Decision Tree, Bias-Variance & Ensembles

CS 584 Data Mining (Fall 2016)

Huzefa Rangwala

Associate Professor,

Computer Science,

George Mason University

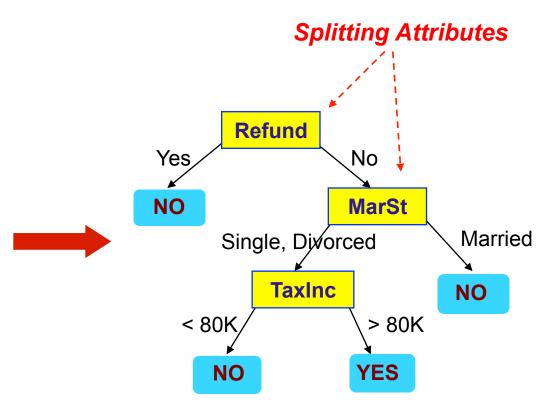
Email: rangwala@cs.gmu.edu

Website: www.cs.gmu.edu/~hrangwal

Slides are adapted from the available book slides developed by Tan, Steinbach and Kumar

Example of a Decision Tree

				_
Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes



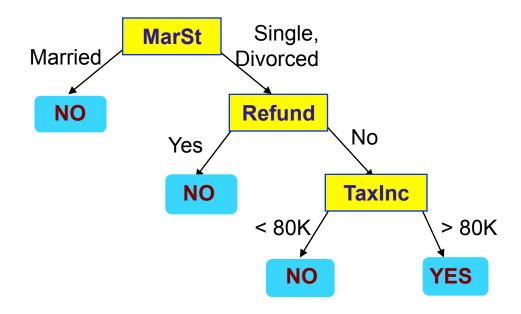
Training Data

Model: Decision Tree

Another Example of Decision Tree

categorical continuous

Ti	d	Refund	Marital Status	Taxable Income	Cheat
1		Yes	Single	125K	No
2		No	Married	100K	No
3		No	Single	70K	No
4		Yes	Married	120K	No
5		No	Divorced	95K	Yes
6		No	Married	60K	No
7		Yes	Divorced	220K	No
8		No	Single	85K	Yes
9		No	Married	75K	No
10)	No	Single	90K	Yes



There could be more than one tree that fits the same data!

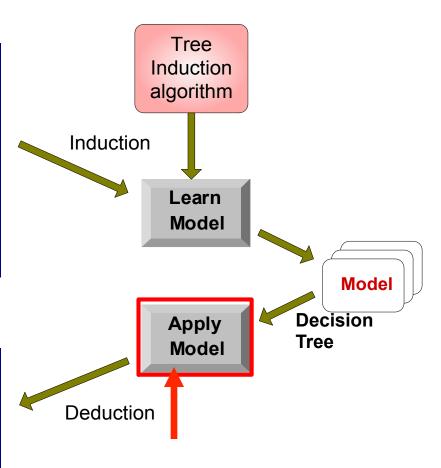
Decision Tree Classification Task

Tid	Attrib1	Attrib2	Attrib3	Class
1	Yes	Large	125K	No
2	No	Medium	100K	No
3	No	Small	70K	No
4	Yes	Medium	120K	No
5	No	Large	95K	Yes
6	No	Medium	60K	No
7	Yes	Large	220K	No
8	No	Small	85K	Yes
9	No	Medium	75K	No
10	No	Small	90K	Yes

Training Set

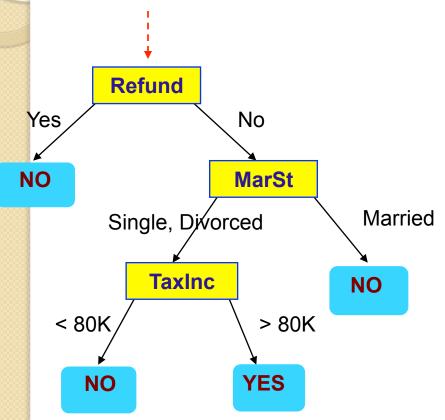
Tid	Attrib1	Attrib2	Attrib3	Class
11	No	Small	55K	?
12	Yes	Medium	80K	?
13	Yes	Large	110K	?
14	No	Small	95K	?
15	No	Large	67K	?

