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Problem 1

Bν = 2hν3/(c2[ehν/kT −1]) denotes the specific intensity (energy emitted per unit nor-
mal area per unit time per frequency per unit solid angle) of a black body radiator.
Calculate the frequency at which the emissivity peaks for a BB as a function of
temperature (call it νmax). From Bν , derive Bλ, the specific intensity as a function
of wavelength and derive the Wien’s displacement law; i.e., the maximum Bλ occurs
at λmax = (2.9× 106/T ) nm K. Note that νmax λmax = c!.

This problem can be found in any standard Statistical physics text book or the books that have
discussed the radiative processes. See equations 1.56 and 1.57, and the associated text in the
book - Rybicki & Lightman, 1979, Wiley-VCH.

Problem 2

Stefan-Boltzmann law says that the total radiative energy emitted by a BB per
unit area per unit time is σ T 4 (σ is called the Stefan-Boltzmann constant). From
Bν express σ in terms of k, c and h. Energy density in BB radiation (energy per
unit volume, integrated over all frequencies, solid angles) is expressed as u = a T 4 ,
where a is known as radiation constant. Find the relation between a and σ.

Refer to equations 1.44 and 1.58, and the associated text in Rybicki & Lightman, 1979, Wiley-
VCH.
Note: In estimation of total flux, should not be confused with as usual limit of θ in spherical
polar coordinate. Here origin is chosen on the surface of sphere, hence the lower and upper
limit of θ is 0 and π/2 (not π) respectively.

Problem 3 : A. R. Choudhuri/Astrophysics for physicists/Ch. 2

1. (Problem 2.2) Consider a ‘pinhole camera’ having a small circular hole of
diameter d in its front and having a ‘film’ at a distance L behind it. Show that
the flux Fν at the film plane is related to the intensity Iν(θ, φ) in following way.

Fν =
π cos4 θ

4f2
Iν(θ, φ) ,
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where f = L/d is the ‘focal ratio’.

The solid angle subtended by the area ∆A at the pin hole is

∆Ω =
∆A cos θ

r2
(1)

Here ∆A = π(d/2)2, cos θ = L/r and θ is the incident angle . Therefore, the flux at the
film plane is

Fν =

∫
Iν cos θdΩ ' Iν cos θ∆Ω ≈ π cos4 θ

4f2
Iν(θ, φ) (2)

2. (Problem 2.5) Consider a spherical cloud of gas with radius and a constant
inside temperature T far away from the observer.
(a) Assuming the cloud to be optically thin, find out how the brightness seen
by the observer would vary as a function of distance b from the cloud center.
(b) What is the overall effective temperature of the cloud surface?
(c) How will the answers to (a)-(b) be modified if the cloud were optically
thick.

Refer to solved problem 1.8 in the book - Rybicki & Lightman, 1979, Wiley-VCH

3. (Problem 2.7) Consider an atmosphere of completely ionized hydrogen hav-
ing the same density as the density of Earth’s atmosphere. Using the fact
that a beam of light passing through this atmosphere will be attenuated due
to Thomson scattering by free electrons, calculate the path length which this
beam has to traverse before its intensity is reduced to half its original strength.
(This problem should give you an idea of why the matter-radiation decoupling
to be discussed in $ 11.7 took place after the number of free electrons was re-
duced due to the formation of atoms.)

For a strict solution of this problem one would need to treat true absorption differently
from pure scattering (see $ of the book - Rybicki & Lightman). However, for most cases
where the absorption coefficient (α) is lesser than the scattering coefficient (σ), the ex-
tinction coefficient is dominated by the scattering cross-section. The mean free path of
a photon is thus given by λ = 1

σ+α '
1
σ . For electrons with Thomson scattering cross-

section σT , the scattering coefficient (which is different from the scattering cross-section)
is given by σ = neσT , where ne is the density of electrons. The path length at which a
beam of light is reduced to half its intensity is given by

I1/2 = 0.5I0 = I0e
−l1/2/λ

The electron density is evaluated by taking the atmosphere’s mass density ρ = 1.2kg/m3

and assuming it is composed entirely of hydrogen atoms (of mass ∼ mass of a proton
mp). Putting the values of earth’s particle density ne = ρ/mp = 7.1 × 1026m−3 and
Thomson scattering cross section σT = 6.65× 10−29m2, gives a value for the path length
l1/2 = 14.5m.

