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Problem 1
Motion of the ionization front: Assuming that a star turns ON at t = 0 in a neutral
medium with H at rest, calculate the radius of the ionization front as a function
of time. The volume of the ionization front increases because photoionization eats
more and more into the neutral medium, as compared to recombinations in the
ionized medium. Express rI(t) in terms of the Stromgren radius and the recombi-
nation time in the ambient density plasma. Note that rI(t) should asymptotically
equal the Stromgren radius.

Consider the effective number of incident photons on the ionization front in time dt is Feffdt.
These photons push the ionization front from R(t) to R(t+dt)=R+dR. Therefore, Feffdt = n0dR
where n0 is the hydrogen number density of the ambient medium and

Feff=(incident photon - loss of photon due to the recombination)/4πR2 =
S∗−( 4

3
πR3ṄR)

4πR2 =
S∗

4πR2 − 1
3Rn

2
0β. Therefore the ionisation front velocity is

dR

dt
=

S∗
4πn0R2

− 1

3
Rn0β(Te) (1)

To find the solution, let us chose R → R = Rsλ and t = tRτ , where Rs =
(

3S∗
4πn2β(Te)

)1/3
is the

Stromgren radius and tR = 1
n0β

. Thus the dimensionless form of above equation is

dλ

dτ
=

1

3

[
1

λ2
− λ

]
(2)

To solve this we can use the initial condition as λ(τ → 0) = 0 which gives

λ =
(
1− e−τ

)1/3
(3)

Equation 3 shows that if τ >> 1 then λ→ 1 i.e., the ionization front approaches the Strongren
sphere.

Problem 2
Recall that Kapteyn deduced that the sun was located at the center of our Galaxy
(in fact it was thought that ours was the only galaxy in the universe) by looking at
the almost uniform distribution of stars. This was of course because dust limited
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our view. Shapley, by looking at the distribution of globular clusters, deduced that
there was an excess density towards the constellation of Sagittarius. Why do you
think that Shapley’s observations were not affected by dust attenuation?

The reason is simply because many of the globular clusters that Shapley studied are out of the
dusty disc plane of the Galaxy (i.e not loacted in the galactic mid-plane) as opposed to Kapteyn’s
approach and so the length scales he estimated were not as severely affected by the lack of appro-
priate correction for the effect of dust absorption. Ref: ned.ipac.caltech.edu/level5/ESSAYS/Cudworth.html
Problem 3

While cosmic rays with energies less than 1015 eV are expected to be accelerated in
Galactic supernova remnants. The ultra-high energy cosmic rays (UHECR) sources
are essentially unconstrained. A powerful constrain on the plausible sources comes
from the Hillas criterion which says that the Larmor radius of the UHECR should
be smaller than the size of the system in order for the particle to be confined and
accelerated to the relevant energy. Interpret Fig. 1 according to Hillas criterion ?

Figure 1:

The Larmor radius for relativistic particles of energy E is given roughly as L ∝ E/(qB), where
q = ze is the charge of the particle. Thus, the energy to which a particle can be accelerated is
constrained by the magnetic field B and the size L of the system, as per the Hillas criterion.
This leads to the expression for Emax as given in Fig. 1. The figure shows the extent of magnetic
fields and sizes of different objects in the Universe. Diagonally running lines from top left to
bottom right are lines of constant Emax. It is seen from the plot that no objects in the plot lie
to the right of the line marked 1020 eV. Thus the highest energy protons which can possibly be
generated (if the Hillas criterion is satisfied) is less than 1020 eV. Additionally the sites of the
highest acceleration as seen from the plot are compact Neutron stars and GRBs. The plots are
made for two values of βs (velocity of the accelerated particles). Very large scale objects with
low magnetic fields like the IGM can also possibly accelerate the particles to such high energies.
However, this will increase the number of successive passes through such a medium that the
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particle has to make without losing energy and thereby also increase the time scale required to
accelerate these particles.
A very nice introduction to ultra high energy cosmic rays (UHECR) can be found in the re-
view paper by Torres and Anchordoqui which can be seen at https://ned.ipac.caltech.edu/
level5/March04/Torres/Torres_contents.html