Test Set

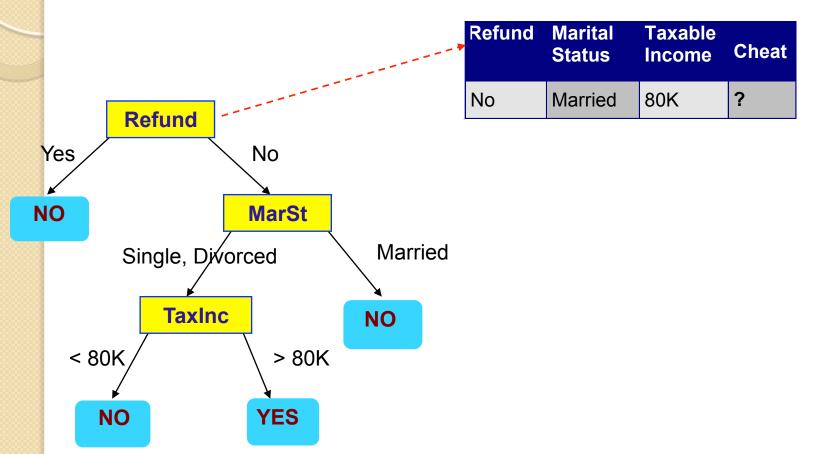


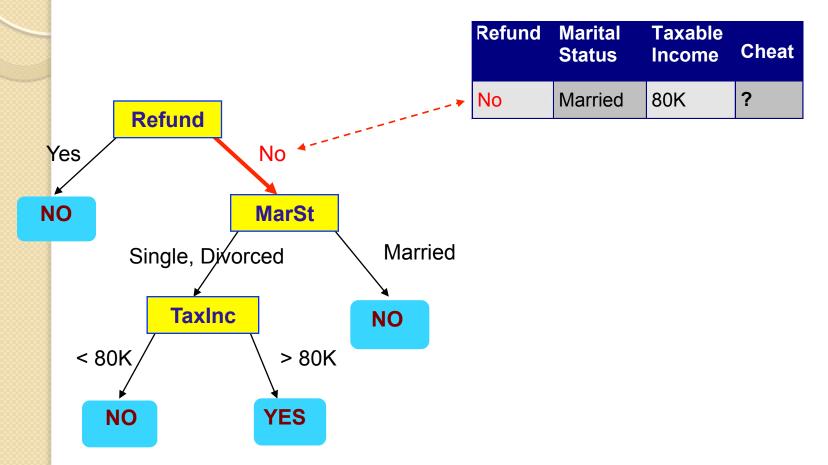
Test Data

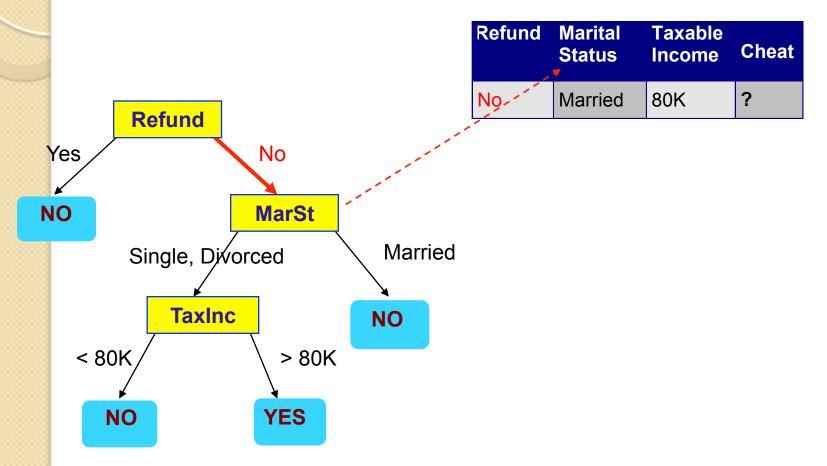
Start from the root of tree.

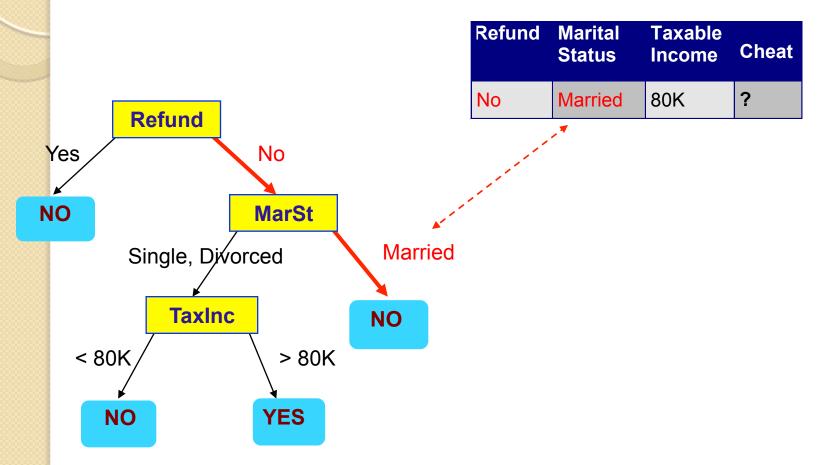


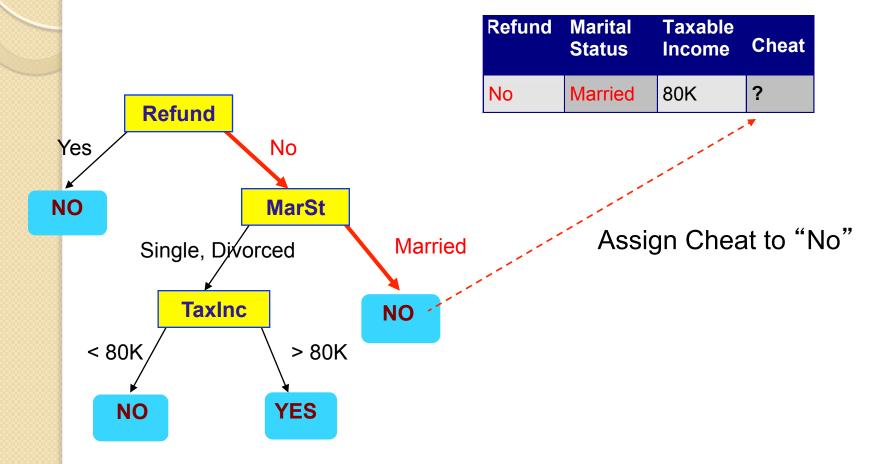
Refund	Marital Status	Taxable Income	Cheat
No	Married	80K	?









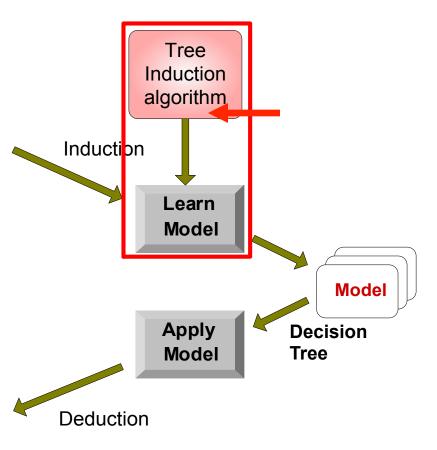


Decision Tree Classification Task

Training Set

Tid	Attrib1	Attrib2	Attrib3	Class
11	No	Small	55K	?
12	Yes	Medium	80K	?
13	Yes	Large	110K	?
14	No	Small	95K	?
15	No	Large	67K	?

