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Problem 1
The energy lost due to a pulsar (rotating neutron star) can be approximated by
the magnetic dipole radiation formula. A sinusoidally varying magnetic dipole
radiates total energy per unit time equal to Ė = B2

∗R
6
∗Ω

4
∗sin

2α/(6c3), in terms of
the polar magnetic field just outside the star (B∗), stellar radius (R∗) and angle
between the rotational and magnetic dipole axes (α). Assume that pulsars are
rotationally powered, and that B∗ and R∗ are unchanged during the evolution,
derive the relation between pulsar period (P ), period-derivative (Ṗ ) and magnetic
field strengths. Estimate the dipole magnetic field strength for Crab pulsar which
has Ė ∼ 5 × 1038 erg s−1 (measured from the observations of Crab nebula powered
by the pulsar) and radius of 3 km, a rotation period of 33 ms and sin α ∼ 1. What
is the pulsar lifetime P/2Ṗ for Crab (you can also calculate it exactly from the
P − Ṗ −B relation) ?
Ans. The radiated energy Ė comes at the expense of the rotational power of the neutron star.

Thus the rotational energy E = 1/2IΩ2 must reduce with time and the period P = 2π/Ω must
increase with time. This can be estimated as

Ė =
d

dt

(
1

2
IΩ2

)
=

d

dt

(
2π2 I

P 2

)
Since radius and mass don’t change, I does not change with time. Thus

Ė = −2π2IṖ

P 3

The negative sign denotes that energy is lost from the system. Equating this with the expression
for radiation from a sinusoidally varying magnetic dipole gives

B2
∗Ω

4 ∝ Ṗ /P 3

Upon substituting value of Ω, the desired expression is obtained as

B2
∗ ∝ PṖ

For Crab nebula, the magnetic field can be estimated by the expression for the radiation of
a magnetic dipole. Substituting the values, gives

B =

√√√√( Ė6c3

R6
∗Ω

4

)
' 8× 1012G
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The pulsar lifetime can be estimated by computing Ṗ from the energy lost due to rotation
and assuming the moment of inertia of Crab is 2/5M∗R

2
∗, with M∗ for Crab taken as 1.4M�.

Thus

τ = P/2Ṗ = π2I/(P 2Ė) =
2M∗R

2
∗π

2

P 2Ė
∼ 2× 1010 s

Problem 2
Assuming that a temperature of the atmosphere T = 106 K, calculate the scale
height of the isothermal sphere on the surface of a neutron star. Rotation and
magnetic fields are strong enough that electrostatic force close to the surface of
a neutron star is much larger than the gravitational force, and a large, dense
magnetosphere is formed instead of a very thin atmosphere.
Ans. The scale height of an isothermal atmosphere can be found by using the pressure balance
equation for the atmosphere, which is

dP

P
= −gρ

On using the ideal gas law, this can be solved

P =
ρ

mp
kBT

where it is assumed that the atmosphere is made of hydrogen atoms. Thus

dP

dr
= −gmpP/(kBT )

On solving this differential equation, we get

P = P0e
−r/r0

where the scale height is

r0 =
kBT

mpg

For a neutron star, the gravitational field g ∼ GM∗/R2
∗ (neglecting GR effects). Thus

r0 =
kBTR

2
∗

mpGM∗
= 6.2mm

Thus the scale height (of the order of a few mm) is very small for a thermally supported at-
mosphere. As mentioned, the neutron star atmosphere (composed mainly of plasma) is held
against gravity because of the rotating strong magnetic field, which leads to the formation of a
large dense magnetosphere.

Problem 3
Associating the positional uncertainty of virtual particles with Schwarzschild radius
of a BH, show that a temperature of BH photosphere can be estimated as kBT =
hc3/(16π2GMBH). This temperature of the BH photosphere due to quantum jittering
of photons (and virtual pairs) around BHs. Assuming BB radiation (and Stefan’s
law), calculate the luminosity of the BH of mass M . Calculate the mass of the
BH which can be evaporated within Hubble time (14Gyr, i.e, total energy radiated
within Hubble time equals MBHc

2). We do not expect Hawking radiation to be
important for BHs less massive than this.
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As per the uncertainty principle for particles