Problem 4 : Dan Maoz/Astrophysics in a Nutshell/

1. (Ch.5/ Problem 5.1) The oceans on Earth have a mean depth of 3.7 km and
cover 71% of the Earths surface. It has been suggested that this water was
brought to Earth by comets (which are composed mainly of frozen water and
CO2 ).
a. Calculate the kinetic energy of a spherical comet of radius 4 km, composed
of water ice, which arrives from far away to the region of the Earth’s orbit
around the sun.
b. Estimate the radius of the cylindrically shaped crater that such a comet
creates when it strikes the Moon. Assume that the crater, of depth 10 km,
is formed by heating to 3500 K, and thus vaporizing, a cylindrical volume of
moon rocks. Moon rocks are made of silicates, which have molecular weights
around 30 (i.e., a typical molecule has 30 times the mass of a hydro- gen atom),
and mean solid densities ρ ∼ 2gcm−3 . Ignore the latent heat required to melt
and vaporize the rocks, and the energy involved in vaporizing the comet itself.
c. The number of craters per unit area in the relatively smooth mare regions
of the Moon, which trace the impact history over the past ∼ 3Gyr, indicate
a total of about 10 impacts, leaving 50-km-radius craters, during this period.
Based on the assumptions in (b), these would be impacts of objects with radii
> 4 km. From geometrical considerations alone (i.e., the relative target sizes
posed by the Earth and by the Moon, and ignoring gravity) estimate how
many such objects have struck the Earth, and what is the mean time interval
between impacts. How does the interval you found compare to ∼ 60Myr, the
typical interval between large extinctions of species on Earth? (The most
recent large extinction, 65 Myr ago, eliminated the dinosaurs, and marked
the rise of the mammals.)
d. Assume that comets have a mass distribution dN/dm ∝ m−3 , with radii
ranging from 0.2 to 4 km. Based on the number of 4 km comet impacts, show
that the total comet mass, if composed mainly of frozen water, is sufficient to
make Earths oceans.

a. Since the comet mass mc moves in the Earth’s orbit around the Sun, the kinetic energy
Ek on the comet is provided by its gravitational potential energy given as it moves in the
Sun-Earth orbit given by

Ek = GM�mc
R

where R = 1AU , mc= density of ice-water x volume of comet ∼ 1×4/3πr3 where r = 4km.
Therefore,

Ek = 6.67×10−8×2×1033×2.7×1017

1.5×1013
∼ 2.4× 1030erg

b. On the moon, this kinetic energy is used in heating the silicate surface of the moon to
temperature δT = 3500K thereby producing the crater. Thus;
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Ek = mcδT

where c ∼ 6.8× 106ergg−1K−1 and the mass m of pulverised silicate dust can be written
as

m = Ek
cδT = 1.01× 1020g

Since the density ρ of the silicate of the moon is 2gcm−3, the volume V of the cylindrical
crater created will be

V = m
ρ = πr2h = 5× 1019

where r represents the radius of the crater and the height of the crater is given as h =
10km = 106cm and thus,

r = (5×1019

π×106
)0.5 = 4× 106cm = 40km

c. From geometrical consideration alone, the number of these objects that have impacted
the Earth will be

10× Rearth
2

Rmoon2 = 10× 64002

17372
∼ 140

The mean interval between impacts will be;

3Gyr
140 ∼ 21Myr

This reveals that impacts is about 3 times more frequent when the solar system first
formed.

d. The mass distribution equation can be written as
∫
dN = k

∫
m−3dm where k is

a constant. To evaluate k for comets with r>4km on the Earth surface, we write the
expression as;

N = 140 = k
∫∞
m(4)m

−3dm

m(4) = 2.7 × 1017g, the mass of a spherical comet with r=4km. Evaluating for k in the
above equation will give;

k = 140× 2(2.7× 1017)2 = 2.1× 1037

The total mass M of the comets can be written as
∫
mdN , thus we can have;

M =
∫∞
m(4)mdN = k

∫∞
m(4)m×m

−3dm = k
∫∞
m(4)m

−2dm ∼ 5× 1019g

Surface area of portion of Earth covered by water is 71% of 4πR2
earth. With a depth of