Test Set



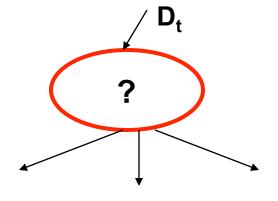
Decision Tree Induction

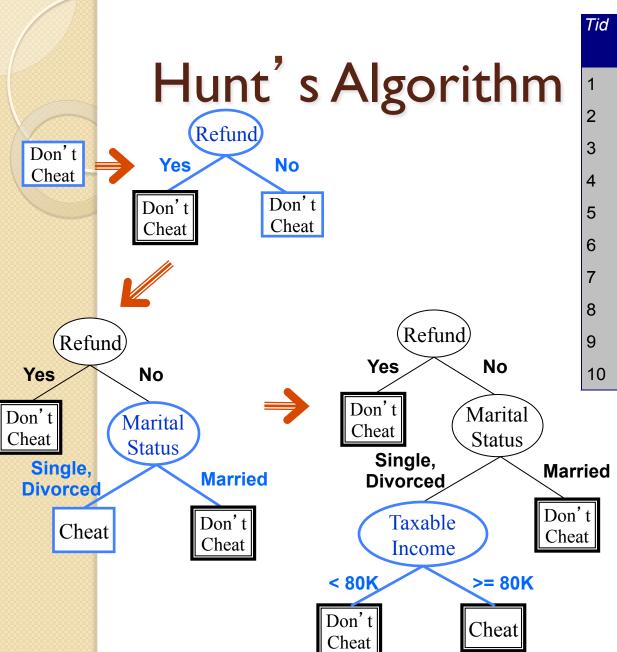
- Many Algorithms:
 - Hunt's Algorithm (one of the earliest)
 - CART
 - ID3, C4.5
 - SLIQ,SPRINT

General Structure of Hunt's Algorithm

- Let D_t be the set of training records that reach a node t
- General Procedure:
 - If D_t contains records that belong the same class y_t, then t is a leaf node labeled as y_t
 - If D_t is an empty set, then t is a leaf node labeled by the default class, y_d
 - If D_t contains records that belong to more than one class, use an attribute test to split the data into smaller subsets. Recursively apply the procedure to each subset.

	0				
Tid	Refund	Marital Status	Taxable Income	Cheat	
1	Yes	Single	125K	No	
2	No	Married	100K	No	
3	No	Single	70K	No	
4	Yes	Married	120K	No	
5	No	Divorced	95K	Yes	
6	No	Married	60K	No	
7	Yes	Divorced	220K	No	
8	No	Single	85K	Yes	
9	No	Married	75K	No	
10	No	Single	90K	Yes	





Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Tree Induction

- Greedy strategy.
 - Split the records based on an attribute test that optimizes certain criterion.

- Issues
 - Determine how to split the records
 - How to specify the attribute test condition?
 - How to determine the best split?
 - Determine when to stop splitting

Tree Induction

- Greedy strategy.
 - Split the records based on an attribute test that optimizes certain criterion.

- Issues
 - Determine how to split the records
 - How to specify the attribute test condition?
 - How to determine the best split?
 - Determine when to stop splitting

How to Specify Test Condition?

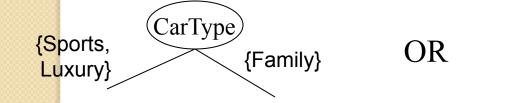
- Depends on attribute types
 - Nominal
 - Ordinal
 - Continuous

- Depends on number of ways to split
 - 2-way split
 - Multi-way split

Splitting Based on Nominal Attributes

Multi-way split: Use as many partitions as distinct values.

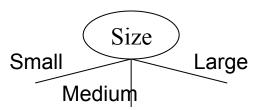
Binary split: Divides values into two subsets.
 Need to find optimal partitioning.



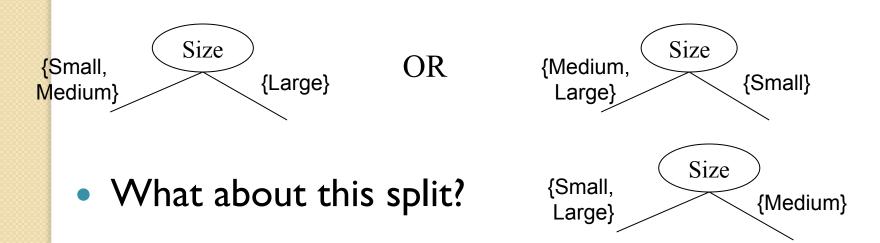


Splitting Based on Ordinal Attributes

Multi-way split: Use as many partitions as distinct values.



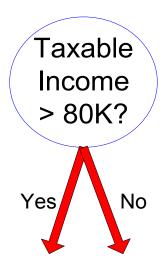
Binary split: Divides values into two subsets.
 Need to find optimal partitioning.



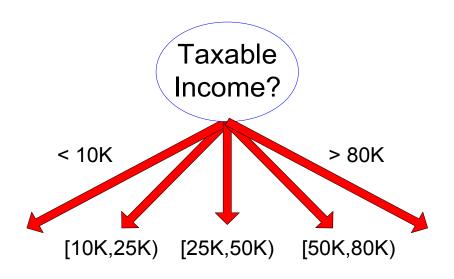
Splitting Based on Continuous Attributes

- Different ways of handling
 - Discretization to form an ordinal categorical attribute
 - Static discretize once at the beginning
 - Dynamic ranges can be found by equal interval bucketing, equal frequency bucketing (percentiles), or clustering.
 - Binary Decision: (A < v) or (A ≥ v)
 - consider all possible splits and finds the best cut
 - can be more compute intensive

Splitting Based on Continuous Attributes



(i) Binary split



(ii) Multi-way split

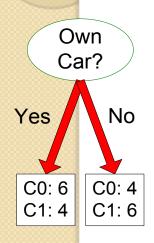
Tree Induction

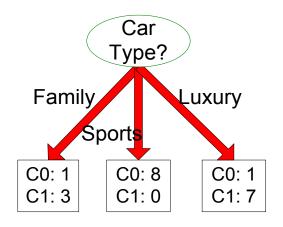
- Greedy strategy.
 - Split the records based on an attribute test that optimizes certain criterion.

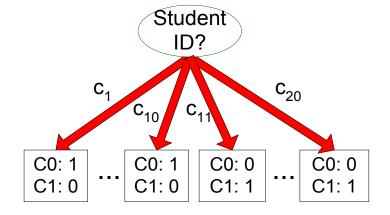
- Issues
 - Determine how to split the records
 - How to specify the attribute test condition?
 - How to determine the best split?
 - Determine when to stop splitting

How to determine the Best Split

Before Splitting: 10 records of class 0, 10 records of class 1







Which test condition is the best?

