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What is Cluster Analysis?

Finding groups of objects such that the objects in a group
will be similar (or related) to one another and different from
(or unrelated to) the objects in other groups

Inter-cluster
Intra-cluster distances are
distances are maximized
minimized




Applications of Cluster Analysis

¢ Understanding

> Group related documents for
browsing, group genes and
proteins that have similar
functionality, or group stocks
with similar price fluctuations

e Summarization

> Reduce the size of large data
sets

Discovered Clusters

Industry Group

w9

Applied-Matl-DOWN,Bay-Network-Down,3-COM-DOWN,

Cabletron-Sys-DOWN,CISCO-DOWN,HP-DOWN,
DSC-Comm-DOWN,INTEL-DOWN,LSI-Logic-DOWN,
Micron-Tech-DOWN, Texas-Inst-Down, Tellabs-Inc-Down,
Natl-Semiconduct-DOWN,Oracl-DOWN,SGI-DOWN,
Sun-DOWN
Apple-Comp-DOWN,Autodesk-DOWN,DEC-DOWN,
ADV-Micro-Device-DOWN, Andrew-Corp-DOWN,
Computer-Assoc-DOWN, Circuit-City-DOWN,
Compaq-DOWN, EMC-Corp-DOWN, Gen-Inst-DOWN,
Motorola-DOWN,Microsoft-DOWN,Scientific-Atl-DOWN

Fannie-Mae-DOWN,Fed-Home-Loan-DOWN,
MBNA-Corp-DOWN,Morgan-Stanley-DOWN

Baker-Hughes-UP,Dresser-Inds-UP,Halliburton-HLD-UP,
Louisiana-Land-UP,Phillips-Petro-UP,Unocal-UP,
Schlumberger-UP

Technologyl-DOWN

Technology2-DOWN

Financial-DOWN

Oil-UP

10 Precip Clusters usin SNN Clugterng {12 mo. awy, NN=100)

Clustering precipitation
in Australia




What is not Cluster Analysis?

» Supervised classification

o Have class label information

* Simple segmentation

> Dividing students into different registration groups alphabetically,
by last name

* Results of a query

o Groupings are a result of an external specification



Notion of a Cluster can be Ambiguous
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Types of Clusterings

e Partitional Clustering

° A division data objects into non-overlapping
subsets (clusters) such that each data object is
in exactly one subset

* Hierarchical clustering

> A set of nested clusters organized as a
hierarchical tree



Partitional Clustering

Original Points A Partitional Clustering



Hierarchical Clustering

pl
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Traditional Hierarchical Clustering

Non-traditional Hierarchical Clustering

B

pl p2 p3p4

Traditional Dendrogram

pl p2  p3p4

Non-traditional Dendrogram



Clustering Algorithms

* K-means and its variants
* Hierarchical clustering

* Density-based clustering



K-means Clustering

e  Partitional clustering approach

e  Each cluster is associated with a (center point)
e  Each point is assigned to the cluster with the closest
centroid

e Number of clusters, K, must be specified
e  The basic algorithm is very simple

: Select K points as the initial centroids.

: repeat

1
2
3:  Form K clusters by assigning all points to the closest centroid.
4:  Recompute the centroid of each cluster.

5

: until The centroids don’t change




K-means Clustering — Details

e Initial centroids are often chosen randomly.
° Clusters produced vary from one run to another.

e The centroid is (typically) the mean of the points in the
cluster.

e ‘Closeness’ is measured by Euclidean distance, cosine
similarity, correlation, etc.

e K-means will converge for common similarity measures
mentioned above.
* Most of the convergence happens in the first few iterations.

° Often the stopping condition is changed to ‘Until relatively few
points change clusters

e Complexity is O(n*K*[*d)
> n = number of points, K = number of clusters,
= number of iterations, d = number of attributes



Evaluating K-means Clusters

Most common measure is Sum of Squared Error (SSE)
> For each point, the error is the distance to the nearest cluster
To get SSE, we square these errors and sum them.

