

# Clustering (Basics)

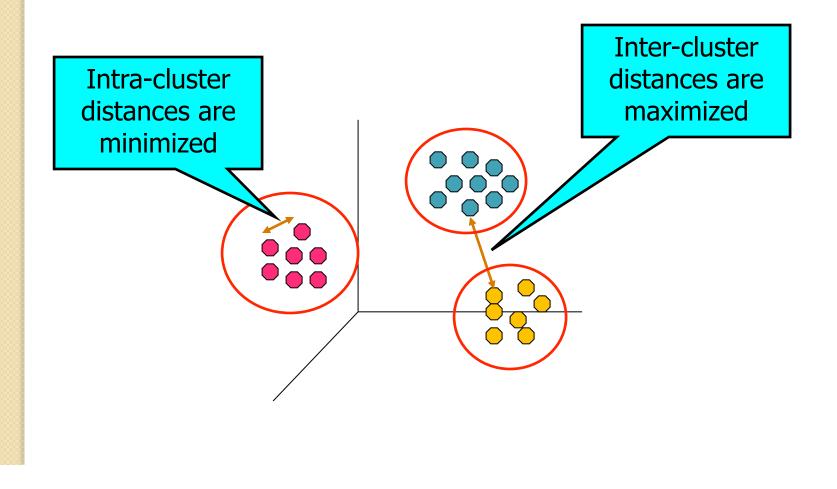
CS 584 Data Mining (Fall 2015)

Huzefa Rangwala Associate Professor, Computer Science, George Mason University <u>Email: rangwala@cs.gmu.edu</u> Website: www.cs.gmu.edu/~hrangwal

Slides are adapted from the available book slides developed by Tan, Steinbach and Kumar

# What is Cluster Analysis?

• Finding groups of objects such that the objects in a group will be similar (or related) to one another and different from (or unrelated to) the objects in other groups



# **Applications of Cluster Analysis**

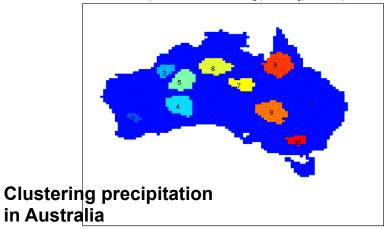
#### Understanding

 Group related documents for browsing, group genes and proteins that have similar functionality, or group stocks with similar price fluctuations

Reduce the size of large data sets

|   | Discovered Clusters                                                                                                                                                                                                                                  | Industry Group   |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 1 | Applied-Matl-DOWN,Bay-Network-Down,3-COM-DOWN,<br>Cabletron-Sys-DOWN,CISCO-DOWN,HP-DOWN,<br>DSC-Comm-DOWN,INTEL-DOWN,LSI-Logic-DOWN,<br>Micron-Tech-DOWN,Texas-Inst-Down,Tellabs-Inc-Down,<br>Natl-Semiconduct-DOWN,Oracl-DOWN,SGI-DOWN,<br>Sun-DOWN | Technology1-DOWN |
| 2 | Apple-Comp-DOWN,Autodesk-DOWN,DEC-DOWN,<br>ADV-Micro-Device-DOWN,Andrew-Corp-DOWN,<br>Computer-Assoc-DOWN,Circuit-City-DOWN,<br>Compaq-DOWN, EMC-Corp-DOWN, Gen-Inst-DOWN,<br>Motorola-DOWN,Microsoft-DOWN,Scientific-Atl-DOWN                       | Technology2-DOWN |
| 3 | Fannie-Mae-DOWN,Fed-Home-Loan-DOWN,<br>MBNA-Corp-DOWN,Morgan-Stanley-DOWN                                                                                                                                                                            | Financial-DOWN   |
| 4 | Baker-Hughes-UP,Dresser-Inds-UP,Halliburton-HLD-UP,<br>Louisiana-Land-UP,Phillips-Petro-UP,Unocal-UP,<br>Schlumberger-UP                                                                                                                             | Oil-UP           |