How to determine the Best Split

- Greedy approach:
 - Nodes with homogeneous class distribution are preferred
- Need a measure of node impurity:

C0: 5

C1: 5

Non-homogeneous,

High degree of impurity

C0: 9

C1: 1

Homogeneous,

Low degree of impurity

Measures of Node Impurity

Gini Index

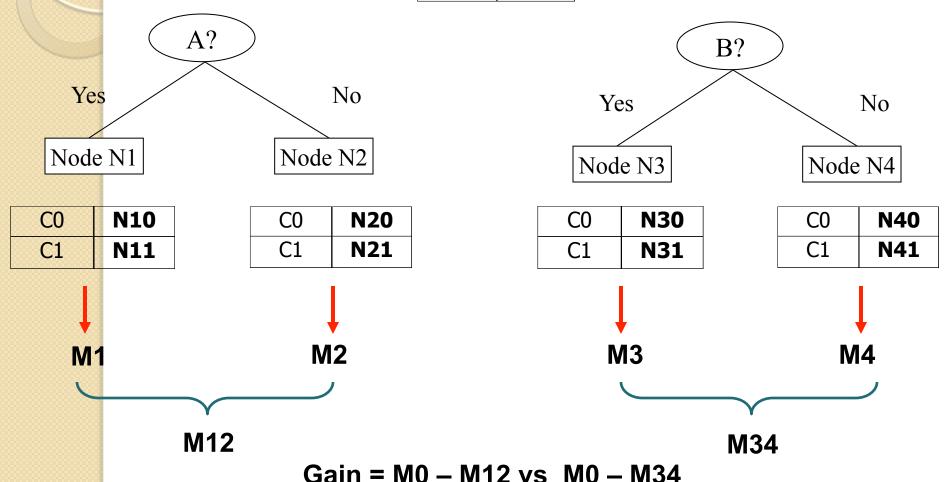
Entropy

Misclassification error

How to Find the Best Split

Before Splitting:

C0	N00
C1	N01



Measure of Impurity: GINI

• Gini Index for a given node t:

$$GINI(t) = 1 - \sum_{j} [p(j|t)]^{2}$$

(NOTE: p(j | t) is the relative frequency of class j at node t).

- $^{\circ}$ Maximum (I I/n_c) when records are equally distributed among all classes, implying least interesting information
- Minimum (0.0) when all records belong to one class, implying most interesting information

Gini=	0.000
C2	6
C1	0

C1	1	
C2	5	
Gini=0.278		

C1	2	
C2	4	
Gini=0.444		

Gini=	3
CI	3
C_1	C

Examples for computing GINI

$$GINI(t) = 1 - \sum_{j} [p(j \mid t)]^{2}$$

$$P(C1) = 0/6 = 0$$
 $P(C2) = 6/6 = 1$
 $Gini = 1 - P(C1)^2 - P(C2)^2 = 1 - 0 - 1 = 0$

P(C1) =
$$1/6$$
 P(C2) = $5/6$
Gini = $1 - (1/6)^2 - (5/6)^2 = 0.278$

$$P(C1) = 2/6$$
 $P(C2) = 4/6$
Gini = 1 - $(2/6)^2$ - $(4/6)^2$ = 0.444

Splitting Based on GINI

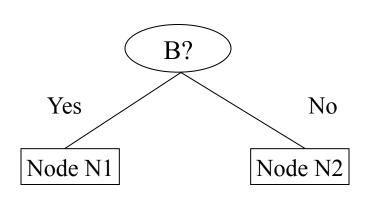
- Used in CART, SLIQ, SPRINT.
- When a node p is split into k partitions (children), the quality of split is computed as,

$$GINI_{split} = \sum_{i=1}^{k} \frac{n_i}{n} GINI(i)$$

where, $n_i = number of records at child i,$ n = number of records at node p.

Binary Attributes: Computing GINI Index

- Splits into two partitions
- Effect of Weighing partitions:
 - Larger and Purer Partitions are sought for.



	Parent						
C1	6						
C2	6						
Gini = 0.500							

Gini(N1)

$$= 1 - (5/7)^2 - (2/7)^2$$

= 0.194

Gini(N2)

$$= 1 - (1/5)^2 - (4/5)^2$$

= 0.528

	N1	N2
C1	5	1
C2	2	4
Gin	i=0.3	33

Gini(Children)

= 7/12 * 0.194 +

5/12 * 0.528

= 0.333

Categorical Attributes: Computing Gini Index

- For each distinct value, gather counts for each class in the dataset
- Use the count matrix to make decisions

Multi-way split

	CarType										
	Family Sports Luxury										
C1	1	2	1								
C2	4 1 1										
Gini	?										

Two-way split (find best partition of values)

	CarType						
	{Sports, Luxury}	{Family}					
C1	3	1					
C2	2 4						
Gini	?						

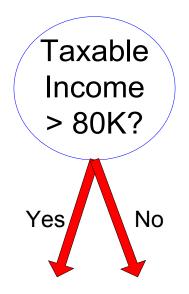
	CarType							
	{Sports}	{Family, Luxury}						
C1	2	2						
C2	1	5						
Gini	?							

Continuous Attributes: Computing Gini Index

- Use Binary Decisions based on one value
- Several Choices for the splitting value
 - Number of possible splitting values

 = Number of distinct values
- Each splitting value has a count matrix associated with it
 - Class counts in each of the partitions, A< v and A ≥ v
- Simple method to choose best v
 - For each v, scan the database to gather count matrix and compute its Gini index
 - Computationally Inefficient! Repetition of work.

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes



Continuous Attributes: Computing Gini Index...

- For efficient computation: for each attribute,
 - Sort the attribute on values
 - Linearly scan these values, each time updating the count matrix and computing gini index
 - Choose the split position that has the least gini index

Cheat			No		No)	N	0	Ye	s	Ye	s	Ye	s	N	0	N	o	N	o		No	
Taxable Inc								ble Income															
Sorted Value	s	60 70					7	75 85 90 95 100						12	20 125 220								
Split Positions			55 65		7	72		80		87		92 9		7	110		122		172		230		
		<=	>	<=	>	<=	>	<=	>	<=	>	<=	>	<=	>	<=	>	<=	>	<=	>	<=	>
	Yes	0	3	0	3	0	3	0	3	1	2	2	1	3	0	3	0	3	0	3	0	3	0
	No	0	7	1	6	2	5	3	4	3	4	3	4	3	4	4	3	5	2	6	1	7	0
	Gini		120	0.4	00	0.375		0.343		3 0.417		0.400		<u>0.300</u>		0.343		0.375		0.400		0.420	

Alternative Splitting Criteria based on INFO

Entropy at a given node t:

$$Entropy(t) = -\sum_{j} p(j \mid t) \log p(j \mid t)$$

(NOTE: p(j | t) is the relative frequency of class j at node t).