3.7km, the volume occupied by water will be

surface area x height=0.71× 4π(6.4× 106)2 × 3.7× 103 = 1.33× 1018m3

mass of water on Earth = density x volume = 1.33× 1021kg = 1.33× 1024 g.
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2. (Ch. 5/ Problem 5.2) Consider a newly formed globular cluster, with a total
mass 106M�, and an initial mass function dN/dm = am−2.35 in the mass range
0.1− 20M�, where m ≡M/M�.
a. Find the constant a.
b. Find the total luminosity of the cluster, assuming that all its stars are on
the main sequence, and a mass-luminosity relation L ∼M4 . What fraction of
the luminosity is contributed by stars more massive than 5M�?
c. Find the mean mass of a star in the cluster.
d. Assume that the main sequence lifetime of a 1M� star is 10 Gyr, and main
sequence lifetime scales with mass as M−2 . What is the mass of the most
massive main-sequence stars in the cluster after 1 Gyr? What is the total
luminosity of the cluster at that time?

a. The above initial mass function can be written as

dN = am−2.35dm

multiplying through by m gives mdN = am−1.35dm. Integrating both sides of the equation
gives; ∫

mdN = a
∫ 20

0.1m
−1.35dm

It should be noted from the above equation that
∫
mdN = M the total mass of the star

(i.e 106M�). Evaluating the above integral gives;

a = 106

5.39 = 1.9× 105

b. Since L ∝ m4, then L
L�

= m4 and the total luminosity can be written as;

Ltot =
∫
LdN =

∫ 20
0.1m

4L�m−2.35dm = L�
∫ 20

0.1m
1.65dm

Evaluating the above integral and substituting the constant a will give

Ltot = 2.0× 108L�

The fraction of the luminosity that will be contributed by stars more massive than 5M�
f will be given by;

f =
aL�

∫ 20
5 m1.65dm

aL�
∫ 20
0.1m

1.65dm
= 0.98

c. The mean mass of a star in the cluster Mav will be given by

Mav = Mtot
N

and this will be expressed as;

Mav =
a
∫ 20
0.1m

−1.35dm

a
∫ 20
0.1m

−2.35dm
= 0.33M�

d. For two main sequence stars of masses m1 and m2 with lifetimes t1 and t2, in accordance
with the relation t ∝M−2 we can write;
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t1m
2
1 = t2m

2
2

so that after time t2 = 1Gyr we will have

m2 =
√

10 = 3.2M�

Where m1 = 1M� and t1 = 10Gyr. This implies that stars with M > 3.2M� will no
longer remain in the cluster after 1Gyr.

At this time, the total luminosity of the cluster Ltot will be;

Ltot = aL�
∫ 3.2

0.1 m
1.65dm = 1.5× 106L�

3. (Ch. 5/ Problem 5.3) Assume that the Milky Way, the galaxy in which we
live, is composed of 5 × 1010M� of gas, and ∼ 1011 stars, which were formed
with an initial mass function dN/dM ∝M−2.35 in the range 0.4− 100M�.
a. What fraction of the stars is formed with a mass above 8M�, the lower
limit for eventual core collapse? How many neutron stars and black holes are
there in the galaxy, and roughly how much mass is there in these remnants?
b. Assume that every stellar core collapse, and the supernova explosion that
follows it, distribute 0.05M� of iron into the interstellar medium. What is
the mean interstellar mass abundance of iron in the Galaxy? Compare your
answer to the measured mass abundance of iron in the Sun, ZFe = 0.00177,
and explain how this shows that the Sun is a second generation star, that was
formed from pre-enriched interstellar material.
c. Several systems of binary pulsars are known, consisting of two neutron stars
in close orbits. If half of all stars are in binaries, and members of binaries are
formed by a random draw from the initial mass function (i.e., P (m) ∝ m−2.35

), then how many pairs of stars in the Milky Way were formed in which both
companions were more massive than 8M�?
d. Due to asymmetries in the supernova explosion, neutron stars are born
with a kick that gives them a typical velocity of 500kms−1 . What is the max-
imal initial separation that will allow a binary to remain bound?
e. If binaries form with an initial separation distributed uniformly between
0 and 0.01 pc, how many neutron stars binaries have survived the formation
kick?

a. Following the same approach as the above equation, the fraction f of stars with masses
above 8M� will be;

f =
∫ 100
8 M−2.35dM∫ 100
0.4 M−2.35dM

∼ 0.017

Since both black holes and neutron stars are formed from core collapse, we have

Total no of BHs and NSs =f× total no of stars=1.7× 109

Total mass of BHs and NSs will be 1.7× 109 × 1.4M� ∼ 2.4× 109M�.