10 Precip Clusters usin SNN Clustering (12 mo. avg, NN = 100 )



# What is not Cluster Analysis?

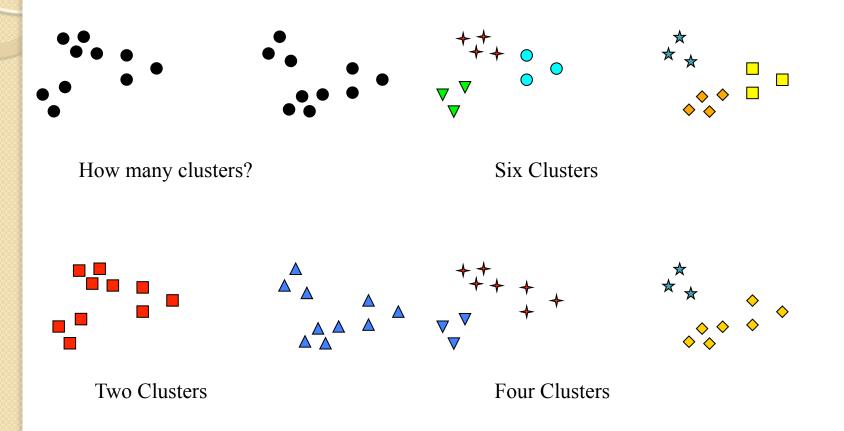
### Supervised classification

• Have class label information

# • Simple segmentation

- Dividing students into different registration groups alphabetically, by last name
- Results of a query
  - Groupings are a result of an external specification

# Notion of a Cluster can be Ambiguous





# Types of Clusterings

# Partitional Clustering

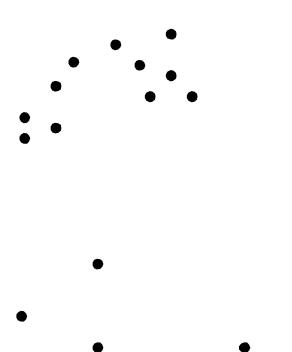
 A division data objects into non-overlapping subsets (clusters) such that each data object is in exactly one subset

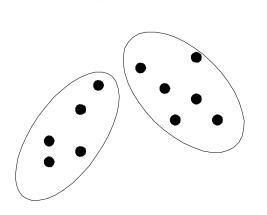
# Hierarchical clustering

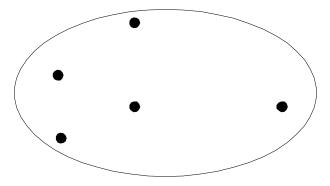
 A set of nested clusters organized as a hierarchical tree