∆p∆x ≥ ~
2

where ∆p is the uncertainty in momentum of the virtual particles jittering about the BH. This
uncertainty / spread of momentum can be related to the thermal energy of these virtual particles
by noting that for massless particles

kBT = ∆E = c∆p

The uncertainty in position is of the order of the circumference of the BH Schwarzschild sphere
giving

∆x ' 2πrs = 2π
2GMBH

c2

Substituting these values in the uncertainty relation and putting ~ = h/(2π) gives

kBT =
hc3

16π2GMBH

For a blackbody at temperature T , the luminosity of radiation as per Stefan’s law is

LBH = σT 4A2

where A = 4πr2
s is the emitting surface area of the BH Schwarzschild sphere. Thus

LBH =
σh4c8

4096π7(GMBH)2k4
B

The energy for this radiation is derived from the black hole mass E = MBHc
2, thus giving

− d

dt
E = −c2dMBH

dt
=

σh4c8

4096π7(GMBH)2k4
B

This equation gives the rate of mass evaporation of the black hole by the differential equation

M2
BHdMBH = −Kdt

where K is a constant, whose value in SI units is

K =
σh4c6

4096G2π7k4
B

= 3.96× 1015

Integrating the differential equation for t = 0, MBH = M0 (current) to t = tev, MBH = 0 (fully
evaporated) gives the time scale tev for a black hole of mass M0 to be completely evaporated.
This comes to

tev =
M3

0

3K

Putting tev equal to the Hubble time (14 Gyr or 4.41× 1015 s) gives

M0 = 1.7× 1011kg

which is much less than the mass of the earth. Thus black holes with masses larger than this
value are expected to be still existing in the universe.

Problem 4
Sketch the effective equipotential surfaces of a test particle in the potential of two
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Figure 1: β = 1 Figure 2: β = 2

rotating bodies of mass M1 and M2 (you can choose M1 = M2 for the plot). Mark
the different equilibrium points (a computer generated contour plot is even better).
How that the center of mass location is closer to the more massive body but the
inner Lagrange point (L1) is closer to the less massive star. Reference: Chapter 4
in Accretion Power in Astrophysics by Frank King and Raine.
Consider a binary system where two starts of masses M1 and M2 are orbiting around their
center of mass with an angular frequency Ω =

√
G(M1 +M2)/a3. Here a is the separation

between them. Let p be a test object, and the distance from the respective stars is ~r1 and ~r2.
The total gravitational potential of this system is

Φ = −GM1

|~r1|
− GM2

|~r2|
− 1

2
Ω2r2 ,

where ~r is the position vector of the test object. Let ~r1 makes an angle θ with the line joining
the stars 1 and 2, and origin has been chosen at the location of the center of mass. Therefore,
the above equation can be written as

Φ(r, θ) = − GM1√
r2 + a2

1 + 2 cos θ ra1

− GM2√
r2 + a2

2 − 2 cos θ ra2

− 1

2
Ω2r2 (1)

Here a1,2 are the distance of the stars from the origin i.e., for our case, a1 = aM2/(M1 +M2) =
a2(M2/M1). Dividing 2 by GM1/a1 we obtain

Φ(r, θ)

GM1/a1
= − 1√

(r/a1)2 + 1 + 2 cos θ (r/a1)
− β√

(r/a1)2 + (a2/a1)2 − 2 cos θ (r/a1) (a2/a1)
− β3

2(1 + β)2
r2 ,

(2)
where β = M2/M1 = a1/a2. Figure shows the equipotential contours for β = 1.0 and β = 2.0.

The first Lagrangian point L1 is defined as the point where gravitational force balanced by the
centrifugal force. For β = 1, L1 coincides with the center of mass (COM). For β > 1, the COM
is near the heavy mass (because a1 = aM2/(M1 + M2)) but L1 is close to the lighter mass.
This is because, the gravitational force ∝ 1/r2, it increases when r is close to the object.
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Problem 5
At high enough matter density protons+electrons, which are less massive than the
mass of neutrons, can combine and form neutrons. This process is called neutron
drip. We can derive the density at which neutron drip happens by equating the
electron Fermi energy (this is the energy that the highest energy electrons will
occupy) to the difference in the neutron and electron+proton rest mass energy.
Retain the relativistic formula for Fermi energy. Convert the Fermi energy to den-
sity to calculate the neutron drip density. Above this density neutron fraction is
becomes larger. See section 5.4 of Arnab’s book.

