
CSE 150. Assignment 2 Summer 2016

Out: Thu Jun 30
Due: Tue Jul 05 (beginning of class)
Supplementary reading: RN, Ch 14.1-14.3; KN, Ch 2.1-2.3.

1.1 Creative writing

Attach events to the binary random variables X , Y , and Z that are consistent with the following patterns of
commonsense reasoning. You may use different events for the different parts of the problem.

(a) Explaining away:
P (X=1|Y =1) > P (X=1),

P (X=1|Y =1, Z=1) < P (X=1|Y =1)
(b) Accumulating evidence:

P (X=1) < P (X=1|Y =1) < P (X=1|Y =1, Z=1)

(c) Conditional independence:
P (X,Y |Z) = P (X|Z)P (Y |Z),

P (X=1, Y =1) 6= P (X=1)P (Y =1).

1.2 Probabilistic inference

Recall the probabilistic model that we described in class for the binary random variables {E = Earthquake,
B = Burglary, A = Alarm, J = JohnCalls,M = MaryCalls}. We also expressed this model as a belief
network, with the directed acyclic graph (DAG) and conditional probability tables (CPTs) shown below:

Alarm

Earthquake Burglar

John Calls Mary Calls

P(E=1) = 0.002 P(B=1) = 0.001

P(A=1|E=0,B=0) = 0.001
P(A=1|E=0,B=1) = 0.94
P(A=1|E=1,B=0) = 0.29
P(A=1|E=1,B=1) = 0.95

P(J=1|A=0) = 0.05
P(J=1|A=1) = 0.90

P(M=1|A=0) = 0.01
P(M=1|A=1) = 0.70

Compute numeric values for the following probabilities, exploiting relations of marginal and conditional
independence as much as possible to simplify your calculations. You may re-use numerical results from
lecture, but otherwise show your work. Be careful not to drop significant digits in your answer.

(a) P (E=1|A=1) (c) P (A=1|M=1) (e) P (A=1|M=0)
(b) P (E=1|A=1, B=0) (d) P (A=1|M=1, J=0) (f) P (A=1|M=0, B=1)

Consider your results in (b) versus (a), (d) versus (c), and (f) versus (e). Do they seem consistent with
commonsense patterns of reasoning?
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1.3 Probabilistic reasoning

A patient is known to have contracted a rare disease which comes in two forms, represented by the values
of a binary random variable X ∈ {0, 1}. Symptoms of the disease are represented by the binary random
variables Yk ∈ {0, 1}, and knowledge of the disease is summarized by the belief network:

X

Y1 Y2 Y3 Yn...
The conditional probability tables (CPTs) for this belief network are as follows. In the absence of evi-
dence, both forms of the disease are equally likely, with prior probabilities: P (X=0) = P (X=1) = 1

2 .
In the first form of the disease (X = 0), all the symptoms are uniformly likely to be observed, with
P (Yk=0|X=0) = 1

2 for all k. By contrast, in the second form of the disease (X = 1), the first symptom
occurs with probability one,

P (Y1=1|X=1) = 1,

while the kth symptom (with k≥2) occurs with probability

P (Yk=1|X=1) =
f(k − 1)

f(k)
,

where the function f(k) is defined by
f(k) = 2k + (−1)k.

Suppose that on the kth day of the month, a test is done to determine whether the patient is exhibiting the
kth symptom, and that each such test returns a positive result. Thus, on the kth day, the doctor observes the
patient with symptoms {Y1=1, Y2=1, . . . , Yk=1}. Based on the cumulative evidence, the doctor makes a
new diagnosis each day by computing the ratio:

rk =
P (X=1|Y1=1, Y2=1, . . . , Yk=1)

P (X=0|Y1=1, Y2=1, . . . , Yk=1)
.

If this ratio is greater than 1, the doctor diagnoses the patient with the X=1 form of the disease; otherwise,
with the X=0 form.

(a) Compute the ratio rk as a function of k. How does the doctor’s diagnosis depend on the day of the
month? Show your work.

(b) Does the diagnosis become more or less certain as more symptoms are observed? Explain.
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1.4 Hangman

Consider the belief network shown below, where the random variable W stores a five-letter word and the
random variable Li ∈ {A, B, . . . , Z} reveals only the word’s ith letter. Also, suppose that these five-letter
words are chosen at random from a large corpus of text according to their frequency:

P (W =w) =
COUNT(w)∑
w′ COUNT(w′)

,

where COUNT(w) denotes the number of times that w appears in the corpus and where the denominator is
a sum over all five-letter words. Note that in this model the conditional probability tables for the random
variables Li are particularly simple:

P (Li=`|W =w) =

{
1 if ` is the ith letter of w,
0 otherwise.

Now imagine a game in which you are asked to guess the word w one letter at a time. The rules of this game
are as follows: after each letter (A through Z) that you guess, you’ll be told whether the letter appears in
the word and also where it appears. Given the evidence that you have at any stage in this game, the critical
question is what letter to guess next.