# Partitional Clustering

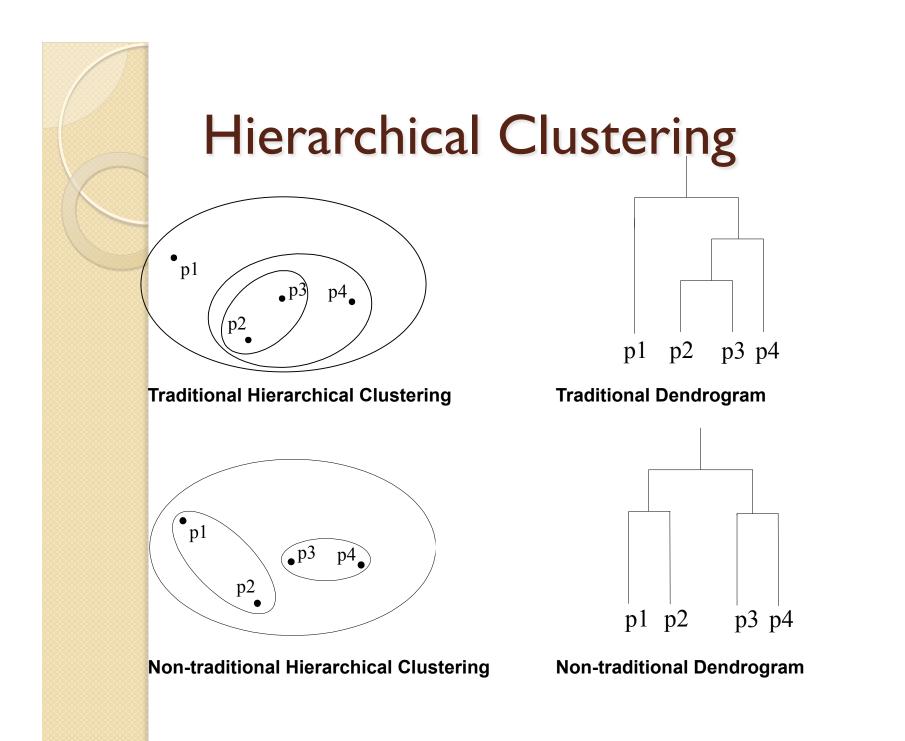






**Original Points** 

**A Partitional Clustering** 





# **Clustering Algorithms**

- K-means and its variants
- Hierarchical clustering
- Density-based clustering



### K-means Clustering

- Partitional clustering approach
- Each cluster is associated with a centroid (center point)
- Each point is assigned to the cluster with the closest centroid
- Number of clusters, K, must be specified
- The basic algorithm is very simple

- 1: Select K points as the initial centroids.
- 2: repeat
- 3: Form K clusters by assigning all points to the closest centroid.
- 4: Recompute the centroid of each cluster.
- 5: **until** The centroids don't change

# K-means Clustering – Details

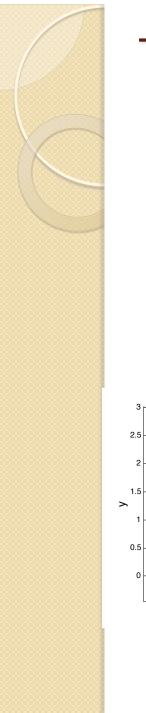
- Initial centroids are often chosen randomly.
  - Clusters produced vary from one run to another.
- The centroid is (typically) the mean of the points in the cluster.
- 'Closeness' is measured by Euclidean distance, cosine similarity, correlation, etc.
- K-means will converge for common similarity measures mentioned above.
- Most of the convergence happens in the first few iterations.
  - Often the stopping condition is changed to 'Until relatively few points change clusters'
- Complexity is O( n \* K \* I \* d )
  - n = number of points, K = number of clusters,
    - I = number of iterations, d = number of attributes

# **Evaluating K-means Clusters**

- Most common measure is Sum of Squared Error (SSE)
  - For each point, the error is the distance to the nearest cluster
  - To get SSE, we square these errors and sum them.

$$SSE = \sum_{i=1}^{K} \sum_{x \in C_i} dist^2(m_i, x)$$

- x is a data point in cluster  $C_i$  and  $m_i$  is the representative point for cluster  $C_i$ 
  - can show that *m*<sub>i</sub> corresponds to the center (mean) of the cluster
- Given two clusters, we can choose the one with the smallest error
- One easy way to reduce SSE is to increase K, the number of clusters
  - A good clustering with smaller K can have a lower SSE than a poor clustering with higher K

