
• CIS 399se

Mongo:	a	NoSQL	database	

• CIS 399se

Why	a	database?	

We	can	slip	a	li+le	data	into	a	cookie	...	but	not	much	

Our	user	might	return	on	another	browser,	without	our	cookie	

Cookies	are	good	for	a	session,	but	we	need	
•  Something	that	lasts	longer	

•  Something	that	can	hold	more	data		

and	o=en	
•  Something	to	hold	data	shared	by	more	than	one	user	

• CIS 399se

Rela7onal	database	

Model	data	as	a	set	of	tables	

	rela@on	in	the	mathema@cal	sense:		A	set	of	tuples	

+		Clean,	well-understood	seman@cs,	not	@ed	to	programming	
language	

-  Extra	work	to	translate	from	applica@on	object	model	to	
database	model	and	back		(SQL	queries	are	I/O)	

+	Transac@ons	give	clean,	reliable	seman@cs	to	concurrency	

-		Transac@ons	may	limit	performance		

• CIS 399se

Transac7ons:	Reasoning	about	Concurrency	

T1:	

x	=	x	+	1	

T2:	

x	=	x	+	1	

What	are	the	possible	outcomes	if	
T1	and	T2	are	execu@ng	
concurrently?				

T0:	

x	=	0	

• CIS 399se

MongoDB:	A	NoSQL	database	

Modeled	on	documents,	not	tables	

Each	‘database’	in	Mongo	is	like	a	rela@on	(table)	in	SQL	

The	elements	of	a	database	are	BSON	structures	(like	JSON,	but	
binary)	

Very	limited	concurrency	control:		Atomic	writes,	‘eventual	
consistency’	

	(basically	it’s	broken,	but	we	live	with	it	because	...)	

Scales	very	well	to	many	servers	running	in	parallel	

• CIS 399se

Accessing	a	Mongo	database	from	Python	
from	pymongo	import	MongoClient	

geojson	=	{	"type":	"FeatureCollec@on",	
												"features":	featurelist	
												}	

client	=	MongoClient(MONGO_URL)	
db	=	client.tracks	
collec@on	=	db.samples	

...	
request	=	{	"id":	feed	}	
record	=	collec@on.find_one(request)		
if	(record	==	None):	
								record	=	{	"id":	feed,	
																			"last_query_@me":	nowstring,	
																				"messages":	[]	
																									}	
								collec@on.insert(record)	

Search	key	

Search	for	matching	
records	

Create	a	record	(in	a	
JSON-like	format)	

Add	record	to	database	

• CIS 399se

Accessing	a	Mongo	database	from	Python	
from	pymongo	import	MongoClient	

geojson	=	{	"type":	"FeatureCollec@on",	
												"features":	featurelist	
												}	

client	=	MongoClient(MONGO_URL)	
db	=	client.tracks	
collec@on	=	db.samples	

...	
request	=	{	"id":	feed	}	
record	=	collec@on.find_one(request)		

collec@on.update_one({"id":	feed	},	
							{"$set":	{	"messages":	messages,	

	 							"last_query_@me":	nowstring	}})	

Search	key	

Search	for	matching	
records	

Modify	a	found	record	

• CIS 399se

Configuring	the	URL		

#		Host	and	port	of	MongoDB	database	
MONGO_URL	=	"mongodb://tracker:enroute@localhost:9999/tracks”	

CONFIG.py:		

Randomly	chosen	
port	assigned	when	
you	install	MongoDB	

on	ix	

User	in	MongoDB	
users	database	

(not	you;	a	pseudo	
user)	

Mongo	has	its	own	
applica@on-level	

protocol		
(over	TCP/IP)	

Password	for	
database	user		

(not	very	secure!)	

The	database	we	
want	to	access	

• CIS 399se

‘Installing’	Mongo	2.4	on	ix	
	 	 	 	 	 	 	 	 	 	 	(only	if	you	must)	
Current	version	is	3.0;		there	are	differences,	so	you	may	need	to	write	
code	that	works	in	3.0	on	your	local	machine	and	2.4	on	ix	

‘mongoctl’	is	a	local	per-user	installa@on	script	

To	start	on	ix:		

$mkdir	etc		#	If	you	don’t	already	have	one	
$cd	etc	
$	mongoctl	install	
(you	will	be	prompted	for	a	new	password,	which	should	NOT	be	your	
password	to	ix)	

Look	in	etc/mongodb.conf	file	for	configura@on	informa@on	

More	informa@on	in		
h+ps://www.cs.uoregon.edu/Classes/16W/cis399se/howto/mongo.php	

• CIS 399se

Mongodb	configura7on	

Your	~/etc/mongodb.conf	file	will	look	like:		

dbpath=/home/faculty/michal/mongodb

port=9999

You	start	your	database	running	with		
$mongoctl start

and	see	something	like	...		
about to fork child process, waiting until server is ready
for connections.

forked process: 17714

all output going to: /home/faculty/michal/mongodb/
mongodb.log

child process started successfully, parent exiting

Started mongod on port 9999

• CIS 399se

Installing	on	Pi	and	development	machine	

For	pi:			
sudo apt-get update

sudo apt-get upgrade

sudo apt-get install mongodb-server

then	go	have	lunch	while	it	runs		

For	your	development	machine:		
See	mongodb.com	

Two	programs:		
				mongod		(database	engine)	
				mongo				(shell)	

• CIS 399se

You	might	also	see	(first	7me)	...		

MongoDB shell version: 2.4.9

connecting to: 127.0.0.1:9999/test

switched to db admin

{

"user" : "michal",

"pwd" : "f6f736f36d2104da987a6316b5699db2",

"roles" : [

"userAdminAnyDatabase",

"readWriteAnyDatabase",

"dbAdminAnyDatabase"

],

"_id" : ObjectId("5536abb232b7867b16f82278")

}

bye

This	won’t	be	what	you	
typed.		What	is	it?		

• CIS 399se

Connec7ng	(manually)	to	MongoDB	admin	db	

$ mongo --port 9999 -u michal -p xxxxxx admin

MongoDB shell version: 2.4.9

connecting to: 127.0.0.1:9999/admin

Welcome to the MongoDB shell.

For interactive help, type "help".

For more comprehensive documentation, see

http://docs.mongodb.org/

Questions? Try the support group

http://groups.google.com/group/mongodb-user

> db.system.users.find()

{ "_id" : ObjectId("5536abb232b7867b16f82278"),
"user" : "michal", "pwd" :
"f6f736f36d2104da987a6316b5699db2", "roles" :
["userAdminAnyDatabase", "readWriteAnyDatabase",
"dbAdminAnyDatabase"] }

• CIS 399se

Adding	a	user	(for	your	programs)	
In	version	2.4.9,	we	create	users	with	the	addUser	method	on	a	
database	(different	from	version	3.0):	

> db.addUser({ user: "tracker", pwd: "enroute",
roles: ["readWrite"]})

{

"user" : "tracker",

"pwd" : "d339d2ed360bdec659ca232a0e095141",

"roles" : [

"readWrite"

],

"_id" : ObjectId("5536aec06120e30bb54c3459")

}

Now	we	can	quit	the	shell,	leaving	the	server	running	in	the	
background:	
> quit()

• CIS 399se

Try	it	now	...		
We	will	use	a	Mongo	database	in	our	final	project	

