Feature Selection, Advanced Classification, Metrics CS 584 Data Mining (Fall 2016) Huzefa Rangwala Associate Professor, Computer Science, George Mason University Email: rangwala@cs.gmu.edu Website: www.cs.gmu.edu/~hrangwal

Slides are adapted from the available book slides developed by Tan, Steinbach and Kumar

Lesson Plan

- Curse of Dimensionality
- Metrics
- Naïve Bayes Classifier
- Perceptron
- Support Vector Machines

Next Time:

- Decision Trees
- Bayesian Networks
- PCA and Bias-Variance Tradeoff

Curse of Dimensionality

Many problems of interest have objects with a large number of dimensions. An example...

Document Classification

Of all the sensory impressions proceeding to the brain, the visual experiences are the dominant ones. Our perception of the

world around up the messac our eyes that the point b brain; screen image the disc now know Visual perc considerably

sensory, brain, of visual, perception retinal, cerebral contex, eye, cell, optical nerve, image Hubel, Wiesel

tially on

considerably is seen of events. By following a set of events. By following a set of ese along their path to the various ceres of the optical cortex, Hubel and W. have been able to demonstrate that message about the image falling on the retina undergoes a step-wise analysis system of nerve cells stored in columns In this system each cell has its specific function and is responsible for a specific detail in the pattern of the retinal image.

Bag-of-words representation of a document

What's the size of the dictionary?

Curse of Dimensionality

- When dimensionality increases, data becomes increasingly sparse in the space that it occupies
- Also distances between objects gets skewed
 - More dimensions that contribute to the notion of distance or proximity which makes it uniform. This leads to trouble in clustering and classification settings.

Driving the point ..

Consider a 3-class pattern recognition problem

- A simple approach would be to
 - Divide the feature space into uniform bins
 - Compute the ratio of examples for each class at each bin and,
 - For a new example, find its bin and choose the predominant class in that bin
- In our toy problem we decide to start with one single feature and divide the real line into 3 segments

 After we have done this, we notice that there exists too much overlap for the classes, so we decide to incorporate a second feature to try and improve the classification rate

We decide to preserve the granularity of each axis, which raises the number of bins from 3 (in 1D) to 3²=9 (in 2D)

- At this point we are faced with a decision: do we maintain the density of examples per bin or do we keep the number of examples we used for the one-dimensional case?
 - Choosing to maintain the density increases the number of examples from 9 (in 1D) to 27 (in 2D)
 - Choosing to maintain the number of examples results in a 2D scatter plot that is very sparse

Moving to three features makes the problem worse:

- The number of bins grows to 3³=27
- For the same density of examples the number of needed examples becomes 81
- For the same number of examples, well, the 3D scatter plot is almost empty

Curse of Dimensionality

Definitions of density and distance between points, which is critical for clustering and outlier detection, become less meaningful

- Randomly generate 500 points
- Compute difference between max and min distance between any pair of points

Dimensionality Reduction

- Purpose:
 - Avoid curse of dimensionality
 - Reduce amount of time and memory required by data mining algorithms
 - Allow data to be more easily visualized
 - May help to eliminate irrelevant features or reduce noise
- Techniques
 - Principle Component Analysis
 - Singular Value Decomposition
 - Others: supervised and non-linear techniques

Nearest Neighbor Classification...

- Scaling issues
 - Attributes may have to be scaled to prevent distance measures from being dominated by one of the attributes
 - Example:
 - height of a person may vary from 1.5m to 1.8m
 - weight of a person may vary from 90lb to 300lb
 - income of a person may vary from \$10K to \$1M

	Nearest Neighbor Classification										
	 Problem with Euclidean measure: 										
	 High dimension curse of d 	 High dimensional data curse of dimensionality 									
	 Can produ 	ce coun	ter-intuitive results								
11	111111110	Ve	10000000000								
01	111111111	V5	00000000001								
	d = 1.4142		d = 1.4142								

Solution: Normalize the vectors to unit length

Model Selection

Model Evaluation

- Metrics for Performance Evaluation
 - How to evaluate the performance of a model?
- Methods for Performance Evaluation
 How to obtain reliable estimates?
- Methods for Model Comparison
 - How to compare the relative performance among competing models?