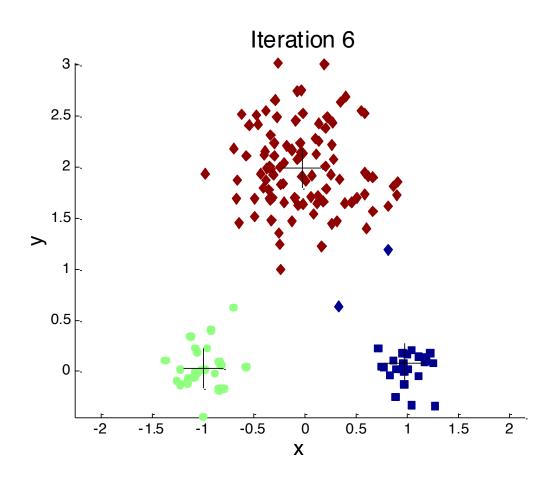


### Two different K-means Clusterings

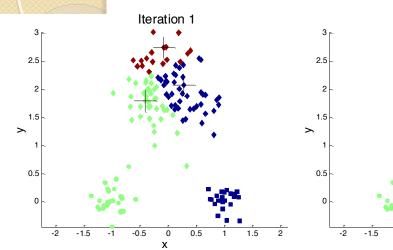


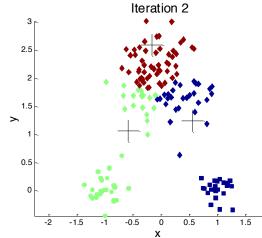


# Importance of Choosing Initial Centroids

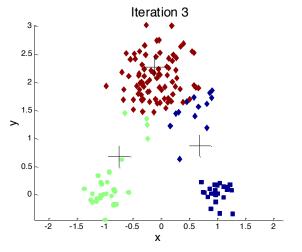


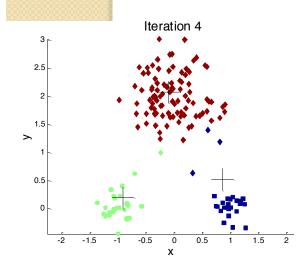
#### Importance of Choosing Initial Centroids

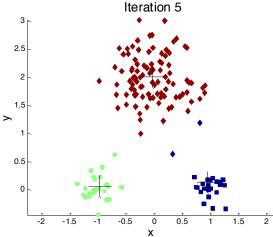


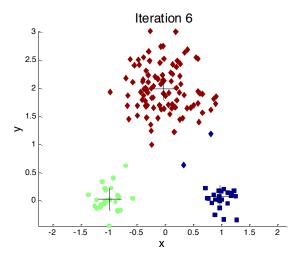


2

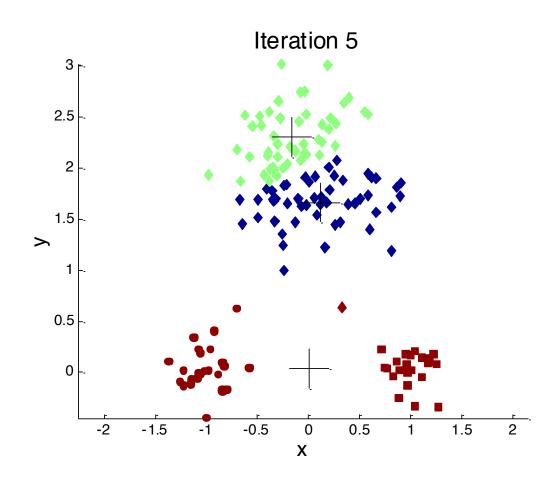




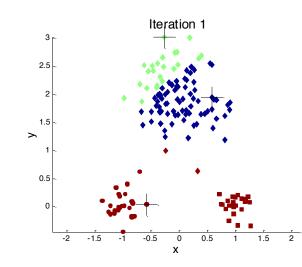


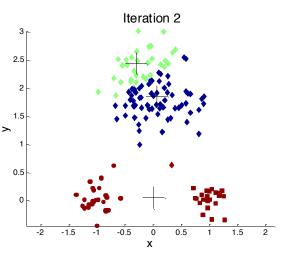


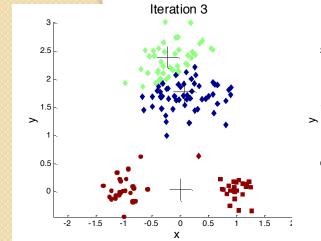
### Importance of Choosing Initial Centroids ...

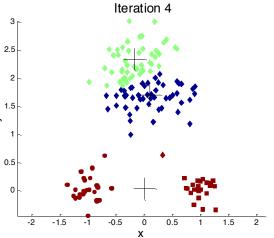


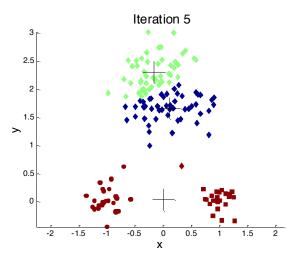
#### Importance of Choosing Initial Centroids ...









