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2. Conditional independence (10 pts)

For the belief network shown below, indicate whether the following statements of conditional
independence are true (T) or false (F).

_tree P(4) = P(AIE)
3@@4;@, P(AIC,G) = P(AG)

P(AID,F,G) = P(A|D,G)
__ﬂ_vL(?(A,B,OID,E) = P(A|B,D)P(B|C, D, E) P(C|D, E)
P(D,G|F) = P(D|F)P(G|F)

P(D,E|B) = P(D|B)P(E|B)
P(FIC) = P(F)

P(F|C,E) = P(F|E)

P(F,H|B) = P(F|B)P(H|B)

P(F,H|B,G) = P(F|B,G)P(H|B,G)

o e(asclpE) = P(CIDE) P(31c,DE) PCAlB, ¢ pE)
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3. Polytree inference

Inference in a polytree scales linearly in the number of nodes and the sizes of their conditional
probability tables (CPTs). For the belief network shown above, consider how to efficiently compute
the posterior probability P(E|C, I). This can be done in four consecutive steps in which the later
steps rely on the results from earlier ones.

Complete the procedure below for this inference by showing how to compute the necessary result
at each step. For full credit, make each step as efficient as possible. Your answers should be
expressed in terms of the CPTs of the belief network as well as the results of previous steps. Hint:
at each step, you’ll want to exploit what you've just computed in the previous one.

(a) Marginal (2 pts)

P(B) = 3 P(";O\) 3) Mwé\v\a-»{izoﬁw ( M)

— < p(n=a) P(B|A" &) ?mo\»udfu.ke(?R)

(b) Conditional (3 pts)

P(DIC) . s p(B=b,2lC) (M)
b

PN Y REIL A (pR) (1)
b

- = p(r=w) Plolm=v )

b 8



3. Polytree inference (con’t)
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(c) Conditional (3 pts)
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P(oo\ v uAle
(T
T EP(pd|l ) P(FID=d, E)
Ch) ce T

(d) Posterior (5 pts)
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3. Belief updating

(a) Naive Bayes model (3 pts)

Consider the belief network shown below for the discrete random variables S € {1,2,...,n}
and O, € {1,2,...,m}. Also, let the CPTs of the network be parameterized by:

VP p(S:Z),
b, = P(O;=k|S=1),
where the same CPT is used for all the child nodes. In terms of these parameters, show how

to compute the posterior probability P(S=i|o1, 0y, ..., 0r). You may use the notation bi (o)
as shorthand for P(0;|S=1).
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(b) Belief updating (5 pts)

Consider the same belief network as before. In this problem, you will derive an incremental
update rule for the scenario where the observations arrive one at a time. Let

qu = P(S=ilo,09,...,0,)

denote the posterior probability over the hidden variable S based on the first ¢ observations.
Derive a recursion for these probabilities at time ¢+ 1 in terms of those at time . (Your

answer should also involve the parameters of the belief network and the observation Oty at
time t-+1.)

Note: the incremental update should require only O(n) operations, not O(nt) or O(nT)
operations as presumably did your answer to part (a).

1

by (06~ )G ¢ substibution

J.é EJ (Omo ?/IJS\’ No ¥ prodiz e



(c) Comparison to HMM (2 pts)

Now consider a discrete HMM where as usual S; € {1,2, ..., n} denotes the hidden state at
time t, O, €{1,2,...,m} denotes the observation at time ¢, and the parameters

CLij = P(S't.g,l:jist:i),
bik = P(Ot:k{StZZ),
denote the transition and emission matrices. Also let ¢;; = P(S; =1i|o1,02,...,0,) denote

the posterior over the hidden state S, at time ¢ after seeing ¢ observations. In an HMM, the
equation for belief updating is given by:

2 Girijb; (0r41)
g Gy by (0141)

qj1 =

Suppose we consider the trivial HMM in which the hidden state never changes. This can be
enforced by setting the transition matrix a,; equal to the identity matrix: that is,

A5 =— [<iaj>a

where (i, j) is the usual indicator function. For this special case, does the above formula
for belief updating reduce to your answer in part (b)? If yes, show that it does; if not, explain
why it doesn’t.
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1. EM algorithm

Consider the belief network, shown below, with conditional probability tables P (A), P(B), P(C|A, B),
P(D|C), and P(E|B,C, D). Suppose that values of the nodes B and C' are unobserved (hidden),
while the values of the shaded nodes A, D, and E are observed.