Answer is given in the mentioned reference.

Problem 6
Salpeter time: Assuming that accretion on to a BH takes place at the Eddington
limit. Calculate the mass of a BH that starts with a seed mass M(0) as a function
of time. The growth timescale is known as Saltpeter time. What seed mass is
needed at t = 0 to grow 109 M� BHs by red shift of 7 when the age of universe is
0.77 Gyr.

The Accretion disk of a black hole emits very energetic radiation. If the radiation power becomes
greater than the accretion power then the radiation pressure stops the accretion.

Consider, at time t, the accretion rate is dM/dt. When the accreted matters fall into the
black hole, their gravitational energy increases (i.e., the total energy becomes more negative).
To fulfil the total energy conservation, the rest amount of energy is converted into the radiation
(in addition, thermal energy, magnetic energy etc). Therefore, the luminosity of the emitted
radiation (LACC) can be written as

LACC =
GMB(t)

r2

dM

dt
≡ εṀB(t)c2 , (3)

where a factor ε is introduced to consider the uncertainties in the gas accretion (e.g., radiation
pressure, ambient density profile, jet etc.). Therefore, equation 3 represents the effective rate
of change of the black hole mass.

After the accretion, some fraction of the black hole mass converted into the radiation energy
which effectively reduces the rest mass of the black hole. Consider the luminosity of the emitted
radiation is same as the Eddington luminosity (i.e., fED → 1) i.e., LACC = LE, where LE =
4πGMBmHc/σT = 1.27× 1038(MB/M�) erg s−1 and MB = (1− ε)MB(t) is the mass left inside
the black after losing its energy. This yields

dMB

dt
=

(
1− ε
ε

)
1.27× 1038

c2

MB(t)

M�
(4)

Substituting MB/M� by mB, we get

dmB

dt
=

(
1− ε
ε

)
1.27× 1038

c2M�
mB(t)

Solving we obtain

mB(t) = mB(t0) exp

[
t

τ

]
(5)

where τ =
[
{c2M�/(1.27× 1038)}{ε/(1− ε)}

]
∼ 0.45{ε/(1 − ε)}Gyr. If mB(t) = 109, t =

0.77 Gyr and assuming ε ' 0.1, we get the seed mass ≈ 200M� .
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Problem 7
Circular orbits around a non-rotating black hole: The gravitational potential around
a Schwarzschild (non-rotating) black hole can be approximated as φ = −GM/(r−rS),
where rS = 2GM/c2 is the Schwarzschild radius. Consider a particle with a conserved
specific angular momentum l in this gravitational potential, and sketch the effective
potential φeff = φ + l2/(2r2)). For a large l, show that there is one minimum (this
corresponds to the usual circular orbit in Newtonian gravity) and one maximum in
the effective potential. For a small enough l, these maxima and minima merge and
this orbit corresponds to the innermost stable circular orbit (ISCO). Calculate lISCO

and rISCO (radius of the circular orbit) corresponding to the ISCO. Also calculate
the minimum radius and specific angular momentum of a marginally bound orbit
(which has zero total energy and for which the effective potential maximum just
grazes zero).
Consider a particle is orbiting around a black hole of mass M . The total energy per unit mass
is

E = KE + PE =
1

2
v2

R +
1

2
v2
φ −

GM

r − rS

Since angular momentum l = rv2
φ is conserved , the above equation can be written as

E =
1

2
v2

R +
l2

2r2
− GM

r − rS
=

1

2
v2

R + φeff (6)

where φeff = l2

2r2
− GM

r−rS is the effective gravitational potential.

Figure 3: φeff as a function of distance. Here the distance r is scaled in the unit of rs and φeff

is scaled by GM/rs.

ISCO : We know that the effective potential in this problem is

φeff =
l2

2r2
− GM

r − rS

For inner most stable orbit, we have dφeff/dr = 0 and d2φeff/dr
2 = 0. From dφeff/dr = 0,

we get l2 = GMr3/(r − rs)
2 , using this and d2φeff/dr

2 = 0 we find rISCO = 3rs and lISCO =
(3/2)

√
GM rs.
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Marginally bound orbit For marginally bound orbit (E = 0), dr/dt = 0 and d2r/dt2 = 0.
From the total energy equation we have

dr

dt
=

√
2E − l2

r2
+

2GM

(r − rs)
= 0

Using E = 0, we get l2 = 2GMr2/(r − rs). Putting this in d2r/dt2 = 0 we obtain r = 2rs and
l =
√

8GM rs.