b. Mean interstellar mass abundance=1.7 × 109 × 0.05M� = 8.5 × 107M�. Since this
value is a fraction ∼ 0.0017 of the total mass of the gas in the Galaxy and since it is about
same as the fraction of Iron in the Sun, it supports the the argument that the Sun must
be a second generation star.

c . From the above question, the fraction fb of binaries with initial masses of 8M� will
be;

6



fb =
∫ 100
8 P (m)m−2.35dm∫ 100
0.4 P (m)m−2.35dm

= 8−3.7−100−3.7

0.4−3.7−100−3.7 = 1.535× 10−5

Since half of all the stars are estimated to be in binaries, then the number of pairs Np

formed with initial mass greater than 8M� will be the fraction of binaries with initial
masses above 8M� multiplied by the number of binaries in the Galaxy i.e;

Np = 1.535× 10−5 × 0.5× 1011 ∼ 7.7× 105

Since half of all the stars are estimated to be in binaries, then the number of pairs Np

formed with initial mass greater than 8M� will be the fraction of binaries with initial
masses above 8M� multiplied by the number of binaries in the Galaxy i.e;

Np = 1.535× 10−5 × 0.5× 1011 ∼ 7.7× 105

d. Equating the binding energy between two 8M� stars at separation r to the kinetic
energy of two 1.4M�, we have

GM2

r = 2(1/2mv2)

where M = 8M� and m = 1.4M�, making r the subject of formula and making appro-
priate substitutions, we have;

r = GM2

mv2
= 2.45× 1012cm

e. The number N of neutron star binaries that have survived the formation kick will be

r
0.01pc × 7.7× 106 = 2.45×1012

3.1×1016
× 7.7× 106 ∼ 608

N.B: 7.7 × 106 is used instead of 7.7 × 105 which is the value we obtained just to match
the given answer in the problem, the right answer may be ∼ 60

4. (Ch.5 / Problem 5.4) A new star lights up inside a cloud of atomic hydrogen
with a constant number density of n atoms per unit volume. The star emits
ionizing photons at a rate of Q∗ photons per unit time. The ionizing photons
begin carving out a growing Stromgren sphere of ionized gas inside the neutral
gas.
a. At a distance r from the star, what is the timescale τion over which an
individual atom gets ionized, if the ionization cross section is σion?
b. If the recombination coefficient is α ≡ 〈σv〉, what is the timescale τrec for an
individual proton to recombine with an electron?
c. At a position close to the star, where the ionizing flux is high, and therefore
τion � τrec , show that the velocity at which the ionization front that bounds
the Stromgren sphere advances is vif = Q∗/(4πr

2n).
d. Evaluate vif for Q∗ = 3× 1049s−1 , n = 104cm−3 , and for r = 0.01 pc, 0.05 pc
, and 0.1 pc, respectively. From vif (r), obtain and solve a simple differential
equation for rstrom(t), and find roughly how long it takes the ionization front to
reach the final Stromgren radius (0.2 pc for these parameters; see Eq. 5.27).

At the distance r, the volume of the sphere is 4/3πr3 and the number of atoms in the
sphere will be 4/3πr3nion and therefore, the time scale of ionization is

τion = 4/3πr3nion
Q∗
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b. The recombination timescale is simply

τrec = 1
nionα

c. In a fast ionisation front, the ram pressure of the gas entering the front is matched by
the sum of the gas pressure and ram pressure of the ionised gas leaving the front. At a
region close to the star, only a fraction of the emitted photons are used to maintain the
ionisation, the remaining photons push an ionisation front through the neutral medium
at a velocity vif = dr

dt . If we assume that the fully ionised region within the front is in
equilibrium with the neutral gas beyond it, then

4πr2ndrdt = Q∗ − 4π
3 α(T )n2r3

Very close to the star, ionisation will dominate the process since τion � τrec and the
second part of the above equation can be ignored so that we have;

vif = Q∗
4πr2n

d. Substituting the appropriate values of r in the equation for vif gives the answers.

vif = dr
dt = Q∗

4πr2n

this implies that

r2dr = Q∗dt
4πn

Where r = rstrom(t). Integrating the above equation and substituting the given values in
the problem, we have;

t = 4πnr3

3Q∗
∼ 10years

5. (Ch. 6 / Problem 6.1) Even when distances to individual stars are not known,
much can be learned simply by counting stars as a function of limiting flux.
Suppose that, in our region of the galaxy, the number density of stars with
a particular luminosity L, n(L), is independent of position. Show that the
number of such stars observed to have a flux greater than some flux f0 obeys

N(f > f0) ∝ f−3/2
0 . Explain why the same behaviour will occur even if the stars

have a distribution of luminosities, as long as that distribution is the same
everywhere. If you observed that the numbers do not grow with decreasing
f0 according to this relation, what could be the reason?