- Measures homogeneity of a node.
 - Maximum (log n_c) when records are equally distributed among all classes implying least information
 - Minimum (0.0) when all records belong to one class, implying most information
- Entropy based computations are similar to the GINI index computations

Examples for computing Entropy

$$Entropy(t) = -\sum_{j} p(j \mid t) \log_{2} p(j \mid t)$$

C1	0
C2	6

$$P(C1) = 0/6 = 0$$
 $P(C2) = 6/6 = 1$

Entropy =
$$-0 \log 0 - 1 \log 1 = -0 - 0 = 0$$

$$P(C1) = 1/6$$
 $P(C2) = 5/6$

Entropy =
$$-(1/6) \log_2 (1/6) - (5/6) \log_2 (1/6) = 0.65$$

$$P(C1) = 2/6$$
 $P(C2) = 4/6$

Entropy =
$$-(2/6) \log_2(2/6) - (4/6) \log_2(4/6) = 0.92$$

Splitting Based on INFO...

Information Gain:

$$GAIN_{split} = Entropy(p) - \left(\sum_{i=1}^{k} \frac{n_i}{n} Entropy(i)\right)$$

Parent Node, p is split into k partitions;

n_i is number of records in partition i

- Measures Reduction in Entropy achieved because of the split. Choose the split that achieves most reduction (maximizes GAIN)
- Used in ID3 and C4.5
- Disadvantage: Tends to prefer splits that result in large number of partitions, each being small but pure.

Splitting Based on INFO...

Gain Ratio:

$$GainRATIO_{split} = \frac{GAIN_{split}}{SplitINFO} | SplitINFO = -\sum_{i=1}^{k} \frac{n_i}{n} \log \frac{n_i}{n}$$

Parent Node, p is split into k partitions n_i is the number of records in partition i

- Adjusts Information Gain by the entropy of the partitioning (SplitINFO). Higher entropy partitioning (large number of small partitions) is penalized!
- Used in C4.5
- Designed to overcome the disadvantage of Information Gain

Splitting Criteria based on Classification Error

Classification error at a node t :

$$Error(t) = 1 - \max_{j} P(j \mid t)$$

- Measures misclassification error made by a node.
 - Maximum (I I/n_c) when records are equally distributed among all classes, implying least interesting information
 - Minimum (0.0) when all records belong to one class, implying most interesting information

Examples for Computing Error

$$Error(t) = 1 - \max_{i} P(i \mid t)$$

$$P(C1) = 0/6 = 0$$
 $P(C2) = 6/6 = 1$

Error =
$$1 - \max(0, 1) = 1 - 1 = 0$$

$$P(C1) = 1/6$$
 $P(C2) = 5/6$

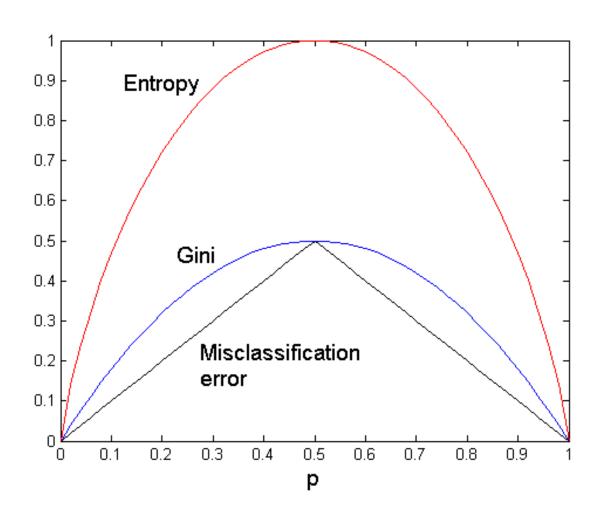
Error =
$$1 - \max(1/6, 5/6) = 1 - 5/6 = 1/6$$

$$P(C1) = 2/6$$
 $P(C2) = 4/6$

Error =
$$1 - \max(2/6, 4/6) = 1 - 4/6 = 1/3$$

Comparison among Splitting Criteria

For a 2-class problem:



Tree Induction

- Greedy strategy.
 - Split the records based on an attribute test that optimizes certain criterion.

- Issues
 - Determine how to split the records
 - How to specify the attribute test condition?
 - How to determine the best split?
 - Determine when to stop splitting

Stopping Criteria for Tree Induction

 Stop expanding a node when all the records belong to the same class

 Stop expanding a node when all the records have similar attribute values

Early termination (to be discussed later)

Decision Tree Based Classification

- Advantages:
 - Inexpensive to construct
 - Extremely fast at classifying unknown records
 - Easy to interpret for small-sized trees
 - Accuracy is comparable to other classification techniques for many simple data sets

Example: C4.5

- Simple depth-first construction.
- Uses Information Gain
- Sorts Continuous Attributes at each node.
- Needs entire data to fit in memory.
- Unsuitable for Large Datasets.
 - Needs out-of-core sorting.
- You can download the software from:

http://www.cse.unsw.edu.au/~quinlan/c4.5r8.tar.gz

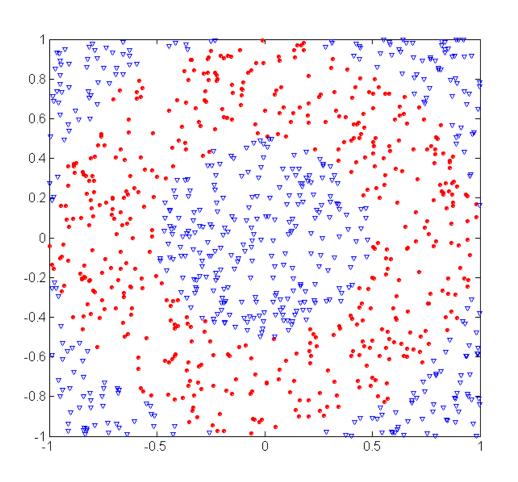
Practical Issues of Classification

Underfitting and Overfitting

Missing Values

Costs of Classification

Underfitting and Overfitting (Example)



500 circular and 500 triangular data points.

