
1

Prototype JS

10.1: Prototype
• 10.1: Prototype

• 10.2: Scriptaculous

2

Problems with JavaScript
• JavaScript is a powerful language, but it has many flaws:
• the DOM can be clunky to use
• the same code doesn't always work the same way in every

browser
– code that works great in Firefox, Safari, ... will fail in IE and

vice versa
• many developers work around these problems with hacks

(checking if browser is IE, etc.)

3

Prototype framework

• the Prototype JavaScript library adds many useful features
to JavaScript:
– many useful extensions to the DOM
– added methods to String, Array, Date, Number, Object
– improves event-driven programming
– many cross-browser compatibility fixes
– makes Ajax programming easier (seen later)

4

The $ function

• returns the DOM object representing the element with the
given id

• short for document.getElementById("id")
• often used to write more concise DOM code:

5

Prototype's DOM element methods

• categories: CSS classes, DOM tree traversal/manipulation,
events, styles

6

Prototype's DOM tree traversal methods

• Prototype strips out the unwanted text nodes
• notice that these are methods, so you need ()

7

Prototype's methods for selecting elements
• methods in document and other DOM objects for accessing

descendents:

• Prototype adds methods to the document object (and all
DOM element objects) for selecting groups of elements:

8

The $$ function
• $$ returns an array of DOM elements that match the given

CSS selector
– like $ but returns an array instead of a single DOM object
– a shorthand for document.select

• useful for applying an operation to each one of a set of
elements

9

Problems with reading/changing styles
• style property lets you set any CSS style for an element

• getStyle function added to DOM object allows accessing
existing styles

10

Setting CSS classes in Prototype

• addClassName, removeClassName, hasClassName
manipulate CSS classes

• similar to existing className DOM property, but don't have
to manually split by spaces

11

Prototype form shortcuts

• gets parameter with given name from form with given id

• $F function returns the value of a form control with the
given id

12

Stopping an event

• to abort a form submit or other event, call
Prototype's stop method on the event

13

Classes and prototypes
• limitations of prototype-based code:

– unfamiliar / confusing to many programmers
– somewhat unpleasant syntax
– difficult to get inheritance-like semantics (subclassing,

overriding methods)
• Prototype library's Class.create method makes a new class

of objects
– essentially the same as using prototypes, but uses a more

familiar style and allows for richer inheritance semantics

14

AJAX, XML and JSON

12.1: Ajax Concepts
• 12.1:	Ajax	Concepts	

• 12.2: Using XMLHttpRequest
• 12.3: XML
• 12.4: JSON

16

Synchronous web communication

• synchronous:	user	must	wait	while	new	pages	load	
– the typical communication pattern used in web pages (click,

wait, refresh)

17

Web applications and Ajax
• web application: a dynamic web site that mimics the feel of a

desktop app
– a client–server software application in which the client (or user

interface) runs in a web browser;
– presents a continuous user experience rather than disjoint

pages
– examples: Gmail, Google Maps, Google Docs and

Spreadsheets, Flickr, A9
• Ajax: Asynchronous JavaScript and XML

– not a programming language; a particular way of using
JavaScript

– downloads data from a server in the background
– allows dynamically updating a page without making the user

wait
– avoids the "click-wait-refresh" pattern

18

Asynchronous web communication

• asynchronous:	user	can	keep	interac5ng	with	page	while	data	
loads	
– communication pattern made possible by Ajax

19

12.2: Using XMLHttpRequest
• 12.1: Ajax Concepts
• 12.2:	Using	XMLH>pRequest	

• 12.3: XML
• 12.4: JSON

20

XMLHttpRequest
• JavaScript includes an XMLHttpRequest object that can

fetch files from a web server
– supported in IE5+, Safari, Firefox, Opera, Chrome, etc. (with

minor compatibilities)
• it can do this asynchronously (in the background, transparent

to user)
• the contents of the fetched file can be put into current web

page using the DOM
• sounds great!...

