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Problem 1

The density in the center of the sun is about 100 times that of water in normal con-
ditions. While we cannot treat water as an ideal gas at room temperature, show
by comparing the average kinetic energy of particles at the central temperature of
the sun (107 K) that the ideal gas approximation is a good one.

Let l be the mean distance between two particles. If n is the particle number density then
l = n−1/3 i.e., l ≃ (ρ/mH)

−1/3. For sun ρ ≈ 100 g cm−3 which gives l = 2.56 × 10−9 cm (for
water l = 1.2 × 10−8 cm).

If l >> λ, then each particle in the gas is distinguishable and it can be treated as ideal gas
(λ is the thermal de-Broglie wave length). We know λ = h/p = h/

√
2mEk = h/

√
2πmkBT

(where m ≈ mH). In case of sun, λ = 5.5 × 10−11 cm i.e., λ << l (for water λ = 1× 10−8 cm)
which shows each particles are distinguishable.

Note that the particles in an ideal gas interact collisionally, and therefore we need to check
an additional criterion to fulfil the ideal gas assumption. To do this, we have to prove that the
average kinetic energy of the particles (EK) >> electrostatic potential (EP). For sun

EK ∼ kBT = 1.38 × 10−16 × 107 = 1.38 × 10−9 erg ,

EP ∼ e2

l
=

(

4.8× 10−10
)2

2.56 × 10−9
= 9× 10−11 erg

This shows EK >> EP, and therefore, the ideal gas approximation is quite good.

Problem 2

Using order of magnitude estimates, argue that the central/virial temperature of
the sun (Tc) and the effective temperature are related to λmfp/R (λ is an estimate
of the photon mean free path) as λmfp/R ∼ (Teff/Tc)

4.

We know L = 4πR2 σ T 4
eff , where L is the luminosity of the star. The mean free path λmfp ≈

1/(σTn). Therefore

λmfp =
4πµmH

L

(

R2

ρ

)

T 4
eff (1)
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From Virial theorem we have Tc =
µmH

kB
GM
R . Rearranging we get

λmfp/R ∝ (Teff/Tc)
4

Problem 3

Assuming that nuclei A and B have a Maxwellian distribution of velocities in equi-
librium at temperature T , show that the 1-D velocity distribution of relative
velocities (v = |vA − vB |) is also a Maxwellian given by

f(v) =

(

µ

2π kB T

)3/2

4πv2 exp

(

− µ v2

2 kB T

)

(2)

and µ = mAmB/(mA +mB) is the reduced mass. Express this velocity distribution
as an energy (E = µ v2/2) distribution. Show that the typical thermal velocity of
massive particles is smaller compared to lighter ones.

This problem is quite straight forward and it can be found in any standard Statistical physics
text book.

Problem 4
For a non-relativistic degenerate electron gas for which p ∝ ρ5/3 (p is pressure
and ρ is mass density). Using scaling arguments, show that the radius of a non-
relativistic white dwarf which is supported by electron degeneracy scales with its
mass as R ∝ M−1/3 and ρ ∝ M−1/2. This is different from normal stars, flow which
we argued (again using scaling arguments) that R ∝ M . Degeneracy pressure starts
to become important when de Broglie wavelength becomes of order the mean sepa-
ration between electrons. Calculate the order of magnitude radius of a white dwarf
for which de Broglie wavelength (assuming viral temperature) becomes equal to
the mean distance between electrons. What happens to the above estimates if
electrons become relativistic?

The hydrostatic equilibrium equation leads to

1

ρ

dP

dr
= −GM(r)

r2
(3)

d

dr

(

r2

ρ

dP

dr

)

= −G
dM

dr

Now using dM/dr = 4πr2ρ, P = Kρ(1+1/n) and ρ = ρc θ
n we get

1

r2
d

dr

(

r2
dθ

dr

)

= −
[

4πGρ
1−1/n
c

(n+ 1)K

]

θn

The above equation is well known Lane-Emden equation. The mass of the white dwarf can
be estimated as follows :

M =

∫ R

0
4πr2ρdr =

∫ R

0
4πr2ρcθ

ndr = −
[

(n+ 1)Kρ
1/n
c

G

]

(

r2
dθ

dr

)R

0

At the center (r = 0) of a star θ = 1 and dθ/dr = 0. On the surface (r = R) θ = 0. Therefore
we get

M =

[

(n+ 1)Kρ
1/n
c

G

]

[

r2
dθ

dr

]

r=R

∝ ρ1/nc R2 1

R
(4)
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where we can use ρc ∼ M/R3. Therefore we get

R =

[

G

(n + 1)K

]1/(n−3)

M (n−1)/(n−3) (5)