(a) Posterior probability (4 pts)

Show how to compute the posterior probability P(B = b,C =c|A=a,D =d,E = e) in
terms of the belief network’s conditional probability tables. You may use shorthand notation
to simplify your answer: i.e., P(b, cla,d,e) = P(B=b,C=c|A=a,D=d, E=e).



Op=C

(b) Posterior probability (2 pts)

Compute the posterior probabilities P(bla,d, e) and P(cla,d,e) in terms of your answer
from part (a); in other words, for this problem you may assume that the posterior probability
P(b,cla,d, e) is given.

(c) Log-likelihood (3 pts)

Consider a data set of T partially labeled examples {a, dt, et}z;l over the nodes A, D, and &
of the belief network. The log-likelihood of the data is given by:

T
L = log P(A=a;, D=dy, E=e,)

t=1

Compute this log-}kelihood in terms of the CPTs of the belief network.
Maf*ﬂ‘!v‘u\)@ LCLf‘ ‘w N
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(d) EM algorithm (8 pts)

Consider the EM algorithm that updates the CPTs to maximize the log-likelihood of the
data set in part (c). Complete the numerator and denominator in the expressions for the EM

updates shown below and on the following pages.

Suggested notation. Use shorthand such as P(b, c|a;, d,,e;) for the posterior probabilities
computed in parts (a) and (b). Also, use indicator functions such as (a, at), where:

lifa = (y,

la,a;) = { 0ifa # ar.

Simplify your answers as much as possible, and put your final answers in the spaces provided

below.
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(d) EM algorithm (continued)

P(D=d|C=¢) +

P(E=e|B=b,C=c,D=d) +
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(e) Multiple choice (3 pts)

Consider the EM algorithm for belief networks of discrete nodes with arbitrarily speci-
fied CPTs. Indicate the best answer to each statement in the space provided.

In practice, the EM algorithm for these belief networks will generally:

(a) converge to a global maximum of the log-likelihood.

L/(,b) converge to a local maximum of the log-likelihood.
(¢) converge to a global minimum of the log-likelihood.
(d) converge to a local minimum of the log-likelihood.
(e) not converge.

The EM algorithm for these belief networks is guaranteed to converge:

(a) within T iterations, where T is the number of examples. -
(b) only when the parameters are initialized by a domain expert.
(c) as long as there are no duplicate examples in the data set.
&) monotonically, never decreasing the log-likelihood at each iteration.
(e) none of the above (unless the belief network happens to be a polytree).

In general each iteration of the EM algorithm scales:

linearly in the number of examples, 7".
(b) linearly in the number of edges of the belief network.
(¢) inversely in the number of observed nodes.
(d) exponentially in the number of hidden nodes.
(e) all of the above.
(f) none of the above.



(e) Convergence (5 pts)

The EM algorithm generally converges to a local maximum of the log-likelihood. Circle the
plots below that might be obtained from a correct implementation of the EM algorithm.

log-likelihood
log-likelihood

number of iterations of EM

number of iterations of EM

log-likelihood
log-likelihood

number of iterations of EM number of iterations of EM

log-likelihood

number of iterations of EM



2. Hidden Markov modeling

Consider a discrete hidden Markov model (HMM) with the belief network shown below. Let

S:€{1,2,...,n} denote the hidden state of the HMM at time ¢, and let O, € {1,2,...,m} denote
the observation at time ¢. As in class, let:

T, =

by =

denote the parameters of the HMM. You may also use b;(k) to denote the matrix element bik.

(a) Backward algorithm (4 pts)

Consider the probabilities 8i; = P(0;1, 0049, . .., 07|S; = i). Derive an efficient recursion
to compute these probabilities at time ¢ < T from those at time ¢+1 and the transition and
emission matrices of the HMM. Justify briefly each step in your derivation.