Model Evaluation

- Metrics for Performance Evaluation
 - How to evaluate the performance of a model?
- Methods for Performance Evaluation
 How to obtain reliable estimates?
- Methods for Model Comparison
 - How to compare the relative performance among competing models?

Metrics for Performance Evaluation

- Focus on the predictive capability of a model
 - Rather than how fast it takes to classify or build models, scalability, etc.
- Confusion Matrix:

	PREDICTED CLASS							
		Class=Yes	Class=No					
ACTUA	Class=Yes	а	b					
L CLASS	Class=No	С	d					

a: TP (true positive)b: FN (false negative)c: FP (false positive)

d: TN (true negative)

	PREDICTED CLASS						
		Class=Yes	Class=No				
ACTUAL	Class=Yes	a (TP)	b (FN)				
ULASS	Class=No	с (FP)	d (TN)				

• Most widely-used metric:

Accuracy =
$$\frac{a+d}{a+b+c+d} = \frac{TP+TN}{TP+TN+FP+FN}$$

Methods of Estimation

- Holdout
 - Reserve 2/3 for training and 1/3 for testing
- Random subsampling
 - Repeated holdout
- Cross validation
 - Partition data into k disjoint subsets
 - k-fold: train on k-1 partitions, test on the remaining one
 - Leave-one-out: k=n
- Stratified sampling
 - oversampling vs undersampling
- Bootstrap
 - Sampling with replacement

Limitation of Accuracy

- Consider a 2-class problem
 - Number of Class 0 examples = 9990
 - Number of Class I examples = 10
- If model predicts everything to be class 0, accuracy is 9990/10000 = 99.9 %
 - Accuracy is misleading because model does not detect any class I example

	PR	EDICTED (CLASS	
	C(i j)	Class=Yes	Class=No	
ACTUAL	Class=Yes	C(Yes Yes)	C(No Yes)	
CLASS	Class=No	C(Yes No)	C(No No)	

C(i|j): Cost of misclassifying class j example as class i

Computing Cost of Classification

Cost Matrix	PREDI	CTED (CLASS
	C(i j)	-	
ACTUAL	+	-1	100
CLASS		1	0

Model M ₁	PREDI	CTED (CLASS
		+	-
ACTUAL	+	150	40
OLAGO	-	60	250

Accuracy = 80% Cost = 3910 Model M2PREDICTED CLASSACTUAL
CLASS+-+25045-5200

Accuracy = 90% Cost = 4255

Cost vs Accuracy

Count	PREI	DICTED CI	ASS
		Class=Yes	Class=No
ACTUAL	Class=Yes	а	b
CLASS	Class=No	С	d

Cost	PREI	DICTED CL	ASS
		Class=Yes	Class=No
ACTUAL	Class=Yes	р	q
CLASS	Class=No	q	р

Accuracy is proportional to cost if 1. C(Yes|No)=C(No|Yes) = q 2. C(Yes|Yes)=C(No|No) = p

$$N = a + b + c + d$$

Accuracy =
$$(a + d)/N$$

Cost-Sensitive Measures
Precision (p) =
$$\frac{a}{a+c}$$

Recall (r) = $\frac{a}{a+b}$
F-measure (F) = $\frac{2rp}{r+p} = \frac{2a}{2a+b+c}$

Model Evaluation

- Metrics for Performance Evaluation
 - How to evaluate the performance of a model?

- Methods for Model Comparison
 - How to compare the relative performance among competing models?