Circular points:

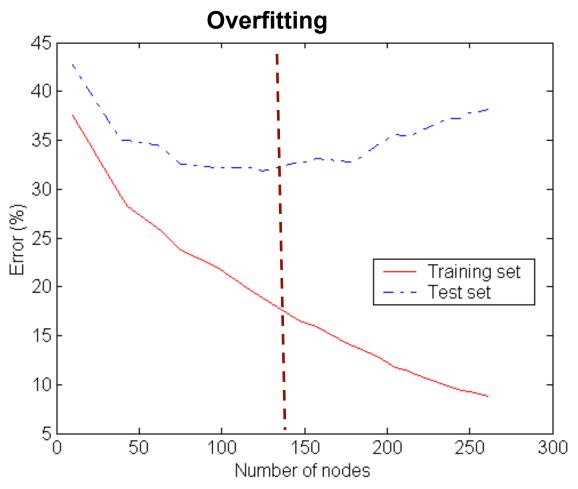
$$0.5 \le \text{sqrt}(x_1^2 + x_2^2) \le 1$$

Triangular points:

$$sqrt(x_1^2+x_2^2) > 0.5 or$$

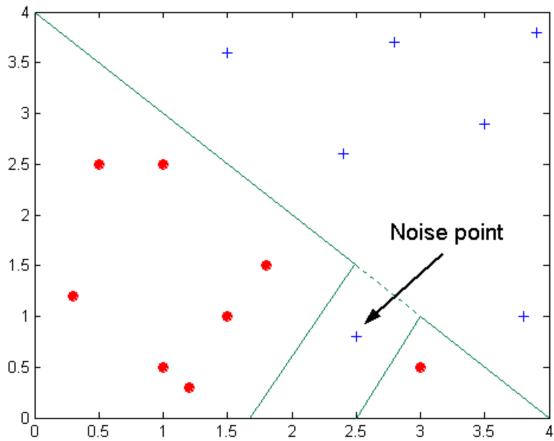
$$sqrt(x_1^2+x_2^2) < 1$$

Underfitting and Overfitting



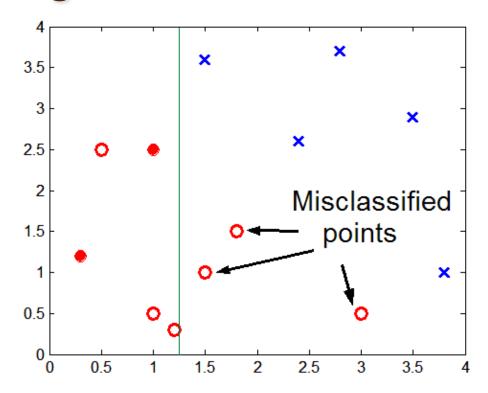
Underfitting: when model is too simple, both training and test errors are large

Overfitting due to Noise



Decision boundary is distorted by noise point

Overfitting due to Insufficient Examples



Lack of data points in the lower half of the diagram makes it difficult to predict correctly the class labels of that region

- Insufficient number of training records in the region causes the decision tree to predict the test examples using other training records that are irrelevant to the classification task

Notes on Overfitting

 Overfitting results in decision trees that are more complex than necessary

 Training error no longer provides a good estimate of how well the tree will perform on previously unseen records

Need new ways for estimating errors

Occam's Razor

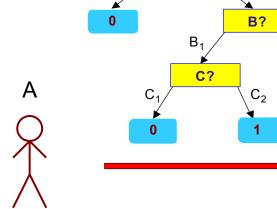
- Given two models of similar generalization errors, one should prefer the simpler model over the more complex model
- For complex models, there is a greater chance that it was fitted accidentally by errors in data

 Therefore, one should include model complexity when evaluating a model

Minimum Description Length (MDL)

No

X	у
X_1	1
X ₂	0
X ₃	0
X_4	1
X _n	1



Yes

X	У
X ₁	?
X_2	?
X_3	?
X_4	?
X_n	?

Cost(Model, Data) = Cost(Data|Model) + Cost(Model)

A?

- Cost is the number of bits needed for encoding.
- Search for the least costly model.
- Cost(Data|Model) encodes the misclassification errors.
- Cost(Model) uses node encoding (number of children) plus splitting condition encoding.

How to Address Overfitting

- Pre-Pruning (Early Stopping Rule)
 - Stop the algorithm before it becomes a fully-grown tree
 - Typical stopping conditions for a node:
 - Stop if all instances belong to the same class
 - Stop if all the attribute values are the same
 - More restrictive conditions:
 - Stop if number of instances is less than some user-specified threshold
 - Stop if class distribution of instances are independent of the available features (e.g., using χ^2 test)
 - Stop if expanding the current node does not improve impurity

measures (e.g., Gini or information gain).

How to Address Overfitting...

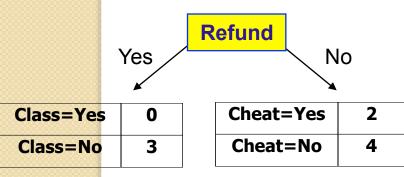
- Post-pruning
 - Grow decision tree to its entirety
 - Trim the nodes of the decision tree in a bottom-up fashion
 - If generalization error improves after trimming, replace sub-tree by a leaf node.
 - Class label of leaf node is determined from majority class of instances in the sub-tree
 - Can use MDL for post-pruning

Handling Missing Attribute Values

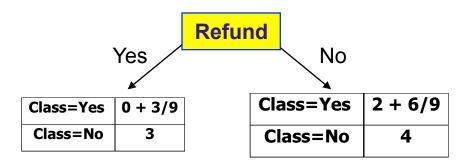
- Missing values affect decision tree construction in three different ways:
 - Affects how impurity measures are computed
 - Affects how to distribute instance with missing value to child nodes
 - Affects how a test instance with missing value is classified