SSE = erzqdistz(mi,x)

(e]

(e]

x is a data point in cluster C.and m, is the representative point for
cluster C.

can show that m, corresponds to the center (mean) of the cluster
o @Given two clusters, we can choose the one with the smallest error

> One easy way to reduce SSE is to increase K, the number of clusters

A good clustering with smaller K can have a lower SSE than a
poor clustering with higher K



Two different K-means Clusterings
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Importance of Choosing Initial Centroids
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Importance of Choosing Initial Centroids ...
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Importance of Choosing Initial Centroids
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Problems with Selecting Initial Points

o If there are K ‘real’ clusters then the chance of
selecting one centroid from each cluster is small.

> Chance is relatively small when K is large
o If clusters are the same size, n, then

number of ways to select one centroid from each cluster KInkK K!

P: — =

number of ways to select K centroids (Kn)K KK

> For example, if K = 10, then probability = 10!/10*10 =
0.00036

° Sometimes the initial centroids will readjust themselves in
‘right’ way, and sometimes they don’ t

> Consider an example of five pairs of clusters



|0 Clusters Example

lteration 4
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X
Starting with two initial centroids in one cluster of each pair of clusters



|0 Clusters Example

Iteration 1
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Iteration 2
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Starting with two initial centroids in one cluster of each pair of clusters



|0 Clusters Example

lteration 4

0 5 10 15 20
X
Starting with some pairs of clusters having three initial centroids, while other have only one.



|0 Clusters Example

Iteration 1

5 16_ 15 20
lteration 3

lteration 2

5 1b 15 20
lteration 4

Starting with some pairs of clusters having three initial centroids, while other have only one.



Solutions to Initial Centroids Problem

* Multiple runs
> Helps, but probability is not on your side

* Sample and use hierarchical clustering to
determine initial centroids

» Select more than k initial centroids and
then select among these initial centroids
o Select most widely separated

* Postprocessing

* Bisecting K-means
> Not as susceptible to initialization issues



Bisecting K-means

» Bisecting K-means algorithm

0 Variant of K-means that can produce a partitional or a hierarchical
clustering

1:
2
3:

Initialize the list of clusters to contain the cluster containing all points.
repeat
Select a cluster from the list of clusters
for : = 1 to number_of _iterations do
Bisect the selected cluster using basic K-means
end for
Add the two clusters from the bisection with the lowest SSE to the list of clusters.

until Until the list of clusters contains K clusters




Bisecting K-means Example

lteration 10

15

20



Handling Empty Clusters

* Basic K-means algorithm can yield empty
clusters.

* Several strategies

> Choose the replacement centroid as the point
that is furthest away from any other
centroids.

> Choose a point from the cluster with the
highest SSE

Splits the clusters.

o |f there are several empty clusters, the above
can be repeated several times.



Updating Centers Incrementally

* |n the basic K-means algorithm, centroids
are updated after all points are assigned to a
centroid

e An alternative is to update the centroids
after each assignment (incremental
approach)

> Each assignment updates zero or two centroids
> Never get an empty cluster

> Can use “weights” to change the impact

> More expensive

° Introduces an order dependency



Pre-processing and Post-processing

* Pre-processing
> Normalize the data
o Eliminate outliers

* Post-processing

o Eliminate small clusters that may represent
outliers

> Split ‘loose’ clusters, i.e., clusters with
relatively high SSE

> Merge clusters that are ‘close’ and that have
relatively low SSE



Limitations of K-means

* K-means has problems when clusters are
of differing
> Sizes
> Densities

> Non-globular shapes

» K-means has problems when the data
contains outliers.



Limitations of K-means: Differing Sizes

Original Points K-means (3 Clusters)



Limitations of K-means: Differing Density
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Limitations of K-means: Non-globular Shapes
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Original Points K-means (2 Clusters)



Overcoming K-means Limitations
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Original Points K-means Clusters

One solution is to use many clusters.
Find parts of clusters, but need to put together.



Overcoming K-means Limitations

Original Points K-means Clusters



Overcoming K-means Limitations
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