Methods for Performance Evaluation

- How to obtain a reliable estimate of performance?
- Performance of a model may depend on other factors besides the learning algorithm:
 - Class distribution
 - Cost of misclassification
 - Size of training and test sets

Learning Curve

- Learning curve shows how accuracy changes with varying sample size
- Requires a sampling schedule for creating learning curve:
 - Arithmetic sampling (Langley, et al)
 - Geometric sampling (Provost et al)

Effect of small sample size:

- Bias in the estimate
- Variance of estimate

ROC (Receiver Operating Characteristic)

- Developed in 1950s for signal detection theory to analyze noisy signals
 - Characterize the trade-off between positive hits and false alarms
- ROC curve plots TP (on the y-axis) against FP (on the x-axis)
- Performance of each classifier represented as a point on the ROC curve
 - changing the threshold of algorithm, sample distribution or cost matrix changes the location of the point

ROC Curve

1-dimensional data set containing 2 classes (positive and negative)

- any points located at x > t is classified as positive

ROC Curve

- (0,0): declare everything to be negative class
- (1,1): declare everything to be positive class
- (1,0): ideal

(**TP,FP**):

- Diagonal line:
 - Random guessing
 - Below diagonal line:
 - prediction is opposite of the true class

Using ROC for Model Comparison

How to Construct an ROC curve

Instance	P(+ A)	True Class
Ţ	0.95	+
2	0.93	+
3	0.87	-
4	0.85	-
5	0.85	-
6	0.85	+
7	0.76	-
8	0.53	+
9	0.43	-
10	0.25	+

• Use classifier that produces posterior probability for each test instance P(+|A)

- Sort the instances according to P(+|A) in decreasing order
- Apply threshold at each unique value of P(+|A)
- Count the number of TP, FP, TN, FN at each threshold
- TP rate, TPR = TP/(TP+FN)
- FP rate, FPR = FP/(FP + TN)

H	ЭW	t t	o c	or	nst	ru	Ct	an	R		20	ur	ve
Class	+	-	+	-	-	-	+	-	+	+			

Thre

sho	d >=	0.25	0.43	0.53	0.76	0.85	0.85	0.85	0.87	0.93	0.95	1.00
	ТР	5	4	4	3	3	3	3	2	2	1	0
	FP	5	5	4	4	3	2	1	1	0	0	0
	TN	0	0	1	1	2	3	4	4	5	5	5
	FN	0	1	1	2	2	2	2	3	3	4	5
	TPR	1	0.8	0.8	0.6	0.6	0.6	0.6	0.4	0.4	0.2	0
	FPR	1	1	0.8	0.8	0.6	0.4	0.2	0.2	0	0	0

ROC Curve:

Data Quality

- What kinds of data quality problems?
- How can we detect problems with the data?
- What can we do about these problems?

- Examples of data quality problems:
 - Noise and outliers
 - missing values
 - duplicate data

Noise

- Noise refers to modification of original values
 - Random collection of error.
 - Examples: distortion of a person's voice when talking on a poor phone and "snow" on television screen

Two Sine Waves

Two Sine Waves + Noise

Outliers

 Outliers are data objects with characteristics that are considerably different than most of the other data objects in the data set

Missing Values (Think)

- Reasons for missing values
 - Information is not collected (e.g., people decline to give their age and weight)
 - Attributes may not be applicable to all cases (e.g., annual income is not applicable to children)
- Handling missing values (How? Think)
 - Eliminate Data Objects
 - Estimate Missing Values
 - Ignore the Missing Value During Analysis
 - Replace with all possible values (weighted by their probabilities)

Duplicate Data

- Data set may include data objects that are duplicates, or almost duplicates of one another
 - Major issue when merging data from heterogeous sources
- Examples:
 - Same person with multiple email addresses
- Data cleaning
 - Process of dealing with duplicate data issues

Data Preprocessing

- Aggregation
- Sampling
- Dimensionality Reduction/Feature selection
- Feature creation
- Attribute Transformation
 - Discretization and Binarization

Aggregation (LESS IS MORE)

- Combining two or more attributes (or objects) into a single attribute (or object)
- Purpose
 - Data reduction
 - Reduce the number of attributes or objects
 - Change of scale
 - Cities aggregated into regions, states, countries, etc
 - More "stable" data
 - Aggregated data tends to have less variability

Aggregation Variation of Precipitation in Australia

Monthly Precipitation

Yearly Precipitation

Sampling

- Sampling is the main technique employed for data selection.
 - It is often used for both the preliminary investigation of the data and the final data analysis.
- Sampling is used in data mining because processing the entire set of data of interest is too expensive or time consuming.