For non-relativistic star, P = Kρ5/3 i.e., n = 3/2 which gives R ∝ M−1/3.
The de-Broglie wave length λ = h/p. For relativistic electron p ≃ mec which yields λ =

h/(me c). The mean separation between two particles l ≃ n−1/3. Considering at λ = l the
density ρ = ρdeg which gives

ρdeg ≈ mH

(me c

h

)3
= 1.12 × 105 g cm−3

For relativistic electrons P = Kρ4/3 which gives R ∝ M2/0, i.e. Mass and radius do not depend
on the central density!
Problem 5
Using Paulis exclusion principle, argue that the number protons and neutrons in
a nucleus is roughly equal and that neutrons in a nucleus simply cannot decay via
beta decay. Also, why do massive nuclei have over abundance of neutrons over
protons (i.e., A > 2Z)? Hint: unlike neutrons, protons are charged.

For most of the low mass stable nuclei, the proton number (Z) is equal to the neutron number
(N). This is because, neutrons are charge neutral and they interact only via nuclear force which
is attractive in nature. Whereas, protons interact via both nuclear force and coulomb force.
For small number of protons, the equal number of neutrons are enough to hold the protons
together. Whereas for heavy nucleus, to overcome the proton-proton repulsion, excess number
of neutrons are required.

According to Paulis exclusion principle, each nuclear energy level contains two nucleons of
opposite spin. When both Z and N are even (e-e nucleus; i.e., when the energy levels are filled),
the nucleus doesn’t want to gain or lose nucleons by participating in nuclear reactions. The e-e
nucleus are quite stable, even when they are heavy. When Z and N both are odd, the nuclear
force between N and Z keeps them stable. The most unstable case is when either Z or N are
odd (e-o of o-e nucleus ) and they decay via beta decay.

Problem 6 : A. R. Choudhuri/Astrophysics for physicists/Ch. 3

1. (Problem 3.2) If the Sun was producing its energy by slow contraction as
suggested by Helmholtz and Kelvin, estimate the amount by which the radius
of the Sun has to decrease every year to produce the observed luminosity.

Helmholtz and Kelvin proposed that the main source of power of a star is the gravitational
energy. The gravitational energy of a star can be written as E = a (GM2/R), where a
depends on the mass distribution. According to Kelvin and Helmholtz proposal, |dE/dt| =
L, where L is the observed luminosity of the star. Assuming a ∼ 1, we obtain dE/dt =
−(GM2/R2)dR/dt. Therefore we get

dR

dt
= − LR2

GM2

Using R = 6.96 × 1010 cm, L = 3.846 × 1033 erg s−1 we get dR
dt = 3.17 × 10−8 R⊙ yr−1.

2. (Problem 3.3) Show that the radiation pressure at the centre of the Sun is
negligible compared to the gas pressure, by estimating the ratio of the radia-
tion pressure to the gas pressure.
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The radiation pressure of a blackbody radiation is given by Prad = (1/3) aT 4, where
a = 7.6× 10−15 erg cm−3 K−4. The gas pressure Pgas ≈ (ρ/mH) kB T . This gives

Prad

Pgas
=

(1/3) aT 4

(ρ/mH) kB T
≈ 3× 10−4

This shows Prad << Pgas.

3. (Problem 3.7) Make a very rough estimate of the wavelengths at which a star
of mass 9 M⊙ and a star of mass 0.25 M⊙ will give out maximum radiation.

From the definition of effective temperature we have Teff ∝ (L/R2)1/4. For main sequence
star, L ∝ M4 and R ∝ M which yield Teff ∝ M1/2 i.e., Teff = αM1/2 (α is proportional
constant). We can use the standard parameters of the sun to estimate the value of α
which gives

Teff = T⊙

(

M

M⊙

)1/2

Using Wien’s displacement law λmax ≃ (0.2898/Teff ) cmK, we get

λmax =

(

0.2898

T⊙

)(

M

M⊙

)−1/2

cm = 501.6

(

M

M⊙

)−1/2

nm

For a star of 9 M⊙, λmax = 167.2 nm. Similarly for M = 0.25 M⊙, λmax = 1003.2 nm.

4. (Problem 4.3) According to current solar models, the centre of the Sun has a
temperature of about 1.56 × 107 K, a density of about 1.48 × 105 kgm−3 and a
chemical composition given by XH = 0.64, XHe = 0.34, XCNO = 0.015. Estimate
the amount of energy that is generated per unit volume at the centre of the
Sun due to the pp chain and the CNO cycle.

Note : Please see Equation 4.25 and 4.27 in Chapter 4 of this book (Astrophysics for
physicists by A. R. Choudhuri).

5. (Problem 4.4) Make a very rough estimate of the time that an acoustic wave
propagating radially inward in the Sun would take to go from one end of the
Sun to the other end.