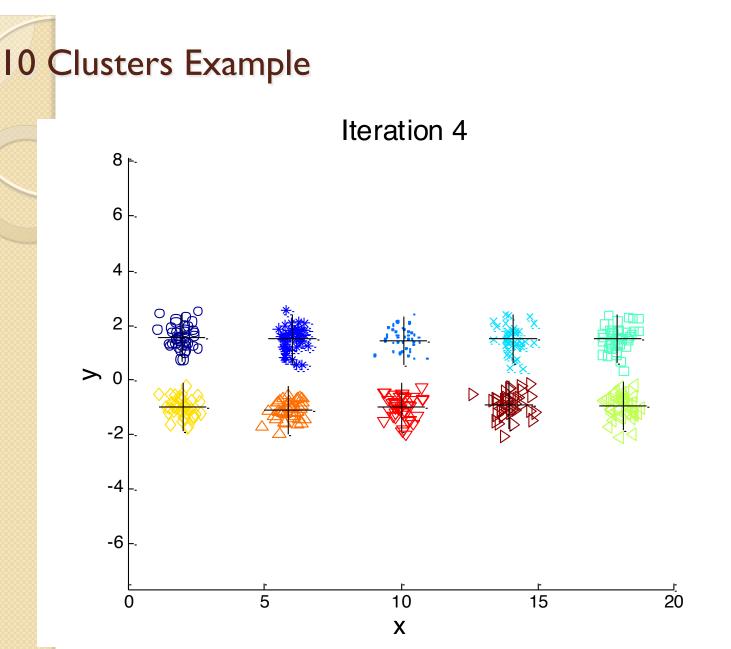


# **Problems with Selecting Initial Points**

- If there are K 'real' clusters then the chance of selecting one centroid from each cluster is small.
  - Chance is relatively small when K is large
  - If clusters are the same size, n, then

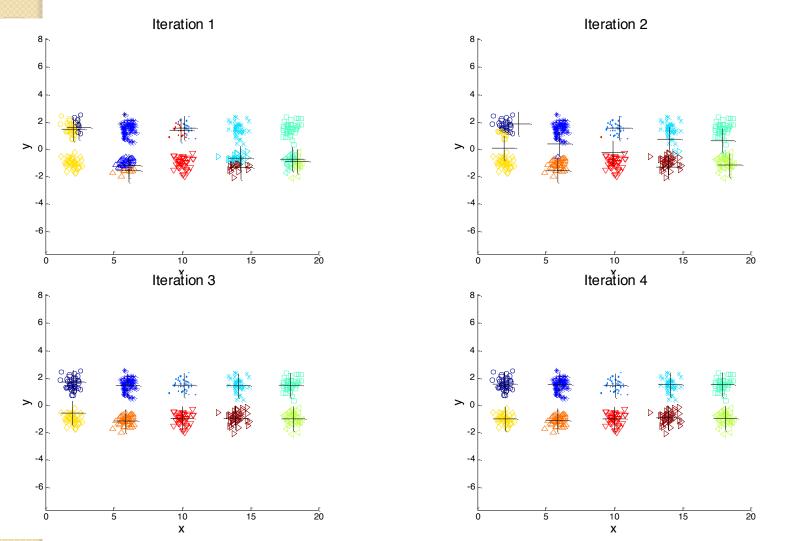
$$P = \frac{\text{number of ways to select one centroid from each cluster}}{\text{number of ways to select } K \text{ centroids}} = \frac{K! n^K}{(Kn)^K} = \frac{K!}{K^K}$$

- For example, if K = 10, then probability = 10!/10^10 = 0.00036
- Sometimes the initial centroids will readjust themselves in 'right' way, and sometimes they don't
- Consider an example of five pairs of clusters



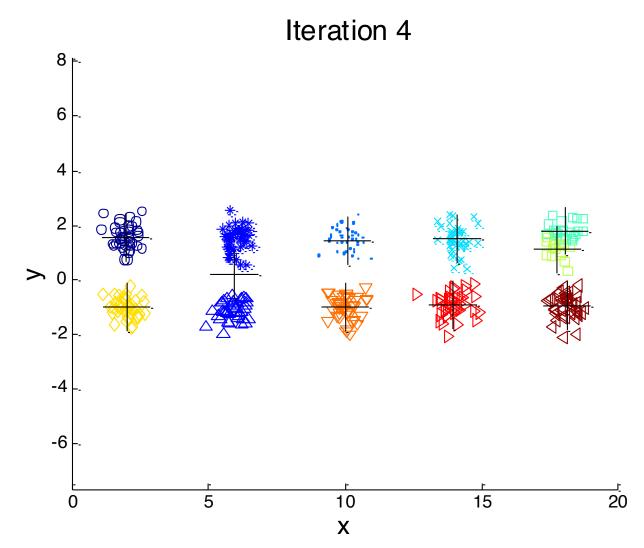
Starting with two initial centroids in one cluster of each pair of clusters

