

Reinforcement Learning

Dr. Fayyaz ul Amir Afsar Minhas

PIEAS Biomedical Informatics Research Lab Department of Computer and Information Sciences Pakistan Institute of Engineering & Applied Sciences PO Nilore, Islamabad, Pakistan <u>http://faculty.pieas.edu.pk/fayyaz/</u>

Basics

- How can we learn a probability?
 - Maximum Likelihood Estimation
 - Example
 - Given a coin, we want to estimate what is the probability of it giving "heads"
 - What is the actual probability p
 - How can it be estimated?
 - By tossing the coin N times
 - Counting the number of times it lands "Heads" H
 - The estimate is: H/N

Basics

• Running Average

$$\mathit{CMA}_{n+1} = rac{x_{n+1} + n \cdot \mathit{CMA}_n}{n+1}$$

- K-Armed Bandit
 - Assume a machine than when one of its K buttons is pressed, gives you M_k dollars associated with that button
 - Each time the button is pressed it may return slightly different rewards
 - Your objective is to make the most money in 1000 trials
 - Which button will you press?
 - In the beginning, we would be pressing different buttons randomly
 - Over time, we will find out the optimal button
 - Exploration vs. Exploitation

Environment

CIS 530: Artifiical Intelligence

Revision

- Agent in a Markov Decision Process
 - A set of states S
 - A set of actions in each state A(s)
 - An action causes a transition
 - A transition probability model (may be unknown!)
 - P(s'|s,a) is the probability of reaching state s' from s by action a
 - Each state has a reward R(s)
 - The probability of reaching a state is dependent only on the previous state and the action taken in that state

Revision

- The solution is represented in terms of a policy
 - Tells the action to be taken in that state: $\pi(s)$
- For a given policy, each state has a utility
 - Equal to the reward of that state and discounted rewards for future states (i.e., expected utility of the next state)

$$U^{\pi}(s) = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} R(S_{t})\right] = \mathbb{E}\left[R(s) + \sum_{t=1}^{\infty} \gamma^{t} R(S_{t})\right]$$
$$= \mathbb{E}\left[R(s) + \gamma \sum_{t=0}^{\infty} \gamma^{t} R(S_{t+1})\right] = R(s) + \gamma U^{\pi}(next)$$

$$U^{\pi}(next) = \sum_{s' \in S} P(s'|s, \pi(s)) U(s')$$

6

Revision

- Objective of MDP
 - Find an optimal policy
 - How?
 - By using the Maximum Expected Utility Principle
 - Pick a policy that maximizes the expected utility

» $\pi^* = argmax_{\pi}U^{\pi}(s)$

- To find the optimal policy when the transition model is known, we can use:
 - Value Iteration
 - Policy Iteration
- What to do when the transition model is not known?
 - Some how "learn" it!!

Reinforcement Learning

- How can an agent learn from success and failure?
 - The agent is placed in an environment and must learn how to reach a goal
 - Encompasses all of Artificial Intelligence
- Objectives
 - Passive RL
 - Fixed policy, learn the utilities
 - Active RL
 - Find the policy too
 - The agent must "explore" the environment and the effects its actions have on the environment

Passive Reinforcement Learning

- Given: Policy, Reward Function, States, Actions
- Unknown: Transition model
- Objective: Estimate utilities of different states
- Techniques
 - Direct Utility Estimation
 - Adaptive Dynamic Programming
 - Temporal Difference Learning

- Given: Policy, Reward Function, States, Actions
- Unknown: Transition model
- Objective: Optimal Policy and a "Q" function that maps actions in a state to utilities
- Techniques
 - Q-Learning
 - SARSA
 - Policy Estimation

Direct Utility Estimation

- For a given policy, generate a number of trials
 - Each trial is a sequence of states terminating in a terminal state
 - The agent knows the state it is in and the reward it gets in each state

Examples

- $\text{T1:} (1,1)_{-0.04} \rightarrow (1,2)_{-0.04} \rightarrow (1,3)_{-0.04} \rightarrow (1,2)_{-0.04} \rightarrow (1,3)_{-0.04} \rightarrow (2,3)_{-0.04} \rightarrow (3,3)_{-0.04} \rightarrow (4,3)_{+1} \rightarrow (1,3)_{-0.04} \rightarrow (1,3)_$
- $\text{T2:} (1,1)_{-0.04} \rightarrow (1,2)_{-0.04} \rightarrow (1,3)_{-0.04} \rightarrow (2,3)_{-0.04} \rightarrow (3,3)_{-0.04} \rightarrow (3,2)_{-0.04} \rightarrow (3,3)_{-0.04} \rightarrow (4,3)_{+1} \rightarrow$
- $\text{T3:} (1,1)_{-0.04} \rightarrow (2,1)_{-0.04} \rightarrow (3,1)_{-0.04} \rightarrow (3,2)_{-0.04} \rightarrow (4,2)_{-1}$

