
Fundamentals of Astrophysics, PH 217

Part II: Stars, their evolution, and end states

1 Introduction

Stars are the ‘hero’ of astrophysics (after all it is the physics of stars). A spherical, hydrostatic approximation
is good for most stars, and therefore stars are simpler to model than say disks, which are essentially multi-
dimensional. Key physical aspects of stars are very well understood. Elements from thermodynamics and
statistical physics, nuclear physics, radiative transfer, and fluid dynamics are used to understand stars. Stars,
emitting profusely in optical, are also the objects observed for the longest time.

Sun as a star: Sun is the only star that is spatially resolved; all others are point sources as observed from
earth. Because of its proximity we know a great deal about our sun. Nuclear fusion happens only in the center
because the temperature is high enough only in the core (. 0.2R�). The energy produced at the center is
transported radiatively via photons diffusing out of the center. Beyond 0.7R�, radiative energy transport is not
efficient in transporting the energy outwards and convection (similar to the familiar bubbling of water) takes
over. Granulation observed in the solar photosphere directly shows hot fluid rising and cooler regions sinking.
One of the early (in 1940s) puzzles was regarding the source of opacity close to the solar photosphere, where the
temperature is 6000 K, too low to have H (most of which is in ground state) absorbing photons (excitation of
H from n = 1 to n = 2 requires 10.2 eV). It was realized that H−, a loosely bound structure with an ionization
potential of 0.75 eV is the main opacity source near the solar photosphere.

2 Basic equations

Stars are hydrostatic balls with the higher pressure toward the center supporting the gravitational pull on the
shells. The equation of hydrostatic equilibrium is dp/dr = −ρg = −GM(r)ρ/r2. The enclosed mass within
radius r is related to the mass density as dM/dr = 4πr2ρ. These are two equations for three unknowns (ρ, M
and p). We need an additional equation, which typically is the energy transport equation. Sometimes (especially
before the energy generation mechanism in the stars was known) polytropic equations of state are used which
relate the pressure and density as p = ρΓ, where Γ is the polytropic index. Such an approximation is not valid
in general, but alright in some cases as white dwarfs and fully convective stars. This relation makes the number
of equations equal to the number of unknowns.

Virial theorem: Multiplying the HSE equation by 4πr3 and integrating over the whole star, gives∫ R?

0

4πr3 dp

dr
dr = −

∫ R?

0

GM(r)ρ

r2
4πr3dr.

The LHS when integrated by parts, and by noting that p(R?) = 0, gives −
∫ R?

0
12πr2pdr = −2ET , where ET is

the total thermal energy of the star. Here we have assumed that u = 3p/2, valid for a non-relativistic ideal gas.

The RHS is
∫ R?

0
ρφ4πr2dr = EG, the gravitational energy of the star. Therefore, HSE implies, ET +EG/2 = 0,

a result known as the viral theorem for stars. The same is true for a collection of particles in a gravitational
potential. This implies that the total energy E = −ET = EG/2 < 0; i.e., the star is bound. Initially unbound
matter collapses to form a star with a total energy which is negative (EG/2); remaining positive energy −EG/2
is available to be radiated. This is the principle behind Kelvin-Helmholtz contraction. In fact, the fraction of
energy lost via radiation in Kelvin-Helmholz contraction is equal to the kinetic energy retained by the star, the
sum of which is equal and opposite to the gravitational binding energy of the star (as required by total energy
conservation). Note that if one does the same calculation for a relativistic gas (for which u = 3p; applicable for
radiation dominated stars), the total energy is zero and the star is barely bound. Unlike normal stars, such a
star is unstable. These considerations have profound implications for a star’s stability.

The viral theorem can be used to express the volume averaged pressure inside the star as 〈p〉 = −EG/(3V )
(V = 4πR3

?/3 is stellar volume). The volume averaged pressure is ∼ GM2
?/(3V R?) ≈ 1015 erg cm−3 for the sun

(here we have estimated the average gravitational energy as −GM2
?/R?). The virial temperature is defined as

(3/2)nkBTv = GM2
?/(2R�), or Tv = GM�mp/(6kBR�) = 0.4 keV (here we assume that the number density

the 2ρ/mp for a H plasma). This is an order of magnitude estimate for the temperature in the core of the sun.
Energy transport via radiation: As already mentioned, nuclear energy is generated in the cores of stars

and transported radiatively till 0.7R�, beyond which energy transport happens via convection. The energy
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Figure 1: Different parts of the sun. Top panel is a visual representation, while the bottom panels are density
and temperature profiles from the solar models. Inside the radiative zone entropy (or p/ργ ; γ is the adiabatic
index) increases with radius and within the convection zone it is almost flat. Outside the photosphere there
is chromosphere (T ∼ 104 K), which emits strong Hα emission lines. Beyond this is the solar corona with a
temperature of 106 K. Images are taken from the web.
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transport equation is given by dLr = 4πr2drρε, where Lr is the radial luminosity (energy flowing per unit time
across radius r) and ε is the energy production rate per unit mass due to nuclear fusion. In case energy is
transported via radiation, the radiative energy flux (= Lr/[4πr

2]) is given by −Ddu/dr, where D = λmfpc/3
(factor of 1/3 comes because photon motion in θ and φ does not contribute to radial diffusion) is the radial
diffusion coefficient for the photons and u = aT 4 is the radiation energy density. Here it is assumed that the
photon mean free path is tiny compared to the scales of interest. The radial luminosity flux is given (in terms
of opacity) by

Lr = −4πr2

(
c

ρκ

)
d

dr

(
aT 4

3

)
.