The speed of sound near the center of the sun cs =
√

kBT/(µmH) ≈ 371 km s−1 and near
the surface cs ≈ 9 km s−1. For a rough estimation, let us assume cs ≈ 100 km s−1 and it is
independent of radius. Therefore, the acoustic wave passing time scale is t⊙ = R⊙/cs ∼
0.08 day.

Note : Acoustic wave propagation in the Sun is an interesting field and the branch is
known as Helioseismology (for more details see http://surya.as.utexas.edu/helio.html).

6. (Problem 4.6) Neutrinos from Supernova 1987A which reached the Earth trav-
elling a distance of 55 kpc were found to have energies in the range 6−39 MeV.
If the spread of 12 s in arrival times was caused by neutrinos of different en-
ergies travelling at different speeds, show that the neutrino mass cannot be
much more than about 20 eV

Let us assume all neutrinos were produced in a single event (eg., Supernova) and due
to the difference in their initial energies, they have arrived at different times. Consider
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EH = γHmc2 and EL = γLmc2 denote the energy of the earliest and latest neutrinos
respectively i.e., EH = 39 MeV and EL = 9 MeV.

If each neutrinos travel a distance D, then the time taken by the high energy neutrino

to reach the earth is tH = D/vH, where vH = c
√

1− 1/γ2H is the speed of the high

energy neutrino. This gives tH = t0/
√

1− 1/γ2H. Again assuming γH >> 1, we obtain

tH ≃ t0
[

1 + 1/(2 γ2H)
]

. Similarly for the low energy neutrino, tL ≃ t0
[

1 + 1/(2 γ2L)
]

. This
gives

tL − tH =
t0
2

[

1

γ2L
− 1

γ2H

]

γL =

[

t0 {1− (EL/EH)
2}

2 (tL − tH)

]1/2

(6)

Using all given values we get γL = 4.5× 105. Therefore, mmax c
2 = EL/γL = 20 eV.

Note : See the discovery paper :
1. http://journals.aps.org/prl/cited-by/10.1103/PhysRevLett.58.1490
2. http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.58.2722

Problem 7 : Dan Maoz/Astrophysics in a Nutshell/Ch. 3

1. (Problem 3.4) Consider a hypothetical star of radius R, with density that
is constant, i.e., independent of radius. The star is composed of a classical,
no-relativistic, ideal gas of fully ionized hydrogen.
a. Solve the equations of stellar structure for the pressure profile, P (r), with
the boundary condition P (R) = 0.
b. Find the temperature profile, T (r).
c. Assume that the nuclear energy production rate depends on temperature
as ǫ ∝ T 4. (This is the approximate dependence of the rate for the pp chain
at the temperature in the core of the Sun.) At what radius does ǫ decrease
to 0.1 of its central value, and what fraction of the stars volume is included
within this radius?

a. From hydrostatic equilibrium we have

− 1

ρ

dP

dr
r̂ + ~fG = 0 , (7)

where ~fG = −r̂GM(r)/r2 and M(r) = (4/3)πr3 ρ. Now integrating above equation we
get

∫ r

r=R
dP = −4π

3
Gρ2

∫ r

r=R
dr r

P (r) =
2π

3
Gρ2 (R2 − r2) (8)

b. From ideal gas equation P = ρ/(µmH) kB T . This gives

T (r) =
µmH

kB

P

ρ
=

µmH

kB

2π

3
Gρ (R2 − r2) (9)
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c. The dependence of the nuclear energy production on temperature is given as ǫ ∝ T 4.
Using problem a and b we get

ǫ ∝ (R2 − r2)4 = ǫ0

[

1− (r/R)2
]4

,

Let at r = rf , ǫ = f ǫ0, where ǫ0 is the central value (r = 0) and f ≤ 1. Therefore,

rf = R
[

1− f1/4
]1/2

(10)

Putting f = 0.1 we get r = 0.66R.

2. (Problem 3.5)Suppose a star of total mass M and radius R has a density profile
ρ(r) = ρc(1− r/R), where is the central density.
a. Find M(r).
b. Express the total mass M in terms of R and ρc.
c. Solve for the pressure profile, P (r), with the boundary condition P (R) = 0.

a.