Direct Utility Estimation

- The utility of a state is the expected total reward received from that state onwards
- Based on the 3 trials what is the utility of every state?
 - Use a running average

 $\underline{x_{n+1} + n \cdot \mathit{CMA}_n}$ $CMA_{n+1} =$

n+1

Trial\State	(1,1)	(1,2)	(1,3)		
T1:	0.72	(0.84,0.76)	0.88		
Utility Estimate	(0.72,1)	(0.8,2)	(0.88,1)		
T2:	0.72	0.76	0.88		
Utility Estimate	(0.72,2)	(0.786,3)	(0.88,2)		

Direct Utility Estimation

• Over a large number of trials, the estimates will converge to the optimal values

- Assumption:
 - Utilities of states are independent
- Requires large number of trials

Adaptive Dynamic Programming

- Estimates the transition probabilities
- And then uses policy evaluation

POLCY EVALUATION

Repeat "k" times for s in S: $U(s) = R(s) + \gamma \sum_{s' \in S} P(s'|s, \pi_i(s))U(s')$

Adaptive Dynamic Programming

function PASSIVE-ADP-AGENT(percept) returns an action

inputs: percept, a percept indicating the current state s' and reward signal r'

static: π , a fixed policy

mdp, an MDP with model T, rewards R, discount γ

U, a table of utilities, initially empty

 N_{sa} , a table of frequencies for state-action pairs, initially zero

 $N_{sas'}$, a table of frequencies for state-action-state triples, initially zero

s, a the previous state and action, initially null

if s' is new then do $U[s'] \leftarrow r'$; $R[s'] \leftarrow r'$

if s is not null, then do

increment $N_{sa}[s,a]$ and $N_{sas'}[s,a,s']$ for each t such that $N_{sas'}[s,a,t]$ is nonzero do $T[s,a,t] \leftarrow N_{sas'}[s,a,t] / N_{sa}[s,a]$ $U \leftarrow$ POLICY-EVALUATION (π, U, mdp) if TERMINAL?[s'] then $s, a \leftarrow$ null **else** $s, a \leftarrow s', \pi[s']$ **return** a - Update reward function

Update transition model

Adaptive Dynamic Programming

POLCY EVALUATION

Temporal Difference Learning

- Use observed transitions to adjust the utilities of the observed states so that they agree with the Bellman Equation
- Assume that we end up in state s' from state s, then we know that

$$U^{\pi}(s) = R(s) + \gamma U^{\pi}(s')$$

• If we have estimated values of $U^{\pi}(s')$ and $U^{\pi}(s)$, then we can update the estimate of $U^{\pi}(s)$ by using a linear combination of the previous value of $U^{\pi}(s)$ and $R(s) + \gamma U^{\pi}(s')$ as follows

$$U^{\pi}(s) \leftarrow (1-\alpha)U^{\pi}(s) + \alpha \big(R(s) + \gamma U^{\pi}(s') \big)$$

Or equivalently,

$$U^\pi(s) \leftarrow U^\pi(s) + \alpha \big(R(s) + \gamma U^\pi(s') - U^\pi(s) \big)$$

 α is called the learning rate and it should be decreased as more and more samples are collected because our confidence in the estimate grows.

Example

 Assume that an action in a trial takes us from (1,3) to (2,3) and our current estimates are:

U(1,3) = 0.84

U(2,3) = 0.92

Then the 'new' value of U(1,3) is:

U(1,3) = -0.04 + 0.92 = 0.88

Thus, the updated value of U(1,3) will now be based on 0.88 and 0.84 and will be: $U^{\pi}(1,3) \leftarrow U^{\pi}(1,3) + \alpha (R(1,3) + \gamma U^{\pi}(2,3) - U^{\pi}(1,3))$

Temporal Difference Learning

function PASSIVE-TD-AGENT(*percept*) returns an action inputs: *percept*, a percept indicating the current state s' and reward signal r'persistent: π , a fixed policy

U, a table of utilities, initially empty

 N_s , a table of frequencies for states, initially zero

s, a, r, the previous state, action, and reward, initially null

if s' is new then $U[s'] \leftarrow r'$ if s is not null then

increment $N_s[s]$

 $U[s] \leftarrow U[s] + \alpha(N_s[s])(r + \gamma U[s'] - U[s])$ if s'.TERMINAL? then $s, a, r \leftarrow$ null else $s, a, r \leftarrow s', \pi[s'], r'$ return a

Figure 21.5 FILES: The TD learning curves for the 4×3 world. (a) The utility estimates for a selected subset of states, as a function of the number of trials. (b) The root-mean-square error in the estimate for U(1, 1), averaged over 20 runs of 500 trials each. Only the first 100 trials are shown to enable comparison with Figure 21.3.