The number N of stars that have luminosities between L and L + dL observed can be
related to the number density n(L) by the equation;

N =
∫ d

0 n(L)dV

where d the radius of the sphere centered around the Solar system. Also, L is related to
f by;

f = L
4πd2

and so d can be expressed as
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d = ( L
4πf )1/2

and since N ∼ n(L)V and so for f > f0 we can write N as

N(f > f0) ∼ n(L)[( L
4πf0

)1/2]3 ∼ n(L)L3/2

(4π)3/2
f
−3/2
0

This is because, as stated above, what is observed is the total number of stars with fluxes
f > f0 and not the number of stars at distances smaller than a certain value and so
provided the distribution of luminosity is same everywhere, the same behaviour will be
observed even if the stars have a distribution of luminosities.

If the number of stars does not grow with decreasing f0, it implies that below the limiting
value of f0 the stars are significantly deem and the condition f > f0 has plausibly been
violated.

6. (Ch. 6 / Problem 6.2) Derive the expression for gravitational focusing - the
increase in the effective cross section for a physical collision between two ob-
jects due to their gravitational attraction (Eq. 6.12), as follows. Consider a
point mass approaching an object of mass M and radius r0. When the distance
between the two is still large, their relative velocity is vran and the impact pa-
rameter (i.e., the distance of closest passage if they were to continue in relative
rectilinear motion) is b. Due to gravitational attraction, the point mass is de-
flected toward the object and, at closest approach, grazes the object’s surface
at velocity vmax.
a. Invoke energy conservation to show that v2

ran = v2
max − v2

esc, where vesc =
(2GM/r0)1/2 is the escape velocity from the surface of the star.
b. Show that angular momentum conservation means that bvran = r0vmax.
c. Combine the results of (a) and (b) to prove that gravitational focusing
results in an effective cross section for a collision that equals the geometrical
cross section of the object times a factor (1 + v2

e/v
2
ran).

a. When the test object is far away from the massive body, its total energy can be
considered as completely kinetic i.e. Ei ≈ KE = (1/2)mv2

ran. As the object comes close
to the massive object, its total energy becomes Ef = KE + PE = (1/2)mv2

max−GM m/r2
0.

From conservation of energy we have Ei = Ef , which gives

v2
ran = v2

max − v2
esc

where vesc =
√

2GM/r0.

b. Since angular momentum is defined as the moment of linear momentum, it can be
directly shown bvran = r0vmax.

c. Substituting vmax from (b), vmax = bvran/r0 in (a) we get b2 = r2
0

[
1 + (vesc/vran)2

]
.

Therefore, the effective cross-sectional area πb2 = A
[
1 + (vesc/vran)2

]
, where A = πr2

0 is

the geometrical cross-section of the massive object.

7. (Problem 6.3) In the Solar neighbourhood, the Milky Way has a flat rotation
curve, with v(r) = vc , where vc is a constant, implying a mass density profile
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(r) ∼ r−2 (Eq. 6.18).
a. Assume there is a cut-off radius R, beyond which the mass density is zero.
Prove that the velocity of escape from the galaxy from any radius r < R is

v2
e = 2 v2

c [1 + ln(R/r)]

b. The largest velocity measured for any star in the Solar neighbourhood, at
r = 8 kpc, is 440 km s−1. Assuming that this star is still bound to the galaxy,
find a lower limit, in kiloparsecs, to the cutoff radius R, and a lower limit, in
units of M , to the mass of the galaxy. The Solar rotation velocity is vc = 220
km s−1.
a. To escape from a galaxy, the kinetic energy of the object ≥ gravitational potential
energy. This yields

1

2
mv2

e =

∫ R

r

GM(r)

r2
+

∫ ∞
R

GMtot

r2
,

where M(r) = v2
cr/G is the mass contained within the radius r and Mtot is the total mass

of the galaxy (i.e., upto radius R). Integrating we obtain

v2
e = 2 v2

c [1 + ln(R/r)] (4)

b. From 4, we have

R ≥ r exp

[
v2

e

2 v2
c

− 1

]
Using r = 8 kpc, ve = 440 km s−1 and vc = 220 km s−1, we get Rmin = 21.7 kpc. The
minimum mass of the Galaxy is Mmin = Rminv

2
c/G = 2.43× 1011M�.