21

A typical Ajax request
1. user clicks, invoking an event handler
2. handler's code creates an XMLHttpRequest object

3. XMLHttpRequest object requests page from server

4. server retrieves appropriate data, sends it back
5. XMLHttpRequest fires an event when data arrives

1. this is often called a callback
2. you can attach a handler function to this event

6. your callback event handler processes the data and displays it

22

Prototype's Ajax model

• construct a Prototype Ajax.Request object to request
a page from a server using Ajax

• constructor accepts 2 parameters:
– the URL to fetch, as a String,
– a set of opDons, as an array of key : value pairs

in {} braces (an anonymous JS object)
• hides icky details from the raw XMLHttpRequest; works

well in all browsers

23

Prototype Ajax options

24

option description

method how to fetch the request from the server (default "post")

parameters query parameters to pass to the server, if any (as a string or object)

asynchronous should request be sent asynchronously in the background?
(default true)

others: contentType, encoding, requestHeaders

Prototype Ajax event options

25

event description

onSuccess request completed successfully

onFailure request was unsuccessful

onException request has a syntax error, security error, etc.

others: onCreate, onComplete, on ### (for HTTP error code ###)

Basic Prototype Ajax template

• attach a handler to the request's onSuccess event
• the handler takes an Ajax response object, which we'll

name ajax, as a parameter

26

Ajax response object's properties

27

property description

status the request's HTTP error code (200 = OK, etc.)

statusText HTTP error code text

responseText the entire text of the fetched file, as a String

responseXML the entire contents of the fetched file, as a DOM tree (seen
later)

most	commonly	used	property	is	responseText,	to	access	the	
fetched	text	content

Handling Ajax errors

• for user's (and developer's) benefit, show an error message
if a request fails

28

Debugging Ajax code

• Net	tab	shows	each	request,	its	parameters,	response,	any	errors	

• expand a request with + and look at Response tab to see Ajax
result

29

Creating a POST request

• method should be changed to "post" (or omitted; post is
default)

• any query parameters should be passed as
a parameters parameter
– written between {} braces as a set

of name : value pairs (another anonymous object)
– get request parameters can also be passed this way, if you

like

30

Prototype's Ajax Updater

• Ajax.Updater fetches a file and injects its content into an
element as innerHTML

• additional (1st) parameter specifies the id of element to
inject into

• onSuccess handler not needed
(but onFailure, onException handlers may still be
useful)

31

PeriodicalUpdater

• Ajax.PeriodicalUpdater repeatedly fetches a file at a given
interval and injects its content into an element
as innerHTML

• onSuccess handler not needed (but onFailure,
onException handlers may still be useful)

32

Ajax.Responders

• sets up a default handler for a given kind of event for all Ajax
requests

• useful for attaching a common failure/exception handler to
all requests in one place

33

12.3: XML
• 12.1: Ajax Concepts
• 12.2: Using XMLHttpRequest
• 12.3:	XML	

• 12.4: JSON

34

The bad way to store data

• we could send a file like this from the server to browser with
Ajax

• what's wrong with this approach?

35

What is XML?
• XML:	a	"skeleton"	for	crea5ng	markup	languages	

• you already know it!
– syntax is identical to XHTML's

– languages written in XML specify:
– names of tags in XHTML: h1, div, img, etc.
– names of attributes in XHTML: id/class, src, href, etc.
– rules about how they go together in XHTML: inline vs. block-

level elements
• used to present complex data in human-readable form

– "self-describing data"

36

Anatomy of an XML file

• begins with an <?xml ... ?> header tag ("prolog")
• has a single root	element (in this case, note)
• tag, attribute, and comment syntax is just like XHTML

37

Uses of XML
• XML data comes from many sources on the web:

– web	servers	store	data	as	XML	files	
– databases	some5mes	return	query	results	as	XML	
– web	services	use	XML	to	communicate	

• XML is the de	facto universal format for exchange of data
• XML languages are used for music, math, vector graphics
• popular use: RSS for news feeds & podcasts

38

Pros and cons of XML
• pro:

– easy to read (for humans and computers)
– standard format makes automation easy
– don't have to "reinvent the wheel" for storing new types of

data
– international, platform-independent, open/free standard
– can represent almost any general kind of data (record, list,

tree)
• con:

– bulky syntax/structure makes files large; can decrease
performance
• example: quadratic formula in MathML

– can be hard to "shoehorn" data into a good XML format

39

What tags are legal in XML?
• any	tags	you	want!	

• examples:
– an email message might use tags called to, from, subject
– a library might use tags called book, title, author

• when designing an XML file, you choose the tags and
attributes that best represent the data

• rule of thumb: data = tag, metadata = attribute

40

Doctypes and Schemas
• "rule books" for individual flavors of XML

– list which tags and attributes are valid in that language, and how
they can be used together

• used to validate XML files to make sure they follow the rules
of that "flavor"
– the W3C HTML validator uses the XHTML doctype to validate your

HTML
• for more info:

– Document Type Definition (DTD) ("doctype")
– W3C XML Schema

• optional — if you don't have one, there are no rules beyond
having well-formed XML syntax

• (we won't cover these any further here)

41

XML and Ajax
• web browsers can display XML files, but often you

instead want to fetch one and analyze its data
• the XML data is fetched, processed, and displayed

using Ajax
– (XML is the "X" in "Ajax")

• It would be very clunky to examine a complex XML
structure as just a giant string!