Sampling ...

- The key principle for effective sampling is the following:
 - using a sample will work almost as well as using the entire data sets, if the sample is representative
 - A sample is representative if it has approximately the same property (of interest) as the original set of data

Types of Sampling

- Simple Random Sampling
 - There is an equal probability of selecting any particular item
- Sampling without replacement
 - As each item is selected, it is removed from the population
- Sampling with replacement
 - Objects are not removed from the population as they are selected for the sample.
 - In sampling with replacement, the same object can be picked up more than once
- Stratified sampling
 - Split the data into several partitions; then draw random samples from each partition

Sample Size

8000 points

2000 Points

500 Points

Classification Algorithms

°

Classification Methods

- Decision Tree based Methods
- Rule-based Methods
- Memory based reasoning
- Neural Networks
- Naïve Bayes and Bayesian Belief Networks
- Support Vector Machines

Bayes Classifier

 A probabilistic framework for solving classification problems

 $P(C \mid A) = \frac{P(A \mid C)P(C)}{P(A)}$

Conditional Probability:

$$P(C \mid A) = \frac{P(A, C)}{P(A)}$$
$$P(A \mid C) = \frac{P(A, C)}{P(C)}$$

• Bayes theorem:

Example of Bayes Theorem

• Given:

- A doctor knows that meningitis causes stiff neck 50% of the time
 Prior probability of any patient having meningitis is 1/50,000
 Prior probability of any patient having stiff neck is 1/20
- If a patient has stiff neck, what's the probability he/she has meningitis?

$$P(M \mid S) = \frac{P(S \mid M)P(M)}{P(S)} = \frac{0.5 \times 1/50000}{1/20} = 0.0002$$

Bayesian Classifiers

- Consider each attribute and class label as random variables
- Given a record with attributes (AI,A2,...,An)
 - Goal is to predict class C
 - Specifically, we want to find the value of C that maximizes P(C|AI,A2,...,An)
- Can we estimate P(C|AI,A2,...,An) directly from data?

Bayesian Classifiers

- Approach:
 - $^\circ\,$ compute the posterior probability P(C $|\,A_1,A_2,\ldots,A_n)$ for all values of C using the Bayes theorem

$$P(C \mid A_{1}A_{2}...A_{n}) = \frac{P(A_{1}A_{2}...A_{n} \mid C)P(C)}{P(A_{1}A_{2}...A_{n})}$$

- Choose value of C that maximizes $P(C | A_1, A_2, ..., A_n)$
- $^{\circ}$ Equivalent to choosing value of C that maximizes $P(A_1,A_2,\ldots,A_n|C)$ P(C)
- How to estimate $P(A_1, A_2, ..., A_n | C)$?

Naïve Bayes Classifier

- Assume independence among attributes A_i when class is given:
 - $P(A_1, A_2, ..., A_n | C) = P(A_1 | C_j) P(A_2 | C_j) ... P(A_n | C_j)$
 - Can estimate $P(A_i | C_i)$ for all A_i and C_i .
 - New point is classified to C_j if $P(C_j) \prod P(A_i | C_j)$ is maximal.

How to Estimate Probabilities from Data?

-				
Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

• Class:
$$P(C) = N_c/N$$

• e.g., $P(No) = 7/10$,
 $P(Yes) = 3/10$

- For discrete attributes: $P(A_i | C_k) = |A_{ik}| / N_c$
 - where |A_{ik}| is number of instances having attribute A_i and belongs to class C_k

• Examples:

P(Status=Married|No) = 4/7 P(Refund=Yes|Yes)=0

How to Estimate Probabilities from Data?

• For continuous attributes:

- Discretize the range into bins
 - one ordinal attribute per bin
 - violates independence assumption
- Two-way split: (A < v) or (A > v)
 - choose only one of the two splits as new attribute

k

- Probability density estimation:
 - Assume attribute follows a normal distribution
 - Use data to estimate parameters of distribution (e.g., mean and standard deviation)
 - Once probability distribution is known, can use it to estimate the conditional probability P(A_i|c)

How to Estimate Probabilities from Data?