Distribute Instances

Tid	Refund	Marital Status	Taxable Income	Class
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No



Tid	Refund	Marital Status	Taxable Income	Class
10	?	Single	90K	Yes



Probability that Refund=Yes is 3/9 Probability that Refund=No is 6/9

Assign record to the left child with weight = 3/9 and to the right child with weight = 6/9

Other Issues

- Data Fragmentation
- Search Strategy
- Expressiveness
- Tree Replication

Data Fragmentation

 Number of instances gets smaller as you traverse down the tree

 Number of instances at the leaf nodes could be too small to make any statistically significant decision

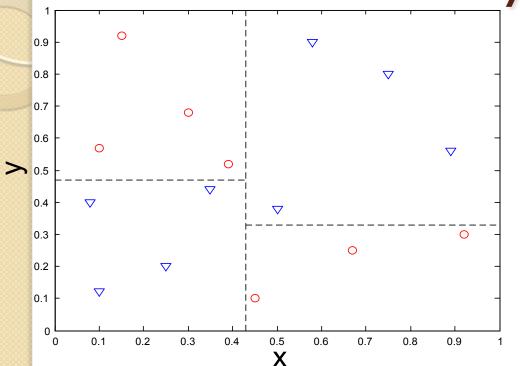
Search Strategy

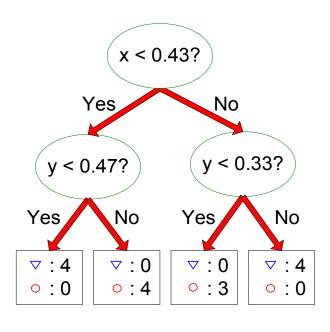
- Finding an optimal decision tree is NPhard
- The algorithm presented so far uses a greedy, top-down, recursive partitioning strategy to induce a reasonable solution
- Other strategies?
 - Bottom-up
 - Bi-directional

Expressiveness

- Decision tree provides expressive representation for learning discrete-valued function
 - But they do not generalize well to certain types of Boolean functions
 - Example: parity function:
 - Class = 1 if there is an even number of Boolean attributes with truth value = True
 - Class = 0 if there is an odd number of Boolean attributes with truth value = True
 - For accurate modeling, must have a complete tree
- Not expressive enough for modeling continuous variables
 - Particularly when test condition involves only a single attribute at-a-time

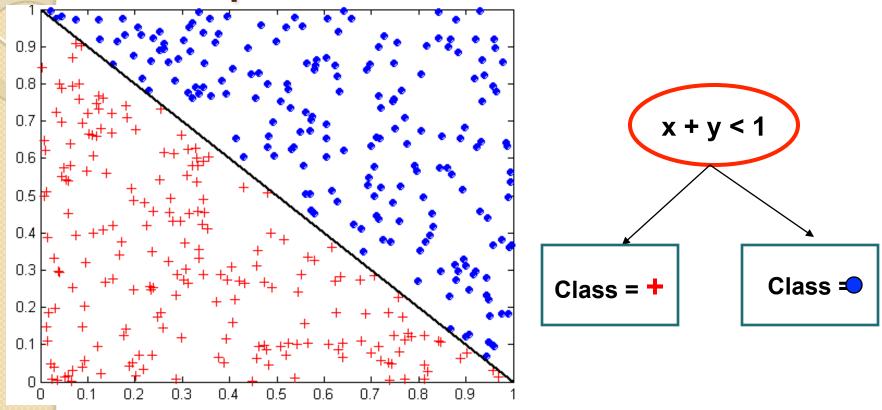
Decision Boundary





- Border line between two neighboring regions of different classes is known as decision boundary
- Decision boundary is parallel to axes because test condition involves a single attribute at-a-time

Oblique Decision Trees

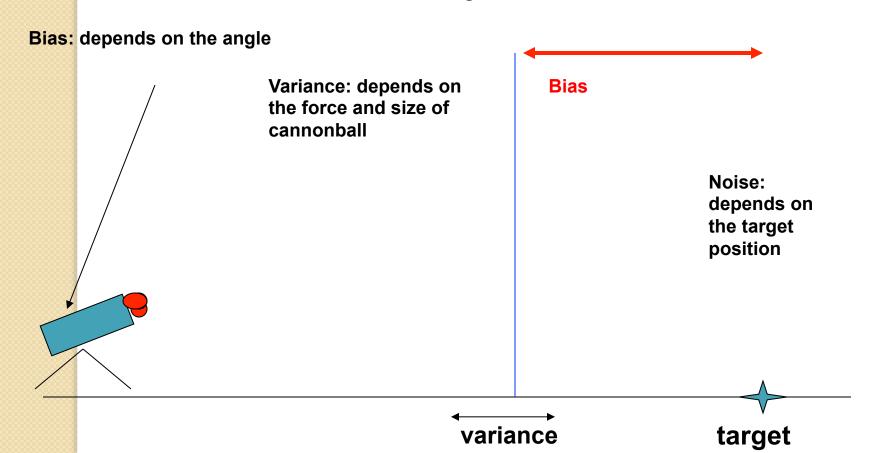


- Test condition may involve multiple attributes
- More expressive representation
- Finding optimal test condition is computationally expensive