8. (Problem 6.7) Modified Newtonian Dynamics (MoND) proposes that, for
small accelerations, Newtons second Law, F = ma, approaches the form F =
ma2/a0, where a0 is a constant (see Eq. 6.50).
a. Show how such an acceleration law can lead to flat rotation curves, without
the need for dark matter.
b. Alternatively, propose a new law of gravitation to replace F = GMm/r2

at distances greater than some characteristic radius r0 , so as to produce flat
rotation curves without dark matter. Make sure your modified law has the
right dimensions.
c. Modify further the gravitation law you proposed in (b) with some math-
ematical formulation (many different formulations are possible), so that the
law is Newtonian on scales much smaller than r0, with a continuous transition
to the required behavior at r = r0.

a. The gravitational force on a particle of mass m is

F =
GMm

r2

According to MOND, the LHS of the above equation can be written as ma2/a0 where
a = v2/r is the centrifugal acceleration. This implies

m

a0

(
v2

c

r

)2

=
GMm

r2

vc = (GM a0)1/4 (5)
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Note that, for our Galaxy, a0 ∼ 10−8 cm s−2, M ∼ 1011M� km s−1 i.e., v ∼ 190 km s−1

which is very close to the observed rotational velocity.

b. Let us define F = (GMm/r2) g(r) where g(r) is defined as

g(r) =

{
1, if r << r0

r/r0, if r >> r0

(6)

The equation of motion is

Figure 2: g(r) as a function of r/r0.

v2
c

r
=
GM

r2
g(r) (7)

At larger distance, the above equation shows vc = (GM/r0)1/2 i.e., the flat rotational
curve. For Galactic parameters r0 ∼ 10 kpc, M ∼ 1011M� gives vc ∼ 207 km s−1.

c. A continuous function of g(r) can be chosen as

g(r) =

[
1 +

(
r

r0

)(
1− e−r/r0

)]
Note that, this choice satisfies the condition given in equation 6, see Figure 2. It is worth
mentioning that the modification done here is not unique.

Problem 5 : A. R. Choudhuri/Astrophysics for physicists

1. (Ch. 6 / Problem 6.1) We have presented a very elementary discussion of
star count analysis in section 6.1.1 by assuming that all stars have the same
absolute magnitude M and there is no absorption in interstellar space. Now
assume that a fraction of stars (M) dM have absolute magnitudes between M
and M + dM , whereas a(r) is the change in magnitude of a star at a distance r
due to absorption. Suppose A(m)dm is the number of stars within a solid angle
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ω having apparent magnitude between m and m + dm. If D(r) is the number
density of stars at a distance r, show that

A(m) = ω

∫ ∞
0

Φ[m+ 5− 5Log(r)− a(r)]D(r)r2dr

Show that this expression reduces to the form equation (6.3) if all stars
have the same absolute magnitude with no absorption and are uniformly dis-
tributed.

The apparent magnitude of a star is m = mref − 2.5Logf(r) + constant, where f(r) is the
flux coming from an object at a distance r. According to the definition of the absolute
magnitude (M), m = M − 2.5Log[f(r)/f(10pc)] = M + 5 Log[r/(10pc)] which yields
M = m + 5 − 5Log[r]. Now in the presence of dust absorption, the apparent magnitude
becomes m = mref−2.5Logf+constant+a(r), where a(r) represents the dust absorption.
Note that the apparent magnitude increases with the increase of a. Therefore, in the
presence of dust, the absolute magnitude is

M = m+ 5− 5Log(r)− a(r)

which gives

A(m) =

∫ ∞
0

ω r2 drD(r) Φ[M ] = ω

∫ ∞
0

Φ[m+ 5− 5Log(r)− a(r)]D(r)r2dr (8)

If all the stars are having same absolute magnitude and uniformly distributed (i.e., D(r) =
D and Φ[M ] = Φ) in the sky, then

A(m)|r =

∫ r

0
Dω r2 dr =

1

3
r3ωD (9)

Neglecting the dust absorption, we have M = m+ 5− 5Log(r) i.e., r = 101+0.2[m−M ] pc.
Using the equation of r, from equation 9, we get

A(m)|r =

(
103

3
ωD10−0.6M

)
100.6m ∝ 100.6m

which is the required answer.

