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2.4.4.1 Causal chains

Consider a causal chain of three nodes, where A causes B which in turn causes (',
as shown in Figure 2.4(a). In our medical diagnosis example, one such causal chain
is “smoking causes cancer which causes dyspnoea.” Causal chains give rise to con-
ditional independence, such as for Figure 2.4(a):

P(C|A A B) = P(C|B)

This means that the probability of C, given B, is exactly the same as the probability
of C, given both B und A. Knowing that A has occurred doesn’t make any difference
to our beliefs about C jf we already know that B has occurred. We also write this
conditional independence as: 4 1LC|B.

In Figure 2.1(a), the probability that someone has dyspnoea depends directly only
on whether they have cancer. If we don’t know whether some woman has cancer,
but we do find out she is a smoker, that would increase our belief both that she has
cancer and that she suffers from shortness of breath. However, if we already knew
she had cancer, then her smoking wouldn’t make any difference to the probability of
dyspnoea. That is, dyspnoea is conditionally independent of being a smoker given
the patient has cancer,
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FIGURE 2.4
{a) Causal chain; (b) common cause; (¢) common effect.

2.4.4.2 Commen causes

Two variables 4 and C having a common cause B is represented in Figure 2.4(b).
In our example, cancer is a common cause of the two symptoms, a positive X-ray
result and dyspnoea. Common causes (or common ancestors) give rise to the same
conditional independence structure as chains:

PCIAAD) = P(C|B) = AULCIB

If there is no evidence or information about cancer, then learning that one symptom is
present will increuase the chances of cancer which in turn will increase the probability
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ihe other symptom. However, if we already know about cancer, then an additional
iive X-ray won’t tell us anything new about the chances of dyspnoea.

»4.4.3 Common effects

4 cummon effect is represented by a network v-structure, as in Figure 2.4(c). This
sresents the situation where a node (the effect) has two causes. Common effects (or
seir descendants) produce the exact opposite conditional independence structure to
vt of chains and common causes. That is, the parents are marginally independent
40, but become dependent given information about the common effect (i.e.,
dmey are conditionally dependent):

P(4

C A B) # P(A|C) = ~(A1L.C|B)

us, if we observe the effect (e.g., cancer), and then, say, we find out that one of
g causes 1s absent (e.g., the patient does not smoke), this ruises the probability of
e other cause (e.g., that he lives in a polluted area) — which is just the inverse of
saplaining away.

{.ompactness again

% we can now see why building networks with an order violating causal order can,
awd generally will, lead to additional complexity in the form of extra arcs. Consider

1 the subnetwork { Pollution, Smoker, Cancer } of Figure 2.1. If we build the sub-
rwork in that order we get the simiple v-structure Pollution — Smoker - Cancer.
However, if we build it in the order < Cancer, Pollution, Smoker >, we will first get
Cancer - Pollution, because they are dependent. When we add Smoker, it will be
sependent upon Cancer, because in reality there is a direct dependency there. But we
siuall also have to add a spurious arc to Pollution, because otherwise Cancer will act
# a common cause, inducing a spurious dependency between Smoker and Pollution;
s extra arc is necessary to reestablish marginal independence between the two.

24.5 d-separation

% have seen how Bayesian networks represent conditional independencies and how
ihese independencies atfect belief change during updating. The conditional indepen-
dence in ALLC|B means that knowing the value of B blocks information about C'
meing relevant to A, and vice versa. Or, in the case of Figure 2.4(¢), luck of informa-
won about B blocks the relevance of C' to A, whereas learning about B activates the
relation between C' and A.
These concepts apply not only between pairs of nodes, but also between sets of
wles. More generally, given the Markov property, it is possible to determine whe-
r a set of nodes X is independent of another set Y, given a set of evidence nodes
E. To do this, we introduce the notion of d-separation (from direction-dependent
separation).
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Definition 2.1 Path (Undirected Path) A path benween rwo sets of nodes X and Y
is any sequence of nodes between a member of X and a member of Y such thai
every adjacent pair of nodes is connected by an arc (regardless of direction) and no
node appears in the sequence twice.

Definition 2.2 Blocked path A path is blocked, given a set of nodes E, if there is a
node Z on the path for which at least one of three conditions holds:
1. Zis in E and Z has one arc on the path leading in and one arc out (chain).
2. Zisin E and Z has both path arcs leading out (common cause ).
3. Neither Z nor any descendant of Z is in E, and both path arcs lead in to 7
{common effect).

Definition 2.3 d-separation A set of nodes E d-separates two other sets of nodes X
and Y if every path from a node in X 10 a node in'Y is blocked given E.

It X and Y are d-separated by E, then X and Y are conditionally independent
given E (given the Markov property). Examples of these three blocking situations
are shown in Figure 2.5. Note that we have simplified by using single nodes rather
than sets of nodes; also note that the evidence nodes E are shaded.

FIGURE 2.3
=xamples of the three types of situations in which the path from X to Y can be
slocked, given evidence E. In each case, X and Y are d-separated by E.

Consider d-separation in our cancer diagnosis example of Figure 2.1. Suppose an
»bservation of the Cancer node is our evidence. Then:
I. P is d-separated from X and D. Likewise, S is d-separated from X and D
{blocking condition 1).
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~. While X is d-separated from D (condition 2).

3. However, if C had not been observed (and also not X or D), then S would have
been d-separated from P (condition 3).

1.5  More examples

fa thus section we present further simple examples of BN modeling from the litera-
swre. We encourage the reader to work through these examples using BN software
vaee §B.4).

235.1 Earthquake

Example statement: You have a new burglar alarm installed. It reliably detects
sweglary, but also responds to minor earthquakes. Two neighbors, John and Mary,
smise 1o call the police when they hear the alarm. John always calls when he
kears the alarm, but sometimes confuses the alarm with the phone ringing and calls
n also. On the other hand, Mary likes loud music and sometimes doesn’t hear the
wm. Given evidence about who has and hasn’t called, you'd like to estimate the
sbability of a burglary (from [217]).

A BN representation of this example is shown in Figure 2.6. All the nodes in
ts BN are Boolean, representing the true/false alternatives for the corresponding
gropositions. This BN models the assumptions that John and Mary do not perceive
x burglary directly and they do not feel minor earthquakes. There is no explicit rep-
sesentation of loud music preventing Mary from hearing the alarm, nor of John’s
confusion of alarms and telephones; this information is summarized in the probabil-
sies in the arcs from Alarm to JohnCalls and MaryCalls.

2.53.2 Metastatic cancer

bxample statement: Metastatic cancer is a possible cause of brain tumors and is
also an explanation for increased total serum calcium. In turn, either of these could
explain a patient fulling into a coma. Severe headache is also associated with brain
mimors. (This example has a long history in the literature [51, 217, 262].)

A BN representation of this metastatic cancer example is shown in Figure 2.7. All
e nodes are Booleans. Note that this is a graph, not a tree, in that there is more
than one path between the two nodes M and €' (via S and B).
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Example Statement: Suppose that we wanted to expand our original medical di-
agnosis example to represent explicitly some other possible causes of shormess of