TD-Agent

 Note that the TD-Agent does not learn the transition model and hence TDRL is also called 'model free' learning

- We do not know the model, the utilities or the policy
- How can this be done?
 - Pick a policy at random
 - Follow the policy to find the transition/utility values
 - Update the policy
 - Follow the policy to find the transition/utility values
 - ...
- Uses the current policy to make moves in estimating the transition/utility values
 - But the estimates are not correct
 - Therefore, the policy will not be correct
 - The method will get stuck at a suboptimal policy or it might not explore all options
 - It's afraid of trying new things!!!

- Thus, the agent should first 'explore' different options before settling or 'exploiting' the optimal one
- Initially, the policy should have an element of randomness which gradually reduces over time as the agent becomes more and more confident in its view of the world
- How to implement this?

• We know that in the event there is no optimal policy, we have

$$U(s) = R(s) + \gamma max_{a \in A(s)} \sum_{s' \in S} P(s'|s, a) U(s')$$

– See: Value Iteration

• To allow 'seemingly' suboptimal actions, we change the above equation to

 $U(s) = R(s) + \gamma \max_{a \in A(s)} f\left(\sum_{s' \in S} P(s'|s, a) U(s'), N(s, a)\right)$

N(s, a) is the frequency of state-action pair (s,a) and f(u, n) is a function called the exploration function. It controls the tradeoff between greed and curiosity. It should be increasing in u and decreasing in n.

The exploration function

 The exploration function allows an otherwise suboptimal action to be optimal if it has not been sampled enough times by returning an optimistic utility in such cases

$$U(s) = R(s) + \gamma \max_{a \in A(s)} f\left(\sum_{s' \in S} P(s'|s,a)U(s'), N(s,a)\right)$$

• Example

$$f(u,N) = \begin{cases} R^+ & if \ n < N_e \\ u & else \end{cases}$$

Q-Learning

- In TD-Learning, we already had a policy and we knew the action to be taken. This gave us the following update equation $U^{\pi}(s) \leftarrow U^{\pi}(s) + \alpha (R(s) + \gamma U^{\pi}(s') - U^{\pi}(s))$
- However, in active learning we must also obtain what the optimal action is. So instead of utilities, which are specific to states, we use an action-utility representation Q(s, a) which is directly related to the utility of the state by $U(s) = max_aQ(s, a)$

Q-values vs. Utilities

- Utility is for a state, Q-value is for a state-action pair
- Utility tells us the desirability of a state, Q-value tells us the desirability of an action in a state
- Similar to utility values

 $U(s) = R(s) + \gamma max_{a \in A(s)} \sum_{s' \in S} P(s'|s, a) U(s')$

 Bellman Equations can also be written for Qvalues

$$Q(s,a) = R(s) + \gamma \sum_{s' \in S} P(s'|s,a) \max_{a' \in A(s')} Q(s',a')$$

• Notice that: $U(s) = max_aQ(s, a)$

Q-Learning

Similar to TD-Learning, the update equation becomes

 $Q(s,a) \leftarrow Q(s,a) + \alpha \big(R(s) + \gamma max_{a'}Q(s',a') - Q(s,a) \big)$

 At each step, pick the action that you think is the best based on the Q value estimates

- SARSA
 - $Q(s,a) \leftarrow Q(s,a) + \alpha \big(R(s) + \gamma Q(s',a') Q(s,a) \big)$
 - Uses the Q value of the action a' that is *actually* taken in state s'

Pseudo code

Function Q-Learning-Agent(percept) returns an action
Inputs: percept, a percept indicating the current state s' and reward signal r'
Persistent: Q, a table of values for state-actions, initially zero
N_{sa}, a table of frequencies for state-action pairs, initially zero
s,a,r, the previous state, action and reward, initially null

```
If Terminal?(s) then Q(s',a') \leftarrow r'
```

If s is not null then

increment $N_{sa}(s, a)$

Update: $Q(s, a) \leftarrow Q(s, a) + \alpha(N_{sa}(s, a))(R(s) + \gamma max_{a'}Q(s', a') - Q(s, a))$ s,a,r \leftarrow s', argmax_{a'} $f(Q(s', a'), N_{sa}(s', a')), r'$

Return a

Q-Function Approximation

 Instead of using a table, we can also use a function approximation scheme such as a Neural network to return Q(s,a) given a representation of s and a

Policy Search

Directly search for a policy that maximizes the utility/Q-value

Coding

Coding

– <u>https://github.com/aimacode/aima-</u> python/blob/master/rl.ipynb

Applications

- Robot Walking
- Game Play
 - Algorithm plays against itself to learn what moves to take in different states
 - Uses Neural Networks
- Web document searches
 - Minimizes the number of web-crawls
 - Only crawl when needed

Dynamic Marble Control

End of Lecture

Humans Are the World's Best Pattern-Recognition Machines, But for How Long?

http://bigthink.com/endless-innovation/humans-are-the-worlds-best-pattern-recognition-machines-but-for-how-long

CIS 530: Artifiical Intelligence

PIEAS Biomedical Informatics Research Lab