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	Νο
10	No	Single	90K	Yes

- Normal distribution: $P(A_i \mid c_j) = \frac{1}{\sqrt{2\pi\sigma_{ij}^2}} e^{-\frac{(A_i - \mu_{ij})^2}{2\sigma_{ij}^2}}$
 - One for each (A_i,c_i) pair
- For (Income, Class=No):
 - If Class=No
 - sample mean = 110
 - sample variance = 2975

 $P(Income = 120 \mid No) = \frac{1}{\sqrt{2\pi}(54.54)} e^{-\frac{(120-110)^2}{2(2975)}} = 0.0072$

Given a Test Record: X = (Refund = No, Married, Income = 120K)

naive Bayes Classifier:

```
P(Refund=Yes|No) = 3/7
P(Refund=No|No) = 4/7
P(Refund=Yes|Yes) = 0
P(Refund=No|Yes) = 1
P(Marital Status=Single|No) = 2/7
P(Marital Status=Divorced|No)=1/7
P(Marital Status=Married|No) = 4/7
P(Marital Status=Single|Yes) = 2/7
P(Marital Status=Divorced|Yes)=1/7
P(Marital Status=Married|Yes) = 0
```

For taxable income:

sample mean=110
sample variance=2975
sample mean=90
sample variance=25

 P(X|Class=No) = P(Refund=No|Class=No) × P(Married| Class=No) × P(Income=120K| Class=No) = 4/7 × 4/7 × 0 0072 = 0 0024

•
$$P(X|Class=Yes) = P(Refund=No|Class=Yes)$$

 $\times P(Married|Class=Yes)$
 $\times P(Income=120K|Class=Yes)$
 $= 1 \times 0 \times 1.2 \times 10^{-9} = 0$

Since P(X|No)P(No) > P(X|Yes)P(Yes) Therefore P(No|X) > P(Yes|X) => Class = No

Naïve Bayes Classifier

- If one of the conditional probability is zero, then the entire expression becomes zero
- Probability estimation:

Original :
$$P(A_i | C) = \frac{N_{ic}}{N_c}$$

Laplace : $P(A_i | C) = \frac{N_{ic} + 1}{N_c + c}$
m - estimate : $P(A_i | C) = \frac{N_{ic} + mp}{N_c + m}$

c: number of classesp: prior probabilitym: parameter

Example of Naïve Bayes Classifier

Name	Give Birth	Can Fly	Live in Water	Have Legs	Class
human	yes	no	no	yes	mammals
python	no	no	no	no	non-mammals
salmon	no	no	yes	no	non-mammals
whale	yes	no	yes	no	mammals
frog	no	no	sometimes	yes	non-mammals
komodo	no	no	no	yes	non-mammals
bat	yes	yes	no	yes	mammals
pigeon	no	yes	no	yes	non-mammals
cat	yes	no	no	yes	mammals
leopard shark	yes	no	yes	no	non-mammals
turtle	no	no	sometimes	yes	non-mammals
penguin	no	no	sometimes	yes	non-mammals
porcupine	yes	no	no	yes	mammals
eel	no	no	yes	no	non-mammals
salamander	no	no	sometimes	yes	non-mammals
gila monster	no	no	no	yes	non-mammals
platypus	no	no	no	yes	mammals
owl	no	yes	no	yes	non-mammals
dolphin	yes	no	yes	no	mammals
eagle	no	yes	no	yes	non-mammals

A: attributes

M: mammals

N: non-mammals

$$P(A \mid M) = \frac{6}{7} \times \frac{6}{7} \times \frac{2}{7} \times \frac{2}{7} = 0.06$$

$$P(A \mid N) = \frac{1}{13} \times \frac{10}{13} \times \frac{3}{13} \times \frac{4}{13} = 0.0042$$

$$P(A \mid M)P(M) = 0.06 \times \frac{7}{20} = 0.021$$

$$P(A \mid N)P(N) = 0.004 \times \frac{13}{20} = 0.0027$$

P(A|M)P(M) > P(A|N)P(N)

Give Birth	Can Fly	Live in Water	Have Legs	Class
yes	no	yes	no	?