M(r) =

∫ r

r=0
4π r2 dr ρc(1− r/R) =

4π

3
ρc

(

r3 − 3

4

r4

R

)

b. Total mass Mtot =
π
3 ρcR

3.
c. Following the same method done in problem 3.4.a, we get

∫ r

r=R
dP = −4π Gρ2c

∫ r

r=R
dr (1− r/R)

(

r3 − 3

4

r4

R

)

P (r) = πGρ2c R
2

[

5

36
− 2

3

( r

R

)2
+

7

9

( r

R

)4
− 1

4

( r

R

)2
]

(11)

3. (Problem 3.6) Consider a star of mass M = 10M⊙ , composed entirely of fully
ionized 12C. Its core temperature is Tc = 6× 108 K (compared to Tc = 1.5× 107

K for the Sun).
a. What is the mean particle mass m, in units of mH ?
b. Use the classical ideal gas law, the dimensional relation between mass,
density, and radius, and the virial theorem, to find the scaling of the stellar
radius rwith total mass M , mean particle mass m, and core temperature Tc.
Using the values of these parameters for the Sun, derive the radius of the
star.
c. If the luminosity of the star is L = 107 L⊙, what is the effective surface
temperature?
d. Suppose the star produces energy via the reaction

12C +12 C →24 Mg

The atomic weight of 12C is 12, and that of 24 Mg is 23.985. (The atomic
weight of a nucleus is defined as the ratio of its mass to 1/12 the mass of a
12C nucleus). What fraction of the stars mass can be converted into thermal
energy?
e. How much time does it take for the star to use up 10% of its carbon?

6



a. When 12C is fully ionized, it contributes 1+6 particles (one nucleus and six electrons).
Therefore, the mean mass per particle is

mav =
mnucleus + neme

nnucleus + ne
≈ AmH

np + ne
=

12

7
mH

b. For ideal gas T = (µmH/kB)P/ρ. From hydrostatic equilibrium we have

1

ρ

dP

dr
= −GM

r2
, (12)

Using scaling relation of mass ρ ∼ M/R3, from above equation we have P ∼ GM2/R4.
Substituting this we get

T ∼ µmH

kB
G

M

R
(13)

The central temperature of sun is T ≃ 1.65 × 107 K, M = 2 × 1033 g which gives R ≈
(µmH/kB)GM/T = 5.98 × 1010 cm= .86 r⊙.
c.

Teff =

(

L

4πR2σ

)1/4

= 350295 K

(σ = 5.67 × 10−5 erg cm−3 K−4, L⊙ = 3.839 × 1033 erg s−1).

d. The mass of the star is M = 10M⊙ and it is completely made of Carbon. The total
number of carbon atom is n(12C) = M/(themass of 12C) = 10M⊙/(12× 1.66× 10−24 g) ≃
1057 and the total number of reactions is n(12C)/2 = 0.5× 1057.

The mass difference between final and initial elements in each fusion is ∆M = 2×M(12C)−
M(24Mg) = (24 − 23.985) amu ≃ 0.015 amu = 2.49 × 10−26 g which is converted into
thermal energy. The total amount of mass converted into thermal energy is ∆MTotal =
∆M × total number of reaction = (2.49× 10−26)× (0.5× 1057) = 1.245× 1031 g = 6.225×
10−3 M⊙ = 6.225 × 10−4M .

e. The energy difference between final and initial elements is ∆E = 2 × M(12C) −
M(24Mg) = (24 − 23.985) amu ≃ 0.015 × 931MeV = 2.2372 × 10−5 erg. The amount
of energy production in burning of 10% carbon is E10% = (0.1n(12C)/2) × (2.2372 ×
10−5) erg = 1.12 × 1051 erg. Let t10% be the time in which 10% carbon converted into
thermal energy and assume that the luminosity L (= 107 L⊙) is independent of time.
This gives

t10% =
E10%

L
≃ 923 yr

4. (Problem 3.9) We saw (Eq. 3.141) that, on Earth, the number flux of Solar
neutrinos from the p− p chain is

fneutrino =
2 f⊙

26.2MeV
=

2× 1.4× 106 erg s−1 cm−2

26.2 × 1.6× 10−6 erg
= 6.7 × 1010 s−1 cm−2.

Other nuclear reactions in the Sun supplement this neutrino flux with a small
additional flux of higher-energy neutrinos. A neutrino detector in Japan,
named SuperKamiokande, consists of a tank of 50 kton of water, surrounded
by photomultiplier tubes. The tubes detect the flash of Cerenkov radiation
emitted by a recoiling electron when a high-energy neutrino scatters on it.
a. How many electrons are there in the water of the detector?
b. Calculate the detection rate for neutrino scattering, in events per day, if
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10−6 of the Solar neutrinos have a high-enough energy to be detected by this
experiment, and each electron poses a scattering cross section σ = 10−43 cm2

a. The effective number of electrons in the detector is neffective = M/(2mH) = 50 ×
109 g/(2 × 1.6733 × 10−24) = 1.5× 1034.
b. Detection rate of high energy neutrino is 10−6fneutrino × (σ neffective) = 1.01× 10−4 per
sec. Therefore, the possible number of detections in a day 1.01 × 10−4 24 hr ≃ 9.
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