
CSE 150. Assignment 9 Summer 2016

Out: Tue Jul 26
Due: Thu Jul 28 (in class!)
Reading: Sutton & Barto, Chapters 1-4.

9.1 CAPE Survey

You should have received an email from CAPE asking you to evaluate this course. Please complete the
online survey if you have not already done so. Your answers will affect future offerings of this course.

9.2 Value iteration

In this problem, you will use value iteration to find the optimal policy of the MDP demonstrated in class.
This MDP has |S|=81 states and |A|=4 actions, and discount factor γ = 0.9925. Download the ASCII files
on the course web site that store the transition matrices and reward function for this MDP. The transition
matrices are stored in a sparse format, listing only the row and column indices with non-zero values; if
loaded correctly, the rows of these matrices should sum to one.

(a) Compute the optimal state value function V ∗(s) using the method of value iteration. Print out a list
of the non-zero values of V ∗(s). Compare your answer to the numbered maze shown below. The
correct value function will have positive values at all the numbered squares and negative values at the
all squares with dragons.

(b) Compute the optimal policy π∗(s) from your answer in part (a). Interpret the four actions in this MDP
as moves to the WEST, NORTH, EAST, and SOUTH. Fill in the correspondingly numbered squares of
the maze with arrows that point in the directions prescribed by the optimal policy. Turn in a copy of
your solution for the optimal policy, as visualized in this way.

(c) Turn in your source code along with your answers to the above questions.
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9.3 Approximate policy evaluation

Consider an MDP with transition matrices P (s′|s, a) and reward function R(s). In class, we showed that
the state value function V π(s) for a fixed policy π satisfies the Bellman equation:

V π(s) = R(s) + γ
∑
s′

P (s′|s, π(s))V π(s′).

In fact, the above defines a set of n linear equations, where n is the number of states in the MDP. If n is not
too large, these equations can be solved exactly by standard methods.

If n is prohibitively large, however, the standard methods—which scale as O(n3)—may not be applicable.
In this case, one needs an approach that approximately solves these linear equations with whatever computa-
tional resources are available. One such method is to solve these equations by iteration. In this problem, you
will analyze how quickly this approach converges to the exact solution. (Hint: the analysis is very similar
to the proof of convergence for value iteration, though in this case it is even simpler.)

Let Vk(s) denote our approximation to the state value function V π(s) at the kth iteration of the algorithm.
Thus V0(s) is our initial approximation, and to start the algorithm, we adopt a very simple initialization,
setting V0(s)=0 for all states s. Then the update rule at the kth iteration, for all states s ∈ {1, 2, . . . , n}, is
given by:

Vk+1(s) ← R(s) + γ
∑
s′

P (s′|s, π(s))Vk(s
′).

Use this update rule to derive an upper bound on the error

∆k = maxs |Vk(s)− V π(s)|

after k iterations of the update rule. Your result should show that the error ∆k decays exponentially fast in
the number of iterations, k, and hence that limk→∞ Vk(s)=V π(s) for all states s.
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