Energy is transported outward from higher to lower temperatures because of photon diffusion.
Energy transport via convection: Under some conditions, for example when opacity is large or temper-

ature is low, energy transport can take place via bulk fluid motions. In convection hot blobs rise and cooler
ones sink, transporting energy from inner to outer regions. Convection is observed in boiling water where one
easily sees overturning fluid motion.

In class we analyzed the stability of a fluid blob displaced in an atmosphere under hydrostatic equilibrium.
In the limit the the blob is displaced slowly (compared to the sound crossing time), the blob is always in pressure
balance with the background atmosphere. Also, in the adiabatic limit the blob maintains its entropy or p/ργ (γ
is the adiabatic index). These considerations give that the displaced blob will be heavier than its surroundings
if the background atmosphere’s entropy increases with radius, or in other words, if

d

dr
ln

(
p

ργ

)
> 0.

This condition can be written in terms of pressure and temperature profiles as∣∣∣∣dTdr
∣∣∣∣ < (1− 1

γ

)
T

p

∣∣∣∣dpdr
∣∣∣∣ .

Of course in stars dT/dr and dp/dr both are negative. While dp/dr is always negative in HSE, temperature
gradient can have any sign depending on heating and cooling. E.g., the temperature increases with height in the
stratosphere. Typically the luminosity of the star can be carried by very subsonic motions, and once convection
ensues, it is so effective that the temperature gradient is pinned almost at the marginal value; i.e.,

dT

dr
≈
(

1− 1

γ

)
T

p

dp

dr

in the convective zone.

3 Constructing stellar models

Collecting all the stellar structure equations together, we have

dM

dr
= 4πr2ρ, (1)

dp

dr
= −GM(r)ρ

r2
, (2)

dL

dr
= 4πr2ρε, (3)

dT

dr
=
−3

4ac

κρ

T 3

L

rπr2
, in the radiative zone (4)

dT

dr
=

(
1− 1

γ

)
T

p

dp

dr
, in the convective zone. (5)

Here there are 6 unknown variables are M, ρ, p, L,& T . We assume an equation of state p = p(ρ, T,Xi)
(Xi denotes composition) and a form for ε(ρ, T,Xi) and κ(ρ, T,Xi). These are the three constitutive equations
which depend on the microscopic properties of the matter and are assumed to be known. Thus we have an equal
number of equations and unknowns. The natural boundary conditions for our four ODEs are M(r = 0) = 0,
L(r = 0) = 0, p(r = R?) = 0 and M(r = R?) = M?.
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Now the question is which equation (Eq. 4 or 5) should we use for energy transport. Typically we assume
radiation transport and check if the profiles so obtained are convectively unstable. If they are, we assume
convective energy transport (Eq. 5) in those regions and re-integrate the stellar model. Another complication
is that the boundary conditions are specified both at r = 0 and r = R?. The way to solve these ODEs is to
assume a central density and temperature and integrate them out till the radius where p and ρ become 0. One
needs to play around with these central density/temperature guesses till we obtain the same value of the radius
at which both p and ρ vanish. The actual calculation of stellar models is somewhat complicated but we have
touched upon the essential ideas.

Abundances and relation between p & ρ: By comparing the kinetic energy of stellar plasma and the
mean potential energy, it is easy to show that the plasma behaves like an ideal gas (see Q1 in HW3) with
p = nkBT , where n is the total number density of particles. We want to relate the number density (n) and
the mass density (ρ). Usually the stellar abundances are specified in terms of X, Y and Z, the mass fraction
of H, He and metals, respectively. The mass fractions X = ρH/ρ = nHmp/ρ, Y = ρHe/ρ = nHe4mp/ρ and
Z = ρZ/ρ = nZ16mp/ρ. Since O is the most abundant metal, we take O values for metals (this doesn’t affect
the results much because metals are typically a small fraction by mass). In the fully ionized state the electron
number density ne = nH+2nHe+8nZ and the total number density n = ne+nH+nHe+nZ = 2nH+3nHe+9nZ .
The total number density is expressed as n = ρ/(µmp), where µ is the mean molecular weight. By comparing
these definitions, µ−1 = 2X + 3Y/4 + 9Z/16. One can also define µe = ρ/(nemp) = 2/(1 + X). Recall that
X + Y + Z = 1. Electrons contribute substantially to to pressure but not to the mass density. For a H plasma
µ = 0.5 and µe = 1. For neutral H2 molecules µ = 2.

Scaling relations:

4 Nuclear energy production

Gamow tunneling:
p-p, CNO, triple-alpha reactions:
Testing stellar models with observations:
Solar neutrino problem:

5 Observations of stars

HR diagram:
Main sequence, giants and dwarfs:
Eddington limit:

6 Stellar evolution

7 Stellar winds & supernovae

8 Stellar rotation & magnetic fields

9 End states of stars

Degeneracy pressure:
White dwarfs & Chandrasekhar’s limit:
Neutron stars & pulsars:
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