Figure 4: φeff as a function of distance for Marginally bound orbit.

Problem 8 : A. R. Choudhuri/Astrophysics for physicists/Ch. 5

1. (Problem 5.8) The Crab pulsar has period P = 0.033 s and characteristic slow-
ing time P/Ṗ = 2.5 × 103 yr. Estimate the energy loss rate and the magnetic
field by using (5.35)

The pulsars are believed to be powered by the rotational kinetic. The rotational energy
of a spinning star is Erot = (1/2)IΩ2. Therefore, the energy loss rate :

L =
dErot

dt
= IΩΩ̇ , (7)

where the moment of inertia I can be assumed as (2/5)MR2. In this problem, P =
0.033 s−2 gives Ω = 190.4 rad s−1 and P/Ṗ = 2.5 × 103 yr gives Ω̇ = 8.8 × 10−7 rad s−2.
Assuming the mass and radius of the crab is 1.4 M� and ∼ 10 km, we get I = 1.12 ×
1045 g cm2. Using all these values equation 7 yields L = 1.9× 1041 erg s−1.

Considering pulsar as the spinning magnetic dipole (and assuming θ ≈ 900 in equation
(5.35)), the energy loss rate is

L =
1

6

B2
pΩ4R6

c3

From the above equation we have

Bp =

√
6Lc3

Ω4R6
(8)

Putting all numerical values in the RHS, we get Bp = 1.5× 1014 gauss.
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Problem 9 : Dan Maoz/Astrophysics in a Nutshell/Ch. 4

1. (Problem 4.1) In a fully degenerate gas, all the particles have energies lower
than the Fermi energy. For such a gas we found the relation between the
density Ne and the Fermi momentum pf :

ne =
8π

3h3
p3
f

a. For a non-relativistic electron gas, use the relation pf =
√

2meEf between
the Fermi momentum, the electron mass me, and the Fermi energy Ef in terms
of ne and me.
b. Estimate a characteristic ne under typical conditions inside a white dwarf.
Using the result of (a), and assuming a temperature t = 107 K, evaluate nu-
merically the ratio Eth/Ef , where Eth is the characteristic thermal energy if
an electron in a gas of temperature T , to see that the electrons inside a white
dwarf are indeed degenerate.

Substituting the expression for Fermi momentum pf in the expression for electron density
ne gives

Ef =

(
9n2

eh
6

512π2m3
e

)1/3

For a typical white dwarf of radius 104 km and mass 1.4 M�, the mean electron density
(for a gas with Z/A ∼ 0.5) will be

ne =
ρ

mp
= 0.5

1.4M�
4/3πR3mp

= 0.2× 1030cm−3

This gives a value of the Fermi energy as Ef ' 2×10−7 ergs. For electrons at a temperature
of 107 K, the thermal energy is

Eth = 3/2 kBT = 2× 10−9 ergs

Thus the value of Eth/Ef = 10−2 , which justifies the fact that electrons are indeed de-
generate (as seen from Fig. 4.4 of Dan Maoz)

2. (Problem 4.3) Most of the energy released in the collapse of a massive star to
a neutron star (a core-collapse supernova) is in the form of neutrinos.
a. If the just-formed neutron star has a mass M = 1.4M� and a radius R = 10
km, estimate the mean nucleon density, in cm−3. Fin the mean free path, in
cm, of a neutrino inside the neutron star, assuming the density you found and
a cross section for scattering of neutrinos on neutrons of σνn = 10−42 cm2.
b. How many seconds does it take a typical neutrino to emerge from the
neutron star in a random walk ? (Hint : neutrinos travel at a velocity close to
c. Recall that the radial distance d covered in a random walk of N steps, each
of length l, is d =

√
Nl

c. Twelve electron anti-neutrinos from Supernova 1987A were detected by
the Kamiokande neutrino detector in Japan. This experiment consisted of a
tank filled with 3 kton of water, and surrounded by photomultiplier tubes.
The photomultipliers detect the Cerenkov radiation produced by a recoiling
positron that is emitted after a proton absorbs an antineutrino from the su-
pernova. Estimate how many people on Earth could have perceived a flash of
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light, due to the Cerenkov radiation produced by the same process, when an
antineutrino from the supernova travelled through their eyeball. Assume that
eyeballs are composed primarily of water, each weighs about 10g, and that
the Earth’s population was 5 billion in 1987.