Thus in 14.5m, half of the intensity of the beam is lost and in about 100 m, more than
99% is lost. In the early universe, when most of the atoms were in an ionized state,
the radiation would interact with the free electrons and would not be able to penetrate
through. Once atoms started forming and the number of free electrons became lesser,
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the radiation was able to escape and the universe, in a sense became transparent. The
cosmic microwave background radiation that we see today is composed of the escaped
photons from that era and the virtual surface from which these photons emerge is called
the surface of last scattering.

Problem 4 : Dan Maoz/Astrophysics in a Nutshell/Ch. 2

1. (Problem 2.1)
a. If the sun subtends a solid angle Ω on the sky, and the flux from the Sun
just above the Earth’s atmosphere, integrated over all wavelengths is f(d�),
show that the flux at the Solar photosphere is πf(d�)/Ω.
b. The angular diameter of the Sun is 0.57 degree. Calculate the solid angle
subtended by the Sun, in steradians.
c. The Solar flux at Earth is

f(d�) = 1.4× 106 erg s−1 cm−2 = 1.4 kW m−2

Use (b), and the Stefan-Boltzmann law, to derive the effective surface tem-
perature of the Sun.
d. Derive an expression for the surface temperature of the Sun, in terms only
of its solid angle, its flux per unit wavelength fλ(λ1) at Earth at one wavelength
λ1, and fundamental constants.

a. Assuming that the Sun emits isotropically at a luminosity L�, the flux at a given
distance R from the sun would be f(d) = L�

4πd2
. The ratio of flux at the solar photosphere

f(R�) = F� to the flux at the Earth’s atmosphere f(d�) would be F�/f(d�) = R2
�/d

2
�.

The solid angle subtended by the sun at Earth’s surface (see Fig. 1) is given by Ω =
πR2

�/d
2
�. This and the previous expression combine to give F� = f(d�)π/Ω.

b. The radius of the sun R� can be expressed in terms of its angular diameter (2α) by
R� ' αd�. Combining this with the expression for Ω above, gives

Ω ' πα2 = π(0.57/2π/180)2 = 7.8× 10−5 steradians.

Figure 1: Solid angle subtended by sun at earth.

c. As per Stefan-Boltzmann Law, the flux of
sun would be F� = σT 4

E . Combining this and
the expression from (a) gives

T 4
E =

πf(d�)

Ωσ
; TE ' 5800K

d. To relate fλ(λ1) with T , we assume the
Sun’s surface to be an isotropically emitting
blackbody, i.e its specific intensity is Iλ =
Bλ(T ). Thus the flux at Sun’s surface for a
given wavelength would be Fλ(λ1) = πBλ(T )
(see equation 1.14 of Rybicki & Lightman for
the expression for flux of an isotropically emit-
ting body). Combining this with the expres-
sion in (a), gives

fλ(λ1) = π2/ΩBλ(T )

Putting the expression for the Planck function Bλ(T ) gives the required expression for T
in terms of fλ(λ1).
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2. (Problem 2.2)
a. Show that, if the ratio of the blackbody fluxes from a star at two different
frequencies (i.e., a color) is measured, then, in principle, the surface temper-
ature of the star can be derived, even if the stars solid angle on the sky is
unknown (e.g., if it is too distant to be spatially resolved, and its distance and
surface area are both unknown).
b. Explain why it will be hard, in practice, to derive the temperature mea-
surement if both frequencies are on the Rayleigh-Jeans side of the blackbody
curve, hν << kT .
c. For the case that both measurements are on the Wien tail of the blackbody
curve, hν >> kT , derive a simple, approximate, expression for the temperature
as a function of the two frequencies and of the flux ratio at the two frequencies.
d. If, in addition to the flux ratio in (c), a parallax measurement and the to-
tal flux (integrated over all frequencies) at Earth are available, show that the
stars radius can be derived.