Bias Variance

Loss, bias, variance and noise

Average shot



High Bias – Low Variance

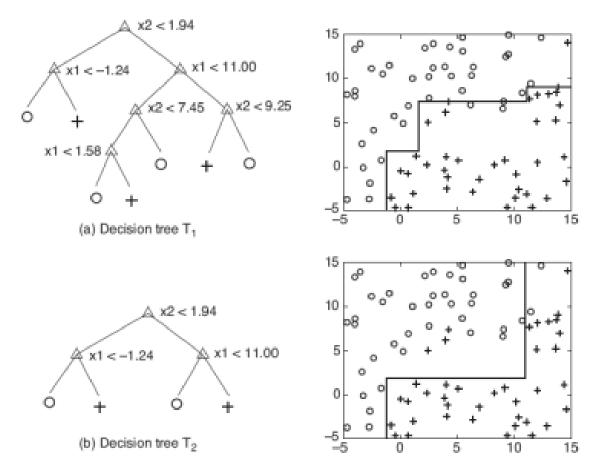
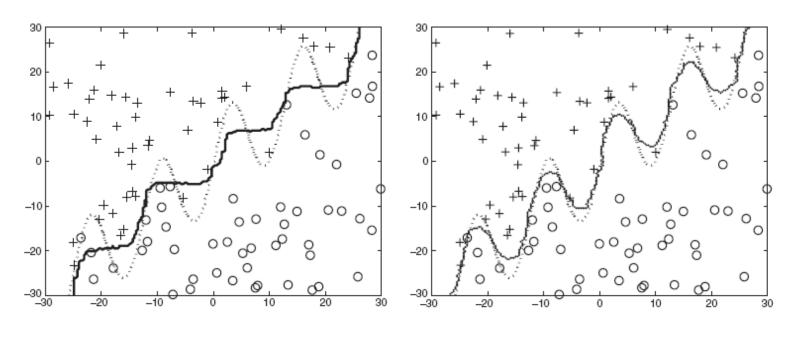


Figure 5.33. Two decision trees with different complexities induced from the same training data.

Bias-Variance (Generalize)



- (a) Decision boundary for decision tree.
- (b) Decision boundary for 1-nearest neighbor.

Figure 5.34. Bias of decision tree and 1-nearest neighbor classifiers.

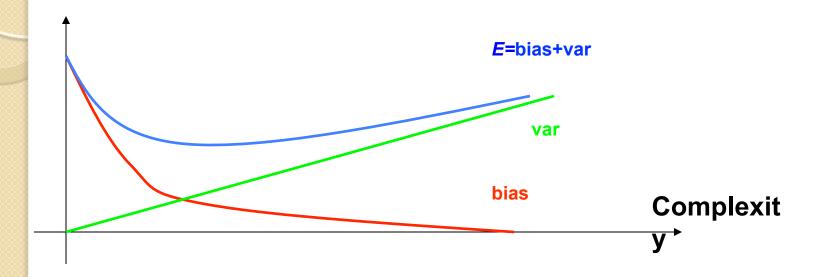
For better generalizable model

- Minimize both bias and variance
- However,
 - Neglect the input data and predict the output to be a constant value gives "zero" variance but high bias.
 - But otherhand perfectly interpolate the given data to produce f=f* - implies zero bias but high variance.

Model Complexity

- Simple models of low complexity
 - high bias, small variance
 - potentially rubbish, but stable predictions (w.r.t. dierent samples T and initial parameters w)
- Flexible models of high complexity
 - · small bias, high variance
 - over-complex models can be always massaged to exactly explain the observed training data
- What is the right level of model complexity?
 - The problem of model selection

Complexity of the model



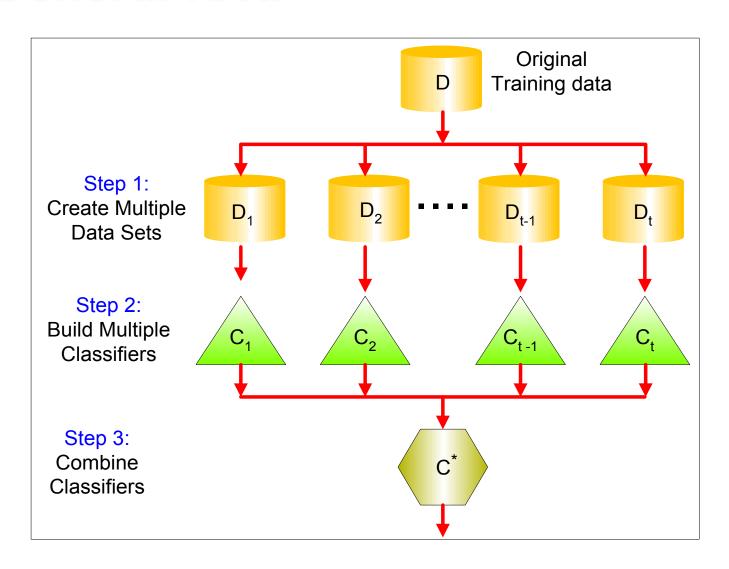
Usually, the bias is a decreasing function of the complexity, while variance is an increasing function of the complexity.

Ensemble Methods

 Construct a set of classifiers from the training data

 Predict class label of previously unseen records by aggregating predictions made by multiple classifiers

General Idea



Why does it work?

- Suppose there are 25 base classifiers
- Each classifier has error rate, $\varepsilon = 0.35$
- Assume classifiers are independent
- Probability that the ensemble classifier makes a wrong prediction:

$$\sum_{i=13}^{25} {25 \choose i} \varepsilon^i (1-\varepsilon)^{25-i} = 0.06$$

Examples of Ensemble Methods

- How to generate an ensemble of classifiers?
 - Bagging

Boosting

Bagging

- Bootstrap Aggregation
 - Create classifiers by drawing samples of size equal to the original dataset. (Appx 63% of data will be chosen)
 - Learn classifier using these samples.
 - Vote on them.
- Why does this help?
 - If there is a high variance i.e classifier is unstable, bagging will help to reduce errors due to fluctuations in the training data.
 - If the classifier is stable i.e error of the ensemble is primarily by bias in the base classifier -> may degrade the performance.

Boosting

- An iterative procedure to adaptively change distribution of training data by focusing more on previously misclassified records
 - Initially, all N records are assigned equal weights
 - Unlike bagging, weights may change at the end of boosting round

Adaboost (Freund et. al. 1997)

- Given a set of n class-labeled tuples $(x_1,y_1) \dots (x_n,y_n)$ i.e T
- Initially all weights of tuples are set to same (I/n)
- Generate k classifiers in k rounds. At the i-th round
 - Tuples are sampled from T to form training set T_i
 - Each tuple's chance of selection depends on its weight.
 - Learn a model M_i from T_i
 - Compute error rate using T_i
 - If tuple is misclassified its weight is increased.
- During prediction use the error of the classifier as a weight (vote) on each of the models

Why boosting/bagging?

- Improves the variance of unstable classifiers.
 - Unstable Classifiers
 - Neural nets, decision trees
 - Stable Classifiers
 - K-nn
- May lead to results that are not explanatory.