# **10** Clusters Example



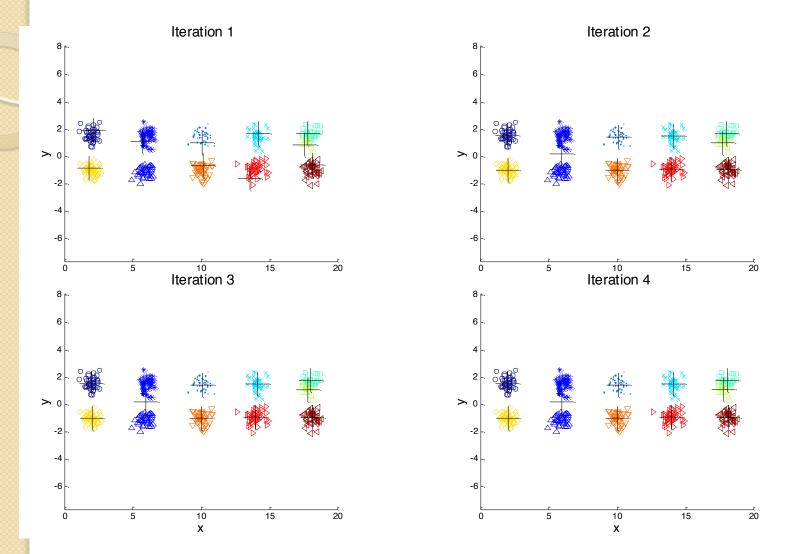
Starting with two initial centroids in one cluster of each pair of clusters

# **10** Clusters Example



Starting with some pairs of clusters having three initial centroids, while other have only one.

### **10** Clusters Example



Starting with some pairs of clusters having three initial centroids, while other have only one.

# Solutions to Initial Centroids Problem

- Multiple runs
  - Helps, but probability is not on your side
- Sample and use hierarchical clustering to determine initial centroids
- Select more than k initial centroids and then select among these initial centroids
  Select most widely separated
- Postprocessing
- Bisecting K-means
  - Not as susceptible to initialization issues

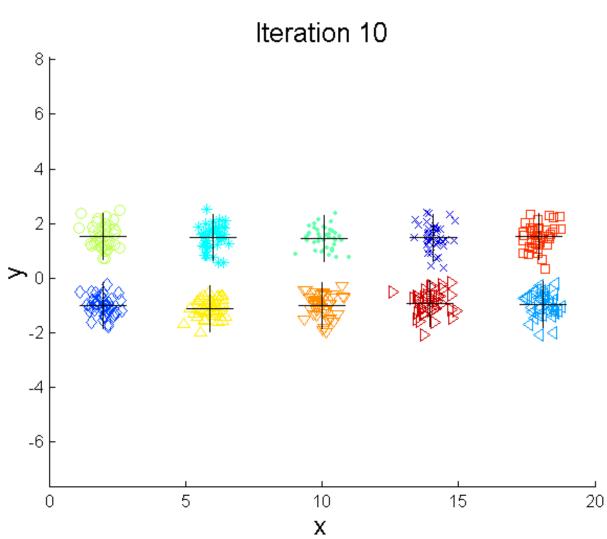
### **Bisecting K-means**

### **Bisecting K-means algorithm**

Variant of K-means that can produce a partitional or a hierarchical clustering

- 1: Initialize the list of clusters to contain the cluster containing all points.
- 2: repeat
- 3: Select a cluster from the list of clusters
- 4: for i = 1 to number\_of\_iterations do
- 5: Bisect the selected cluster using basic K-means
- 6: end for
- 7: Add the two clusters from the bisection with the lowest SSE to the list of clusters.
- 8: until Until the list of clusters contains K clusters

### **Bisecting K-means Example**



# Handling Empty Clusters

- Basic K-means algorithm can yield empty clusters.
- Several strategies
  - Choose the replacement centroid as the point that is furthest away from any other centroids.
  - Choose a point from the cluster with the highest SSE
    - Splits the clusters.
  - If there are several empty clusters, the above can be repeated several times.