=> Mammals

Naïve Bayes (Summary)

- Robust to isolated noise points
- Handle missing values by ignoring the instance during probability estimate calculations
- Robust to irrelevant attributes
- Independence assumption may not hold for some attributes
 - Use other techniques such as Bayesian Belief Networks (BBN)

Perceptrons and Neural Networks

0

Linear Classifiers

- Let's simplify life by assuming:
 - Every instance is a vector of real numbers, $\mathbf{x} = (x_1, \dots, x_n)$. (Notation: boldface \mathbf{x} is a vector.)
 - There are only two classes, y=(+1) and y=(-1)
- A <u>linear classifier</u> is vector w of the same dimension as x that is used to make this prediction:

$$= \operatorname{sign}(w_1 x_1 + w_2 x_2 + \dots + w_n x_n) = \operatorname{sign}(\mathbf{w} \cdot \mathbf{x})$$
$$\operatorname{sign}(w \cdot x) = \begin{cases} +1 & \text{if } \mathbf{w} \cdot \mathbf{x} \ge 0\\ -1 & \text{if } \mathbf{w} \cdot \mathbf{x} < 0 \end{cases}$$

Visually, **x** · **w** is the distance you get if you "project **x** onto **w**"

In 3d: line→plane In 4d: plane→hyperplane

The <u>line</u> perpendicular to **w** divides the vectors classified as positive from the vectors classified as negative.

Geocities.com/bharatvarsha1947

Notice that the <u>separating hyperplane</u> goes through the origin...if we don't want this we can preprocess our examples:

$$\mathbf{X} = \langle x_1, x_2, \dots, x_n \rangle$$
$$\mathbf{X} = \langle 1, x_1, x_2, \dots, x_n \rangle$$

$$\hat{y} = \operatorname{sign}(w_1 x_1 + w_2 x_2 + \dots + w_n x_n) = \operatorname{sign}(\mathbf{w} \cdot \mathbf{x})$$
$$\hat{y} = \operatorname{sign}(w_0 1 + w_1 x_1 + w_2 x_2 + \dots + w_n x_n) = \operatorname{sign}(\mathbf{w} \cdot \mathbf{x})$$

W

₩-W

$\langle x_1, \dots, x_n \rangle \rightarrow \\ \langle x_{outlook, sunny}, x_{outlook, overcast}, x_{outlook, rain}, x_{temp, hot}, x_{temp, mild}, x_{temp, cool}, \dots, \rangle$

Day	Outlook	Temperature	Humidity	Wind	PlayTenr
D1	Sunny	Hot	High	Weak	No
D2	\mathbf{Sunny}	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes +1
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No1
D7	Overcast	Cool	Normal	Strong	Yes
D^{τ}	$7 = \left\langle x_{outlook} \right\rangle$	$x_{,sunny} = 0, x_{ou}$	tlook,overcast	$=1, x_{out}$	$t_{look,rain} = 0, \dots, \rangle$
]	=(0,1,0,	0,0,1, 0,1,	,0 angle		
D1	Outlook overcas	t Mild	Humidity norm	al ng	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	\mathbf{High}	Strong	N_{Ω}

What have we given up?

- Not much!
 - Practically, it's a little harder to understand a particular example (or classifier)
 - Practically, it's a little harder to debug
- You can still express the same information
- You can analyze things mathematically much more easily

Perceptron (Frank Rosenblatt, 1957)

 First learning algorithm for neural networks;

 Originally introduced for character classification, where each character is represented as an image;

Perceptron (contd.)