B = P(Ot+1,0t+2,.--,0ﬂ5t:i)

= 5 Plomi 0py - O [ S51) mesginalizakion
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- 2 P(Sk?‘(sk:‘t) P(Ot’*‘) S{”H:j) P(Dt—rz “'QT l S‘t““:j)
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(d) Viterbi algorithm (6 pts)

For a particular sequence of observations (01,09, - .., o), Suppose that recursive algorithms
arc implemented to compute the nx T’ matrices (from lecture) with elements:

* Y s 8 3 _,‘
o, = glmdgx1{10gP(51,...,stgl,st—z,()l,...,ot)}
814y St

®j>t+l - argmax [6:} + log aijj}

(i) From the matrix elements shown above, which you may assume to be given, show how
to compute the most likely hidden state sequence

{s7,85,....,s7} = &YS%QQ?EP(S},SQ,...,87‘101,02,...,0T>.

In particular, do this by completing the following pseudocode for the Viterbi algorithm
(making use of the matrices defined above):

s = Grgmas C‘i*a'r]
[
fort =T—-1to 1

st = O (8], . )

(i) Shown below are the matrix elements ®;; (fori=1tonandt=1toT) fora particular
observation sequence {01, ...,or} of an n-state HMM with n =5 and T'= 6. Given
that sp = 4, use the matrix elements to deduce the missing values of the most likely
state sequence:

4 4 3 ( 3 4

St 8o 83 S4 S5 Sg
« 1 23)4 5
* 23451
o= | *3 @502
+ 15 1 23]
* 5123 4

Note: the asterisk symbols (#) indicate undefined elements at time ¢ = L.
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(d*) Most likely hidden state (2 pts)
As before, suppose that for a particular sequence of observations, the forward-backward
algorithm in HMMs is used to compute the probabilities:
Qg = P(Ol,OQ,--~,0t,St:i)>
Bie = P(og41,0e42, ..., 07|S=1).

In terms of these probabilities, which you may assume to be given, show how to compute
the most likely value of the (single) hidden state at time ¢:

7, = argmax {P(St:z'lol, 02, ...,07)].
L~ i

Show your wopk for full credit, briefly justifying each step in your derivation.

7 < turjwmx P(gt:",o, 0y ~-©'r) pyw\ Y uhd
t | ?(O, - ’G’\”)
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(e*) Compare and contrast (2 pts)

The Viterbi algorithm computes the most likely sequence of hidden states for a particular
sequence of observations:

Ed * ¥ — » T8N .
{s],85,...,sp} = argmax {l (81,89, ..., 87|01, 00, ..., O’[‘)}
{s1,82,...,1}

Consider how these collectively optimal states s; differ (if at all) from the individually opti-
mal states 7" defined in part (d) of this problem:

T, = argmax {P(St:i}ol, 09,..., oT)} )
i
Answer the following [yes/no] questions:
ho Is it always true that 7 = s} for all £?
ng Is it always true that P(7, 75, ..., 75) > 07

Yes Is it possible that 7" = s} for all £?

never | l Is it possible that P(r5, ..., 75o1,...,0r) > P(si,...,8%|o1,...,01)?

————
g: A(;TL;MA Tt waximi2e
+his
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1. Suppose X, Y, and Z are random variables. Which of the following expressions can be used
to compute P(X|Y, Z)?
@ P(X,Y,2)/P(Y,Z)
b) P(Y|X, Z2)P(X|2)/P(Y|Z)
© P, Z|X)P(X)/P(Y, Z)
(d) some of the above

(e) all of the above
2. In a polytree belief network,

(a) each node has no more than one parent.
\/Qb) there is at most one undirected path between any two nodes.
(c) the graph is a disjoint union of trees.

(d) each loop in the graph contains exactly one root node.
3. A naive Bayes model for classification of multivariate data assumes that

(a) the features of the data are marginally independent.
(b) the features of the data are conditionally independent given the label.
(c) the features of the data are uniformly distributed within the unit hypercube.
(d) there are fewer class labels than features.
4. Consider a discrete hidden Markov model with n hidden states and m observations. Given

an observation sequence of length 7', the Viterbi algorithm computes the most likely hidden
state sequence in time

(a) O(n*m?T)

5. Let W, represent the kth word in a sentence. Which of the following is true in a trigram
model of natural language?
(a) P(Wy) = P(Wi|Wi—1, Wi_2)
(b) P(Wi1, Wi, Wis1) = P(Wy_1) P(Wi) P(Wii1)
() PWp|Wio1, Wi o) = P(Wy|Wy, W, ..., Wi_1)
(d) P(Wp|Wi_1, Wi_2) = P(Wi Wy, Wa, ..., Wi_1, Wirr, Wesa, ..., Whnal)