Nucleon density in the neutron star will be

n = (Z/A)× (ρ/mp) ' 1× (1.4M�/(4/3 ∗ π ∗ 1018mp) ' 1038 cm−3

The mean free path would thus be

l =
1

nσνn
= 104cm

The total distance travelled by this neutrino in a random walk upto the neutron star
surface (of radius R = 10 km , case would be

d =
√
Nl =

√
R/ll =

√
lR = 105cm

Thus the time taken for a neutrino to emerge from the neutron star would be τ = d/c '
10−5s i.e neutrinos escape the neutron star very easily.

The probability of a person seeing a flash of light due to the neutrinos from a supernova
event can be given by

p = N ∗ (1− exp(−deyenσ))

where deye is the path travelled in the eye, n is the water density in eye and σ is the
cross section of interaction and N is the total number of neutrinos incident. Given that
Kamiokande (with 3kton of water) detected 12 anti-neutrinos, we can estimate this prob-
ability as follows. This gives

12 = N ∗ (1− exp(−dkamnσ)

This can be written as
exp(−dkamnσ) = 1− 12/N

dkam (the path length travelled in the Kamiokande experiment) and deye will be related
as

deye/dkam = (Meye/Mkam)1/3 = 1.5× 10−3

Thus the probability of interaction in a single person will be

p = N ∗ (1− exp(−dkamnσ)deye/dkam) = N ∗ (1− (1− 12/N)deye/dkam)

For a large fluence of impinging neutrinos N , we can write

(1− 12/N)deye/dkam ' 1− 12 ∗ deye/(N ∗ dkam)

which gives
p = N ∗ (1− 1 + 12 ∗ deye/(N ∗ dkam)) = 12 ∗ deye/dkam

The total number of people which would have seen the event will thus be

Nseen = Npop ∗ p = 5× 109 × 12× 1.5× 10−3

i.e 90 million people would have seen the event !!
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3. (Problem 4.4) Type-Ia supernovae are probably thermonuclear explosions of
accreting white dwarfs that have approached or reached the Chandrasekhar
limit.
a. Use the virial theorem to obtain an expression for the mean pressure inside
a white dwarf of mass M and radius R.
b. Use the result of (a) to estimate, to an order of magnitude, the speed
of sound, vs =

√
dP/dρ ∼

√
P/ρ, inside a white dwarf. In an accreting white

dwarf with a carbon core that has reached nuclear ignition temperature, a
nuclear burning flame encompasses the star at the sound velocity or faster.
Within how much time, in seconds, does the flame traverse the radius of the
white dwarf, assuming R = 104 km, M = 1.4M�? Note that this sound-crossing
timescale is ∼ (Gρ)−1/2 , which is also the free-fall timescale (Eq. 3.15.)
c. Calculate the total energy output, in erg, of the explosion, assuming the
entire mass of the white dwarf is synthesized from carbon to nickel, with
a mass-to-energy conversion efficiency of 0.1%. Compare this energy to the
gravitational binding energy of the white dwarf, to demonstrate that the white
dwarf explodes completely, without leaving any remnant.
d. Gamma rays from the radioactive decays 56 Ni → 56 Co + γ → 56 Fe +
γ drive most of the optical luminosity of the supernova. The atomic weights
of 56 Ni and 56 Fe are 55.942135 and 55.934941, respectively. Calculate the
total energy radiated in the optical range during the event. Given that the
characteristic times for the two radioactive decay processes are 8.8 days and
111 days, respectively, show that the typical luminosity is ∼ 1010L�.