Total input to output node: $\sum_{j=1}^{n} w_j x_j$ **Output unit performs the function: (activation function):** $H(x) = \begin{cases} 1 & \text{if } H(x) \ge 0 \\ 0 & \text{if } H(x) < 0 \end{cases}$

Perceptron: Learning Algorithm

- Goal: we want to define a learning algorithm for the weights in order to compute a mapping from the inputs to the outputs;
- Example: two class character recognition problem.
 - Training set: set of images representing either the character 'a' or the character 'b' (supervised learning);
 - Learning Task: Learn the weights so that when a new unlabelled image comes in, the network can predict its label.
 - Settings:
 - Class 'a' 🗲 1 (class C1)
 - Class 'b' 芛 0 (class C2)
 - n input units (intensity level of a pixel)
 - 1 output unit

The perceptron needs to learn $f:\mathfrak{R}^n\to\{0,1\}$

Perceptron: Learning Algorithm

The algorithm proceeds as follows:

- Initial random setting of weights;
- $m \cdot$ The input is a random sequence $\left\{m x_k
 ight\}_{k\inm lpha}$
- For each element of class C1, if output = 1 (correct) do nothing, otherwise update weights;
- For each element of class C2, if output = 0 (correct) do nothing, otherwise update weights.

Perceptron: Learning Algorithm A bit more formally:

$$x = (x_1, x_2, ..., x_n)$$
 $w = (w_1, w_2, ..., w_n)$

 W_0 : Threshold of the output unit $wx^T = w_1x_1 + w_2x_2 + ... + w_nx_n$ Output is 1 if $wx^T - w_0 \ge 0$

To eliminate the explicit dependence on \mathcal{W}_0 :

Output is 1 if:

$$\hat{\boldsymbol{w}}\hat{\boldsymbol{x}}^T = \sum_{i=1}^{n+1} w_i x_i \ge 0$$

Perceptron: Learning Algorithm

- We want to learn values of the weights so that the perceptron correctly discriminate elements of C1 from elements of C2:
- Given x in input, if x is classified correctly, weights are unchanged, otherwise:

 $w' = \begin{cases} w + x & \text{if element of class } C_1(1) \text{ was classified as in } C_2 \\ w - x & \text{if element of class } C_2(0) \text{ was classified as in } C_1 \end{cases}$
$w' = \begin{cases} w + x & \text{if element of class } C_1(1) \text{ was classified as in } C_2 \\ w - x & \text{if element of class } C_2(0) \text{ was classified as in } C_1 \end{cases}$

• 1st case: $x \in C_1$ and was classified in C_2 The correct answer is 1, which corresponds to: $\hat{w}\hat{x}^T \ge 0$ We have instead: $\hat{w}\hat{x}^T < 0$

We want to get closer to the correct answer: $wx^T < w'x^T$

$$wx^{T} < w'x^{T} \quad \text{iff} \quad wx^{T} < (w+x)x^{T}$$
$$(w+x)x^{T} = wx^{T} + xx^{T} = wx^{T} + ||x||^{2}$$
because $||x||^{2} \ge 0$, the condition is verified

 $\mathbf{w} = \begin{cases} \mathbf{w} + \mathbf{x} & \text{if element of class } C_1(1) \text{ was classified as in } C_2 \\ \mathbf{w} - \mathbf{x} & \text{if element of class } C_2(0) \text{ was classified as in } C_1 \end{cases}$

• 2nd case: $x \in C_2$ and was classified in C_1 The correct answer is 0, which corresponds to: $\hat{w}\hat{x}^T < 0$ We have instead: $\hat{w}\hat{x}^T \ge 0$

We want to get closer to the correct answer: $wx^T > w'x^T$ $wx^T > w'x^T$ iff $wx^T > (w - x)x^T$ $(w - x)x^T = wx^T - xx^T = wx^T - ||x||^2$ because $||x||^2 \ge 0$, the condition is verified

The previous rule allows the network to get closer to the correct answer when it performs an error.

• <u>In summary</u>:

- 1. A random sequence $x_1, x_2, \dots, x_k, \dots$ is generated such that $x_i \in C_1 \cup C_2$
- 2. If x_k is correctly classified, then $w_{k+1} = w_k$ otherwise

$$\boldsymbol{w}_{k+1} = \begin{cases} \boldsymbol{w}_k + \boldsymbol{x}_k & \text{if } \boldsymbol{x}_k \in C_1 \\ \boldsymbol{w}_k - \boldsymbol{x}_k & \text{if } \boldsymbol{x}_k \in C_2 \end{cases}$$

Does the learning algorithm converge?