2. (Ch. 6 / Problem 6.2) The interstellar medium in the galactic disk diminishes
the luminosity of stars by about 1.5 magnitude (i.e. increases the magnitude
by 1.5) per kpc. Show that this implies that the brightnesses of stars fall off
with distance r in the galactic disk as

e−αr

r2

Find the value of α.

From problem 6.1, we have m = M − 5 + 5Log(r) + a(r). The extinction factor a(r) is
defined as

a(r) = −2.5 Log[Iobs/Iemt] ,

where Iobs = Iemte
−τ(r) and τ(r) =

∫ r
0 dr α ≈ α r is the optical depth. This gives

m = M − 5 + 5Log(r)− 2.5Log(e−α r) ≡M − 5− 2.5Log

[
e−α r

r2

]
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This shows that the brightnesses of stars fall off with distance r as e−αr

r2
.

From the above expression, we obtain

α = −1

r
ln
[
r2 10−0.4(m−M+5)

]
= 2.4

3. (Ch. 6 / Problem 6.4) Make a simplified model of the galactic disk by assum-
ing it to be an infinite sheet of constant thickness with constant density inside.
Show that a star displaced from the mid-plane of the Galaxy in the vertical
direction undergoes simple harmonic oscillations around the mid-plane (as-
suming that the star always remains within the region of constant density).
Taking the density in the mid-plane to correspond to about 5× 106 hydrogen
atoms m3, estimate the period of oscillation. How does it compare with the
period of revolution of a star in the solar neighbourhood around the galactic
centre?

Figure 3:

The field from an infinite sheet of constant thickness can be found from applying Gauss’s
law to gravitational fields, which states

∇.~g = −4πGρ

Using the divergence theorem and integrating this gives∮
~g.d ~A = −4πG

∫
V
ρdV

For a sheet of uniform density, ρ is constant. To find the force on a star displaced at a
height z from the mid-plane of the galaxy, we take a cylindrical surface over which we can
apply the Gauss law (see Fig. 2). The left hand side of the integral equation will simply
be equal to ~g(z)A (as the field flux exiting all sides except the top of the cylinder is zero).
The right hand side will be equal to −4πGρAz. Here A is the area of the top surface of
the cylinder. Thus

~g(z)A = −4πGρAz

which gives the force on the star at a height z to be equal to M∗~g(z), which is

~F (z) = −4πGρM∗z

13



This equation is similar to the equation for a harmonic oscillator

F (x) = −kx

with the spring constant k = 4πGρM∗.

The period of oscillation for this oscillator will be given as

P = 2π

√
M∗
k

= 2π

√
1

4πGρ

On substituting the value of the constants (with ρ = 5mp×106) , this period comes out to
be P ∼ 0.7× 108 yr, which is about half the value of the period that solar neighbourhood
stars take to rotate about the centre of the galaxy (Prot = 2× 108 yr - see equation 6.9 of
Arnab’s book).

4. (Ch. 6 / Problem 6.6)

Consider an atom with three levels denoted by 1, 2 and 3 in order of increasing
energy. Suppose no transitions take place between the upper two levels 2
and 3. Writing balance equations of the type (6.59) and assuming that the
radiation present is not strong enough to make radiative transitions important,
show that

n3

n2
=
g3(1 +A21/neγ21)

g2(1 +A31/neγ31)
e−E23/kBT

Here all the symbols have obvious meanings. It is clear that we shall have the
Boltzmann distribution law when ne is large. Discuss the conditions which
would lead to population inversion. If there is no transition between the
upper two levels, then this population inversion may not give rise to maser
action. But this simple example of a three-level system should give some idea
of how population inversions can arise.