# Updating Centers Incrementally

- In the basic K-means algorithm, centroids are updated after all points are assigned to a centroid
- An alternative is to update the centroids after each assignment (incremental approach)
  - Each assignment updates zero or two centroids
  - Never get an empty cluster
  - Can use "weights" to change the impact
  - More expensive
  - Introduces an order dependency

# Pre-processing and Post-processing

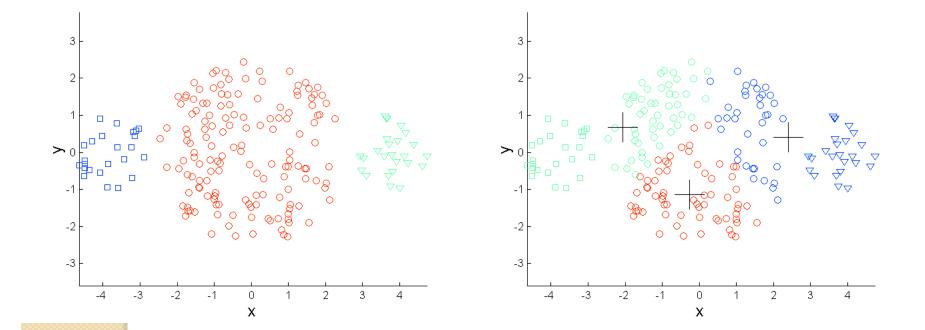
- Pre-processing
  - Normalize the data
  - Eliminate outliers
- Post-processing
  - Eliminate small clusters that may represent outliers
  - Split 'loose' clusters, i.e., clusters with relatively high SSE
  - Merge clusters that are 'close' and that have relatively low SSE



# Limitations of K-means

- K-means has problems when clusters are of differing
  - Sizes
  - Densities
  - Non-globular shapes
- K-means has problems when the data contains outliers.

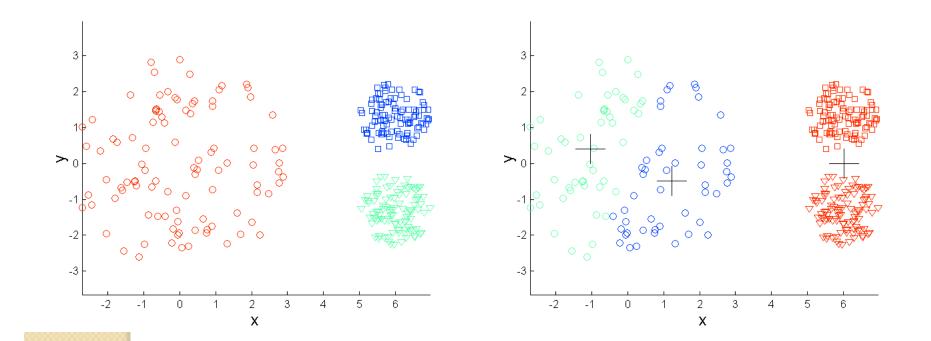
#### Limitations of K-means: Differing Sizes



**Original Points** 

K-means (3 Clusters)

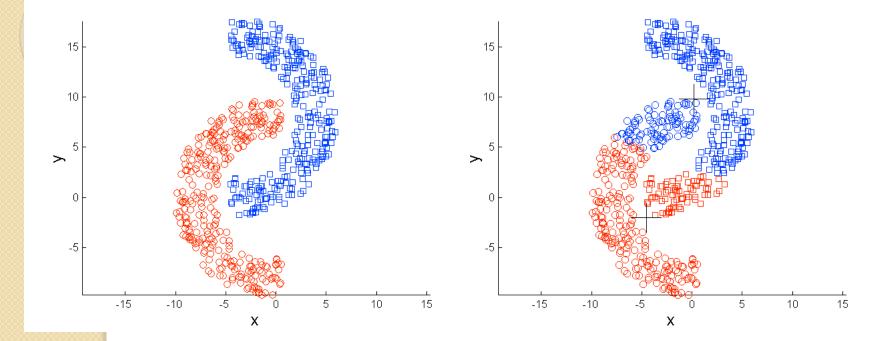
### Limitations of K-means: Differing Density