According to the virial theorem, the mean presure P inside a white dwarf can be written
as P = −1/3EV where V is the volume and E = −3/5GM

2

R is the gravitational binding
energy of the star. Therefore,

P = 1
5
GM2

RV = 3
20π

GM2

R4

From (a), P/ρ = 1/3GMR , thus,

vs =
√
P/ρ =

√
GM/3R

The time ts it will take the flame to traverse the star is

ts ∼ R/vs ∼
√

R3

GM ∼
1√
Gρ

now substituting the values of M and R, we have ts ∼ 2.5s

The atomic mass per nucleon of C is 1.000000amu and that of Ni is 0.998967amu, thus
∆m ∼ 0.001033amu. Thus, the energy released per nucleon when Ni is synthesised from
C will be

∆E = ∆mc2 ∼ 1.54× 10−6erg/nucleon

and the total number of nucleons in a Ni white dwarf of mass 1.4M� will be 1.4 × 2 ×
1033 × 6.022 × 1023 = 1.68 × 1057nucleons. Thus the total energy Et of the explosion
considering that the conversion efficiency is 0.1% will be;

Et = 1.54× 10−6 × 1.68× 1057 × 0.001 = 2.6× 1049erg
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The gravitational binding energy Eg of a white dwarf is given by

Eg = 3/5GM
2

R ∼ 3.1× 1050erg

In this case, for 56 Ni the atomic mass per nucleon is 0.998967 and for 56 Fe, it is
0.998838 so that; ∆m = (0.998967− 0.998838)amu = 0.000129amu, the change in energy
per nucleon during this conversion is;

∆E = ∆mc2 ∼ 1.9× 10−7erg/nucleon

Since the gamma rays emitted during this process drives the optical luminosity observed,
the total energy radiated in the optical during this process will be;

Et ∼ 1.9× 10−7 × 6.022× 1023 × 1.4× 2× 1033 ∼ 3.2× 1050erg

The characteristic time for the total reaction process takes t = 8.8 + 111 = 119.8days.
Thus the characteristic luminosity will be;

L = Et
t = 3.1× 1043ergs−1 = 8.1× 109L�

4. (Problem 4.6) A type-Ia supernova is thought to be the thermonuclear explo-
sion of an accreting white dwarf that goes over the Chandrasekhar limit (see
Problem 4.4). An alternative scenario, however, is that supernova-Ia progen-
itors are white dwarf binaries that lose orbital energy to gravitational waves
(see Problem 5) until they merge, and thus exceed the Chandrasekhar mass
and explode.
a. Show that the orbital kinetic energy of an equal-mass binary with separa-
tion a and individual masses M is

Ek = GM2

2a

and the total orbital energy (kinetic plus gravitational) is minus this amount.
b. The power lost to gravitational radiation by such a system is

Ėgw = −2c5

5G (2GM
c2a

)
5

By equating to the time derivative of the total energy found in (a), obtain a
differential equation for a(t), and solve it.
c. What is the maximum initial separation that a white-dwarf binary can have,
if the components are to merge within 10 Gyr? Assume the white dwarfs have
1M� each, and the merger occurs when a = 0.

a. n the binary system, the centrifugal force on one of the masses will be balanced by the
gravitational attraction from its companion i.e

GM2

a2
= Mv2

a/2

therefore, the kinetic energy of one of the stars in the binary is

Ek1 = mv2

2 = GM2

4a

where Ek1=Ek2 and the total kinettic energy is
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Ek = 2Ek1 = GM2

2a

b. The time derivative of the above equation is

Ėk = GM2

2
d
dt(a

−1) = −GM2

2a2
da
dt

equating Ėk with Ėgw gives

GM2

2a2
da
dt = 2c5

5G (2GM
c2a

)5

proper evaluation of the above equation gives;

a3 da
dt = β

where β = 4c5

5G2M2 (2GM
c2

)5, integrating the above equation will give

a4 = 4βt

c. For t = 10Gyr = 3.15 × 1017s and M = 1M�, β = 2.5 × 1027 cm4s−1, the maximum
separation will be

a = (4βt)−1/4 = 2.4× 1011 cm = 0.016 AU

5. (Problem 4.7) A star of mass m and radius r approaches a black hole of mass
M to within a distance d � r. a. Using Eq. 4.127, express, in terms of m, r,
and M , the distance d at which the Newtonian radial tidal force exerted by
the black hole on the star equals the gravitational binding force of the star,
and hence the star will be torn apart.
b. Find the black-hole mass M above which the tidal disruption distance, d,
is smaller than the Schwarzschild radius of the black hole, and evaluate it for
a star with m = M� and r = r�. Black holes with masses above this value can
swallow Sun-like stars whole, without first tidally shredding them.
c. Derive a Newtonian expression for the tangential tidal force exerted inward
on the star, in terms of m, r, M , and d, again under the approximation r � d.
The combined effects of the radial tidal force in (a) and and the tangential
tidal force in (c) will lead to spaghettification of stars, or other objects that
approach the black hole to within the disruption distance.