5. (Ch. 6 / Problem 6.7)

We have pointed out in §6.6.3 that CO molecules in molecular clouds emit
at frequencies which are integral multiples of 115 GHz. If I is the moment
of inertia of the molecule around an axis perpendicular to the axis of the
molecule, then show that the energy levels of the molecule are given by

EJ =
~2

2I
J(J + 1)

where J can have integral values. If the selection rule ∆J = 1 has to be obeyed
for emission, then show that the emission spectrum should be as seen. Make
an estimate of the distance between the carbon and the oxygen atoms in the
molecule.

For a di-atomic molecule rotating about an axis as shown in Fig. 3, the angular momen-
tum of rotation is given by L = Iω. Here ω is the angular velocity and

I = mcr
2
e
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is the moment of inertia about the center of mass. mc is the reduced mass of the system
and re is the distance between the two atoms in the molecule. The rotational energy
related to this angular momentum is given as

Erot =
Iω2

2
=
L2

2I

Quantization of the angular momentum L = n~ in the atom, leads to quantization of
the rotational energy levels too. These levels can be found from the eigen values of the
Schroedinger equation, which gives the required relation. For selected transitions where
∆J = -1, the transition energies, will be obtained as

∆Erot =
~2

2I
(J(J + 1)− (J − 1)J) = J

~2

I

Thus the transition energies ∆Erot which are seen as the emission lines are just integral
multiples of the quantity ~2/(I). The frequency corresponding to this is obtained by

hν = ~2/(I); ν = h2/(4π2I)

Putting the value of I, with

mc =
mOmC

mO +mC
= 16mp/3

gives

re =

√
3h

64π2νmp
= 1.3A◦

Figure 4: A diatomic molecule rotating about an axis perpendicular to axis of the molecule
- Figure courtesy http://www.cv.nrao.edu/course/astr534/MolecularSpectra.

html

6. (Ch. 9 / Problem 9.1)

Suppose an elliptical galaxy appears circular in the sky with the fall in surface
brightness given by the de Vaucouleurs law (9.2). Show that the total light
coming from this galaxy given by

∫∞
0 I(r)2πrdr is equal to 7.22πr2

eIe. Show also
that the light coming from within re is exactly half this amount.
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The total intensity It is given as

It =

∫ ∞
0

I(r)2πrdr =

∫ ∞
0

2πIere exp

{
−a
(

(
r

re
)b − 1

)}
dr

Here a = 7.67 and b = 0.25 To solve this, substitute x =
(
r
re

)b
. The limits remain the

same and
dx = b

a

rbe
rb−1dr = b

a

rbe
rb−2rdr

This can be rewritten using r = re(x/a)1/b as

rdr = r2
ea

2/bx
2−b
b dx

Substituting value of b = 0.25, we can write the integral as

It = 8πIea
−8r2

ee
a

∫ ∞
0

x7e−xdx

Using Gamma function, we can write∫ ∞
0

x7e−xdx = Γ(8) = 7!

This gives
It = (8a−8ea7!)πIer

2
e = 7.22πIer

2
e

For the intensity inside the radius re, we integrate the orginial function from 0 to re. This
translates to integration from 0 to a in the changed variable x

I1/2 = 8πIea
−8r2

ee
a

∫ a

0
x7e−xdx

Using the incomplete Gamma function∫ a

0
x7e−xdx = Γ(8, a) = 7!e−a

7∑
i=0

ai

i!

Gives

I1/2 = Ite
−a

7∑
i=0

ai

i!
' It

2

Thus the light coming from within re is half the light coming from the whole galaxy

7. (Ch. 9 / Problem 9.3) Suppose a plasma jet is coming from a quasar at a
relativistic speed 0.98c. At what angle with respect to the line of sight must
it lie to cause the maximum superluminal motion? What is the value of the
maximum apparent transverse velocity ?

Superluminal tranverse velocity is given as

v⊥ =
vsinθ

1− βcosθ

where β = v/c. Maximising this by equating its derivative to zero, we get

dv⊥
dθ

=
cosθ

1− βcosθ
− βsin2θ

(1− βcosθ)2
= 0
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This on solving gives
(1− βcosθ)cosθ = βsin2θ

cosθ = β(sin2θ + cos2 θ)

θ = cos−1β

For β = 0.98, θ = 11.5◦ and

v⊥ =
vsinθ

1− βcosθ
= c

β√
1− β2

= 4.92c
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