a. If the two blackbody fluxes are written as B1(T ) and B2(T ) respectively, then their
ratio B(T ) can be written as;

B(T ) =

(
ν1

ν2

)2 exp(hν2/kT )− 1

exp(hν1/kT )− 1
(3)

Solving the above equation numerically can give in principle the surface temperature of
the star.
b. In the Rayleigh-Jean’s limit, hν << kT and therefore, the exponential term can be
expanded to have

B(T ) =

(
ν1

ν2

)2 (1 + hν2/kT − 1)

(1 + hν1/kT − 1)
=
ν1

ν2
(4)

From the final equation, T is missing which confirms the fact that it will be difficult to
estimate the surface temperature of the star in the Rayleigh-Jean’s limit.
c.In the Wien’s limit, hν >> kT and thus, the exponential terms are much greater than
1 each and the equation can be written as;

B(T ) =

(
ν1

ν2

)2 exp(hν2/kT )

exp(hν1/kT )
(5)

Proper evaluation of the above equation will give;

T =
h

k ln(B(ν2ν1 )2)− (ν2 − ν1)
(6)

where B is the ratio of B1 to B2

d. From the parallax measurement, the distance d to the star can be determined and since
the flux at Earth is known, the luminosity L can be written as

L = 4πd2F (7)

On the other hand, we know that the luminosity of a spherical object radiating as a
blackbody is;

L = 4πR2σT 4 (8)

Thus, from the two equations above, the radius R of the star can be measured.
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3. (Problem 2.3) If parallax can be measured with an accuracy of 0.01 arc sec-
ond, and the mean density of stars in the Solar neighbourhood is 0.1 pc−3,
how many stars can have their distances measured via parallax?

Distance covered in 0.01 arc second is

d =
1AU

0.01 arc sec
≈ 1003 (9)

If the mean number density of stars is n = 0.1 pc−3, then total number of stars is

N =
4

3
πd3 n =

4

3
π(100)3 0.1 = 4.19× 105 (10)

4. (Problem 2.4) The maximal radial velocities measured for the two components
of a spectroscopic binary are 100 km s1 and 200 km s1, with an orbital period
of 2 days. The orbits are circular.
a. Find the mass ratio of the two stars.
b. Use Kepler’s Law (Eq. 2.42) to calculate the value of M sin i for each star,
where M is the mass and i is the inclination to the observer’s line of sight of
the perpendicular to the orbital plane.
c. Calculate the mean expectation value of the factor sin3 i, i.e., the mean
value it would have among an ensemble of binaries with random inclinations.
Find the masses of the two stars, if sin3 i has its mean value.

Applying Kepler’s third law in the binary system, we have

P =
2π

2
√
G(M1 +M2)

a3/2 , (11)

where P is the orbital period of the binary system, a is the size of semi major axis, and
M1 and M2 are the mass of the stars. If a1 is the distance of star 1 (mass M1) from the
center of mass, then a1 = [M2/(M1 +M2)] a. Similarly for star 2, a2 = [M1/(M1 +M2)] a.
Using these equation from Eq. 11 we have

f1 =
M3

1

(M1 +M2)2
sin3 i =

P

2πG
(v2 sin i)3 (12)

f2 =
M3

2

(M1 +M2)2
sin3 i =

P

2πG
(v1 sin i)3 (13)

Here f1 , f2 are called the mass function of the stars 1 and 2 respectively.

a. Taking ratio f1/f2 we have M1/M2 = v2/v1. The given value of v1obs = v1 sin i =
100 km s−1 and v2obs = v2 sin i = 200 km s−1. Therefore, the mass ratio of the two stars
is M1 : M2 = 2 : 1.

b. By taking M2 = 0.5M1, from Eq. 12, we have M1 sin3 i = 2.25 P
2πG(|v2obs|)3. Now

putting the values of v1obs and P = 2 days, we get M1 sin3 i = 3.71 M� and M2 sin3 i =
1.85 M�.

c. The solid angle is defined as dΩ = dA/r2 = sin i di dφ. Therefore, the mean expectation
value of sin3 i is