**Original Points** 

K-means (3 Clusters)

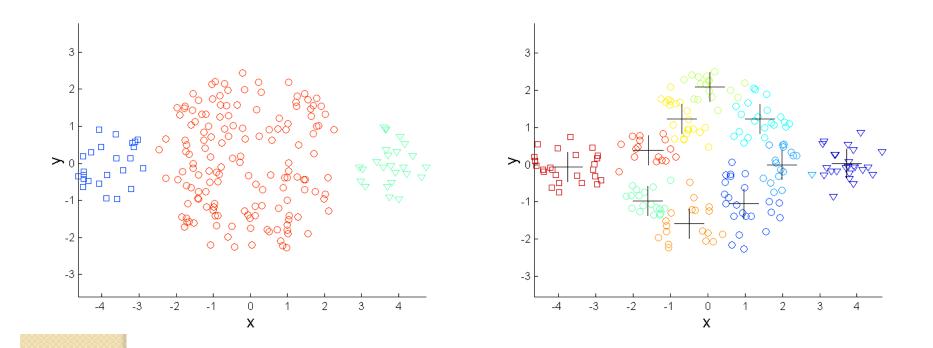
### Limitations of K-means: Non-globular Shapes



**Original Points** 

K-means (2 Clusters)

# **Overcoming K-means Limitations**

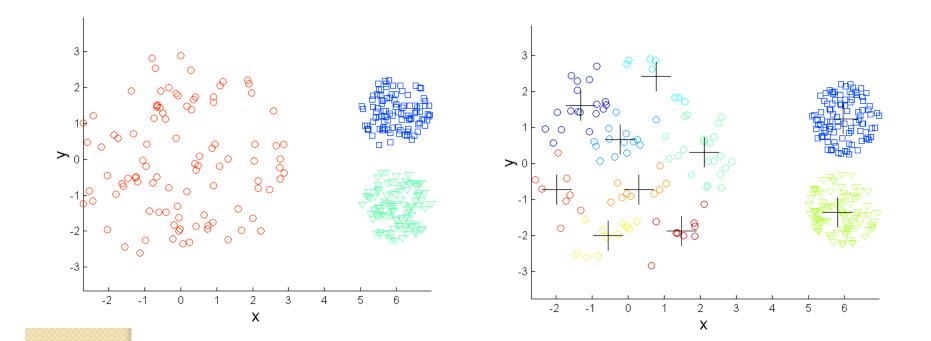


#### **Original Points**

**K-means Clusters** 

One solution is to use many clusters. Find parts of clusters, but need to put together.

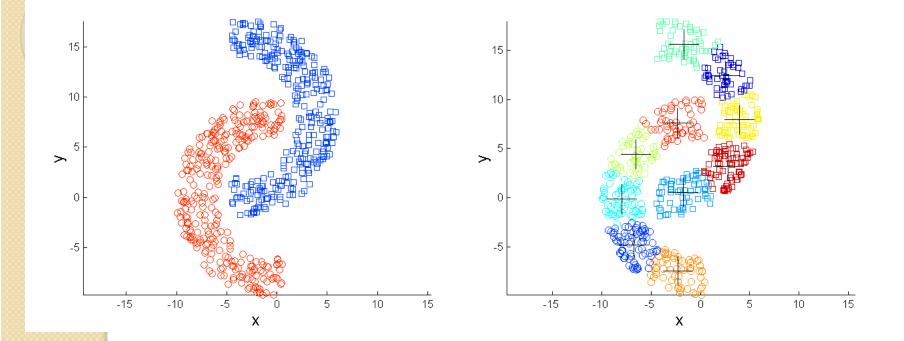
### **Overcoming K-means Limitations**



**O**riginal Points

**K-means Clusters** 

### **Overcoming K-means Limitations**



**Original Points** 

**K-means Clusters**