<u>Convergence theorem</u>: Regardless of the initial choice of weights, if the two classes are linearly separable, i.e. there exist w s.t.

$$\begin{cases} \hat{w}\hat{x}^T \ge 0 \text{ if } x \in C_1 \\ \hat{w}\hat{x}^T < 0 \text{ if } x \in C_2 \end{cases}$$

then the learning rule will find such solution after a finite number of steps.

Representational Power of Perceptrons

- Marvin Minsky and Seymour Papert, "Perceptrons" 1969:
- "The perceptron can solve only problems with linearly separable classes."
- Examples of linearly separable Boolean functions:

Representational Power of Perceptrons

Perceptron that computes the AND function Perceptron that computes the OR function

Representational Power of Perceptrons

 Example of a non linearly separable Boolean function:

The EX-OR function cannot be computed by a perceptron

Artificial Neural Networks (ANN)

Output Y is 1 if at least two of the three inputs are equal to 1.

Artificial Neural Networks (ANN)

 $Y = I(0.3X_{1} + 0.3X_{2} + 0.3X_{3} - 0.4 > 0)$ where $I(z) = \begin{cases} 1 & \text{if } z \text{ is true} \\ 0 & \text{otherwise} \end{cases}$

Artificial Neural Networks (ANN)

- Model is an assembly of inter-connected nodes and weighted links
- Output node sums up each of its input value according to the weights of its links
- Compare output node against some threshold w₀

Perceptron Model

$$Y = I(\sum_{i} w_{i}X_{i} - w_{0}) \text{ or}$$
$$Y = sign(\sum_{i} w_{i}X_{i} - w_{0})$$

Algorithm for learning ANN
Initialize the weights (w₀, w₁, ..., w_k)

• Adjust the weights in such a way that the output of ANN is consistent with class labels of training examples • Objective function: $E = \sum_{i} [Y_i - f(w_i, X_i)]^2$

- Find the weights w_i's that minimize the above objective function
 - e.g., backpropagation algorithm

(a) Decision boundary.

(b) Neural network topology.

Figure 5.20. Error surface $E(w_1, w_2)$ for a two-parameter model.

ANN Characteristics.

- Universal approximators.
- Can handle redundant features
- Sensitive to noise
- Gradient descent -> can lead to local minima
- Can be time consuming training when nodes are high.
- Onus is on the user to model the network topology.

°

Find a linear hyperplane (decision boundary) that will separate the data

•

One Possible Solution

• Another possible solution

Other possible solutions

- Which one is better? BI or B2?
- How do you define better?

Find hyperplane maximizes the margin => B1 is better than B2

- Which is equivalent to minimizing: $L(w) = \frac{\|w\|^2}{2}$
- But subjected to the following constraints: $f(\vec{x}_i) = \begin{cases} 1 & \text{if } \vec{w} \cdot \vec{x}_i + b \ge 1 \\ -1 & \text{if } \vec{w} \cdot \vec{x}_i + b \le -1 \end{cases}$
 - This is a constrained optimization problem
 - Numerical approaches to solve it (e.g., quadratic programming)

Support Vector Machines What if the problem is not linearly separable?

- What if the problem is not linearly separable?
 - Introduce slack variables
 - Need to minimize:

$$L(w) = \frac{\|\vec{w}\|^2}{2} + C\left(\sum_{i=1}^N \xi_i^k\right)$$

Subject to:

$$f(\vec{x}_i) = \begin{cases} 1 & \text{if } \vec{w} \cdot \vec{x}_i + b \ge 1 - \xi_i \\ -1 & \text{if } \vec{w} \cdot \vec{x}_i + b \le -1 + \xi_i \end{cases}$$

Nonlinear Support Vector Machines What if decision boundary is not linear?

Nonlinear Support Vector Machines Transform data into higher dimensional space

Why SVMs?

- Convex Convex Convex
 - No trapping in local minimas like Neural Nets.
- SVMs work for categorical and continuous data.
- Can control the model complexity by providing the control on cost function, margin parameters to use.
- Kernel Trick (Not discussed) extends it to non-linear spaces.