• luckily, the browser can break apart (parse) XML data
into a set of objects
– there is an XML DOM, very similar to the (X)HTML

DOM

42

XML DOM tree structure

• the XML tags have a tree structure
• DOM nodes have parents, children and siblings

43

XML

Recall: Javascript XML (XHTML) DOM
• The DOM properties and methods* we already know can be

used on XML nodes:
• properties:

– firstChild, lastChild, childNodes, nextSibling, previousSibling, pare
ntNode

– nodeName,	nodeType,	nodeValue,	a>ributes	

• methods:
– appendChild, insertBefore, removeChild, replaceChild
– getElementsByTagName,	getA>ribute,	hasA>ributes,	hasChildNodes	

• caution: cannot use HTML-specific properties
like innerHTML in the XML DOM!

• * (though not Prototype's, such
as up, down, ancestors, childElements, or siblings)

44

Navigating the node tree
• caution: can only use standard DOM methods/properties in

XML DOM (NOT	Prototype's)
• caution: can't use ids or classes to use to get specific nodes

(no $ or $$). Instead:

45

Using XML data in a web page
1. use Ajax to fetch data
2. use DOM methods to examine XML:

XMLnode.getElementsByTagName("tag")

3. extract the data we need from the XML:
XMLelement.getAttribute("name"),		
XMLelement.firstChild.nodeValue,	etc.	

4. create new HTML nodes and populate with extracted data:
document.createElement("tag"),
HTMLelement.innerHTML

5. inject newly-created HTML nodes into page
HTMLelement.appendChild(element)

46

Fetching XML using AJAX (template)

• ajax.responseText contains the XML data in plain text
• ajax.responseXML is a pre-parsed XML DOM object

47

Analyzing a fetched XML file using DOM

• We can use DOM properties and methods
on ajax.responseXML:

48

Larger XML file example

49

Navigating node tree example

50

Debugging responseXML in Firebug

• can examine the entire XML document, its node/tree
structure

51

12.4: JSON
• 12.1: Ajax Concepts
• 12.2: Using XMLHttpRequest
• 12.3: XML
• 12.4:	JSON

52

Pros and cons of XML
• pro:

– standard open format; don't have to "reinvent the wheel" for
storing new types of data

– can represent almost any general kind of data (record, list,
tree)

– easy to read (for humans and computers)
– lots of tools exist for working with XML in many languages

• con:
– bulky syntax/structure makes files large; can decrease

performance (example)
– can be hard to "shoehorn" data into a good XML format
– JavaScript code to navigate the XML DOM is bulky and

generally not fun

53

JavaScript Object Notation (JSON)
• JavaScript	Object	NotaDon	(JSON):	Data	format	that	represents	
data	as	a	set	of	JavaScript	objects	

• invented by JS guru Douglas Crockford of Yahoo!
• natively supported by all modern browsers (and libraries to

support it in old ones)
• not yet as popular as XML, but steadily rising due to its

simplicity and ease of use

54

Recall: JavaScript object syntax

• in JavaScript, you can create a new object without creating a
class

• the object can have methods (function properties) that refer
to itself as this

• can refer to the fields with .fieldName or
["fieldName"] syntax

• field names can optionally be put in quotes
(e.g. weight above)

55

An example of XML data

56

The equivalent JSON data

57

Browser JSON methods

• you can use Ajax to fetch data that is in JSON format
• then call JSON.parse on it to convert it into an object
• then interact with that object as you would with any other

JavaScript object

58

method description

JSON.parse(string) converts the given string of JSON data into an
equivalent JavaScript object and returns it

JSON.stringify(object) converts the given object into a string of JSON data
(the opposite ofJSON.parse)

JSON example: Books
• Suppose we have a service books_json.php about library

books.
• If no query parameters are passed, it outputs a list of book

categories

• Supply a category query parameter to see all books in one
category:  
http://webster.cs.washington.edu/books_json.php?
category=cooking

59

JSON exercise
• Write a page that processes this JSON book data.
• Initially the page lets the user choose a category, created

from the JSON data.

• After choosing a category, the list of books in it appears:

60

Working with JSON book data

61

Bad style: the eval function

• JavaScript includes an eval keyword that takes a string and
runs it as code

• this is essentially the same as what JSON.parse does,
• but JSON.parse filters out potentially dangerous

code; eval doesn't
• eval is evil and should not be used!

62

