is installed with

p
Class declaration syntax W (Class example

{
class ClassName { ‘
fields - data inside each object <?php
public $name; # public field class Point {
private $name; # private field public $x;
constructor - initializes each object's state pUbLECRE
public function __construct(parameters) {

statement(s) ; # equivalent of a Java constructor

public function __construct($x, $y) {
$this->x = $x;

method - behavior of each object $this->y = $y;

public function name(parameters) {

statements; public function distance($p) {

} } $dx $this->x - $p->x;
$dy = $this->y - $p->y;
return sqrt($dx * $dx + $dy * $dy);

inside a constructor or method, refer to the current object 3 CoEEReTS 6F SErals CeSRTs R

i public function __ toString() {
as $th|S return "(" . $this->x . ", " . $this->y . ")";

e .
Class usage example w Basic

<?php class ClassName extends ClassName {
this code could go into a file named use_point.php

include("Point.php"); }

$pl = new Point(e, 0); class Point3D extends Point {

$p2 = new Point(4, 3); . public $z;

print "Distance between $pl and $p2 is " . $pl->distance($p2) . "\n\n";

public function __construct($x, $y, $z) {
parent::__construct($x, $y);

var_dump($p2); # var_dump prints detailed state of an object
> $this->z = $z;

Distance between (0, 0) and (4, 3) is 5
object (Point) [2]

public 'x' => int 4 ¥
public 'y' => int 3

+ the given class will inherit all data and behavior
- $p1 and $p2 are to Point objects from ClassName

p
Static methods, fields, and constants

declaring a static field

static $name = value;
declaring a static constant

const $name = value;
declaring a static method

public static function name(parameters) {
statements;

ClassName: : methodName (parameters); # calling a static method (outside class)
self::methodName(parameters) ; # calling a static method (within class)

- static fields/methods are shared throughout a class rather
than replicated in every object

p
Abstract classes and interfaces

interface InterfaceName {
public function name(parameters);
public function name(parameters);
}
class ClassName implements InterfaceName { ...

abstract class ClassName {
abstract public function name(parameters);

Y

interfaces are supertypes that specify method headers without
implementations

cannot be instantiated; cannot contain function bodies or fields

enables polymorphism between subtypes without sharing implementation code
abstract classes are like interfaces, but you can specify fields,
constructors, methods

alsctj) cannot be instantiated; enables polymorphism with sharing of implementation

code