L1 L2

W

L3 L4 L5

Let’s work an example. Suppose that after three guesses—the letters D, I, M—you’ve learned that the let-
ter I does not appear, and that the letters D and M appear as follows:

M D M

Now consider your next guess: call it `. In this game the best guess is the letter ` that maximizes

P
(
L2=` or L4=`

∣∣∣ L1=M, L3=D, L5=M, L2 6∈{D, I, M}, L4 6∈{D, I, M}
)
.

In other works, pick the letter ` that is most likely to appear in the blank (unguessed) spaces of the word.
For any letter ` we can compute this probability as follows:

P
(
L2=` or L4=`

∣∣∣ L1=M, L3=D, L5=M, L2 6∈{D, I, M}, L4 6∈{D, I, M}
)

=
∑
w

P
(
W =w,L2=` or L4=`

∣∣∣ L1=M, L3=D, L5=M, L2 6∈{D, I, M}, L4 6∈{D, I, M}
)
, marginalization

=
∑
w

P (W =w|L1=M, L3=D, L5=M, L2 6∈{D, I, M}, L4 6∈{D, I, M}
)
P (L2=` or L4=`|W =w) product rule & CI
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where in the third line we have exploited the conditional independence (CI) of the letters Li given the
word W . Inside this sum there are two terms, and they are both easy to compute. In particular, the second
term is more or less trivial:

P (L2=` or L4=`|W =w) =

{
1 if ` is the second or fourth letter of w
0 otherwise.

And the first term we obtain from Bayes rule:

P (W =w|L1=M, L3=D, L5=M, L2 6∈{D, I, M}, L4 6∈{D, I, M}
)

=
P (L1=M, L3=D, L5=M, L2 6∈{D, I, M}, L4 6∈{D, I, M}|W =w

)
P (W =w)

P (L1=M, L3=D, L5=M, L2 6∈{D, I, M}, L4 6∈{D, I, M})
Bayes rule

In the numerator of Bayes rule are two terms; the left term is equal to zero or one (depending on whether
the evidence is compatible with the word w), and the right term is the prior probability P (W = w), as
determined by the empirical word frequencies. The denominator of Bayes rule is given by:

P (L1=M, L3=D, L5=M, L2 6∈{D, I, M}, L4 6∈{D, I, M})
=

∑
w

P (W =w,L1=M, L3=D, L5=M, L2 6∈{D, I, M}, L4 6∈{D, I, M}), marginalization

=
∑
w

P (W =w)P (L1=M, L3=D, L5=M, L2 6∈{D, I, M}, L4 6∈{D, I, M}|W =w), product rule

where again all the right terms inside the sum are equal to zero or one. Note that the denominator merely
sums the empirical frequencies of words that are compatible with the observed evidence.

Now let’s consider the general problem. Let E denote the evidence at some intermediate round of the
game: in general, some letters will have been guessed correctly and their places revealed in the word, while
other letters will have been guessed incorrectly and thus revealed to be absent. There are two essential
computations. The first is the posterior probability, obtained from Bayes rule:

P (W =w|E) =
P (E|W =w)P (W =w)∑
w′ P (E|W =w′)P (W =w′)

.

The second key computation is the predictive probability, based on the evidence, that the letter ` appears
somewhere in the word:

P
(
Li=` for some i∈{1, 2, 3, 4, 5}

∣∣∣E) =
∑
w

P
(
Li=` for some i∈{1, 2, 3, 4, 5}

∣∣∣W =w
)
P
(
W =w

∣∣∣E).
Note in particular how the first computation feeds into the second. Your assignment in this problem is
implement both of these calculations. You may program in the language of your choice.

(a) Download the file hw2 word counts 05.txt that appears with the homework assignment. The file
contains a list of 5-letter words (including names and proper nouns) and their counts from a large
corpus of Wall Street Journal articles (roughly three million sentences). From the counts in this file
compute the prior probability P (w) = COUNT(w)/COUNTtotal. As a sanity check, print out the
fifteen most frequent 5-letter words, as well as the fifteen least frequent 5-letter words. Do your
results make sense?
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(b) Consider the following stages of the game. For each of the following, indicate the best next guess—
namely, the letter ` that is most likely (probable) to be among the missing letters. Also report the
probability P (Li = ` for some i∈ {1, 2, 3, 4, 5}|E) for your guess `. Your answers should fill in the
last two columns of this table. (Some answers are shown so that you can check your work.)

correctly guessed incorrectly guessed best next guess ` P (Li=` for some i∈{1, 2, 3, 4, 5}|E)

– – – – – {}
– – – – – {A, O}
B – – – E {}
B – – – E {R}
– – H – – {E, I, M, N, T}
– – – – – {E, O} I 0.6366
D – – I – {} A 0.8207
D – – I – {A} E 0.7521
– U – – – {A, E, I, O, S} Y 0.6270

(c) Turn in a hard-copy printout of your source code. Do not forget the source code: it is worth many
points on this assignment.

More fun: The demo on Piazza (also under resources) implements this program for words of length
6-10. You will also find count files for words of these lengths on Piazza, and if you modify your code
to handle these different word lengths, you will also be able to check your answers against the demo.
(This is totally optional, though.) Just to be perfectly clear, you are not required in this problem to
implement a user interface or any general functionality for the game of hangman. You will only be
graded on your word lists in (a), the completed table for (b), and your source code in (c).
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