〈
sin3 i

〉
Ω

=

∫ i=π/2
i=0

∫ φ=2π
φ=0 sin4 i di dφ∫ i=π/2

i=0

∫ φ=2π
φ=0 sin i di dφ

=
1

2
β(5/2, 1/2) =

Γ(5/2) Γ(1/2)

2 Γ(3)
=

3π

16
(14)
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(Note: i = 0 and i = π/2 are the face-on and edge-on view of the orbit. Don’t be confused
with as usual limit of i (or θ) in spherical polar coordinate.)
Considering sin3 i has its mean value, from (b) we get M1 = 6.29 M� and M2 = 3.15 M�.

5. (Problem 2.5) In an eclipsing spectroscopic binary, the maximal radial veloc-
ities measured for the two components are 20 km s−1 and 5 km s−1. The orbit
is circular, and the orbital period is P = 5 yr. It takes 0.3day from the start
of the eclipse to the main minimum, which then lasts 1 day.
a. Find the mass of each star. Since the binary is of the eclipsing type, one
can safely approximate i ≈ 90o . Check to what degree the results are affected
by small deviations from this angle, to convince yourself that this is a good
approximation.
b. Assume again i = 90o and find the radius of each star. Is the result still
insensitive to the exact value of i.

Figure 2: Schematic diagram of eclipsing binary. Position P1 represents the starting point of eclipse. The main
minimum starts from P2 and it lasts upto P3.

a. The mass ratio of this binary system is M1/M2 = v2/v1, where v1obs = v1 sin i = 20 km s−1

and v2obs = v2 sin i = 5 km s−1. This gives M1 : M2 = 1 : 4.
Using M1 : M2 = 1 : 4 and P = 5 yr, from Eq. 12, we get M1 sin3 i = 25 P

2πG(|v2obs|)3 = 0.58 M�
and M2 sin3 i = 100 P

2πG(|v1obs|)3 = 2.35 M�.

b. The relative velocity of the stars is vrel = v1+v2 ≈ (|v1obs|+|v2obs|) ≈ (20+5) = 25 km s−1.
From Figure 2, we find that the diameter of star 1 is d1 = 0.3 days× vrel = 0.925 r�, and diam-
eter of star 2 is d2 = 1.3 days× vrel = 4.01 r�. Hence the radius of the stars is r1 = 0.46 r� and
r2 = 2 r� respectively.

Problem 5 :

Assuming spherical symmetry, constant opacity, and the fact that temperature in-
creases with depth inside the sun, argue that the edge of the solar disk will be
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darker compared to the center. This is the well-known limb darkening.

On the one hand, the sun is not a perfect blackbody and as a result, the temperature is not
perfectly same everywhere on the surface. More importantly, the radiation we observe from the
sun comes from the region with same value of optical depth (photosphere where τ ∼ 1).

If observer looks at the limb (or edge) of the sun rather than the center at some elevation
θ as depicted in the first diagram below, the radiation is attenuated by a factor τ and the
corresponding temperature within the star is given by

T (τ) = To + Tτ cos θ (15)

To is the brightness temperature at the surface of the sun which increases as one goes deeper
into the sun. Therefore for the same value of τ (of the order 1), the brightness temperature
seen by looking through the sun’s photosphere from its limbs is attenuated by a factor cos θ i.e,

T = To + Tτ cos θ (16)

Whereas, if the same observer looks through the center (a distance L) of the sun rather that its
limbs, he sees through to a hotter part of the sun with temperature given as

T = To + T (17)

For this reason, the limbs or edges of the sun appear darkened. This is depicted in the figures
below. Refer to the url http://www.iucaa.in/~dipankar/ph217/contrib/limb.pdf for more
details.

Figure 3: Schematic diagram showing limb darkening effect when looking through the edges of the sun, L here
represent the region within the sun that the observer can see through (i.e, τ ∼ 1) which is the
photosphere.
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Figure 4: Limb darkening of sun. TLO is a lower temperature than THI , the observer who looks through point
A sees a hotter region than the observer who looks through the limbs at point B.

8