a. The Newtonian tidal force exerted on the star by the black hole is Ftide ∼ GMm2r
d3

while

the gravitational binding force of the star itself is Fg = 3/5GM2 d
dr (1

r ), when these two
forces are equal;

GMm2r
d3

= 3/5GM2 d
dr (1

r )

making d the subject of formula, we have;

d = (10MR3

3m )1/3

b. In this case, d = rs = 2GM
c2

when substituted into the above equation, in terms of M ,
the equation becomes;

M =
√

10c6r3

8G3m
∼ 108M�
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for m = 1M� and r = 1r�
c. With respect to this problem, please refer to the first part of Problem 5 in HW1

6. (Problem 4.9) A spinning neutron star of mass M = 1.4M�, constant density,
and radius R=10km has a period P=1s. The neutron star is accreting mass
from a binary companion through an accretion disk, at a rate of Ṁ = 10−9M�yr

1

. Assume the accreted matter is in a circular Keplerian orbit around the neu-
tron star until just before it hits the surface, and once it does then all of the
matters angular momentum is transferred onto the neutron star.
a. Derive a differential equation for Ṗ , the rate at which the neutron-star
period decreases.
b. Solve the equation to find how long will it take to reach P = 1 ms, the
maximal spin rate of a neutron star.

a. The Keplerian velocity of the material just before hitting the neutron star’s surface is
v = (GMR )1/2, the angular momentum of the material per unit mass can be written as

J
m = rv = (GMR)1/2

The rate of change of a star’s angular momentum is the rate at which it receives angular
momentum from the accreting matter given as;

d
dt(Iω) = Ṁ J

m

where the constant I = 2/5MR2 and dω
dt = − 2π

P 2
dP
dt since ω = 2π

P , substituting into the
above equation, we have

Ṗ = −5P 2Ṁ(GMR)1/2

4πMR2

b. Rearranging the above equation gives,

dP
P 2 = −5Ṁ(GMR)1/2

4πMR2 dt

Integrating the equation from P = 1s to P = 1ms and t = 0 to t = t, we have

t = 999×4πMR2

5Ṁ(GMR)1/2

Substituting all the values gives t.

7. (Problem 4.10) A compact accreting object of mass M is radiating at the
Eddington luminosity corresponding to that mass,

LE =
4πcGMmp

σT
= 1.3× 1038ergs−1 M

M�

An astronaut wearing a white space suit is placed at rest at an arbitrary
distance from the compact object. Assuming that the cross-sectional area of
the astronauts body is A = 1.5 m2 , find the maximum allowed mass m of the
astronaut, in kg, if the radiation pressure is to support her from falling onto
the compact object.

The radiation pressure Prad at the distance R from the compact object will be given by
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Prad = L/c
4πR2

For an astronaut at this distance having an effective area 2A, the force she experiences
due to the radiation pressure will be

Frad = 2AL/c
4πR2

At Eddington luminosity LE , the force due to radiation on the Astronaut exactly balances
the gravitational force she experiences due to the compact object and thus

2ALE/c
4πR2 = GMm

R2

where m is the mass of the Astronaut and M is the mass of the compact object. After
substituting for LE and rearranging, we have,

m = 2ALE
4πG = 2×1.5×104×1.3×1038

4π×3×1010×6.7×10−8×2×1033
= 7.7× 104 g = 77 kg

To compare mp to M and σT to 2A, we substitute these values into the equation for LE .
This gives

LE = 4π×3×1010×7.7×104×2×1033M/M�
2×1.5×104

= 1.3× 1038 M
M�

ergs−1

This reveals that LE does not appreciably change in principle and depends on the mass
M of the compact object.
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