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What is Cluster Analysis? 
�  Finding groups of objects such that the objects in a group 

will be similar (or related) to one another and different from 
(or unrelated to) the objects in other groups 

Inter-cluster 
distances are 
maximized 

Intra-cluster 
distances are 

minimized 



Applications of Cluster Analysis 

�  Understanding 
◦  Group related documents for 

browsing, group genes and 
proteins that have similar 
functionality, or group stocks 
with similar price fluctuations 

�  Summarization 
◦  Reduce the size of large data 

sets 

 Discovered Clusters Industry Group 

1 Applied-Matl-DOWN,Bay-Network-Down,3-COM-DOWN, 
Cabletron-Sys-DOWN,CISCO-DOWN,HP-DOWN, 

DSC-Comm-DOWN,INTEL-DOWN,LSI-Logic-DOWN, 
Micron-Tech-DOWN,Texas-Inst-Down,Tellabs-Inc-Down, 

Natl-Semiconduct-DOWN,Oracl-DOWN,SGI-DOWN, 
Sun-DOWN 

 
 

Technology1-DOWN 

2 Apple-Comp-DOWN,Autodesk-DOWN,DEC-DOWN, 
ADV-Micro-Device-DOWN,Andrew-Corp-DOWN, 

Computer-Assoc-DOWN,Circuit-City-DOWN, 
Compaq-DOWN, EMC-Corp-DOWN, Gen-Inst-DOWN, 

Motorola-DOWN,Microsoft-DOWN,Scientific-Atl-DOWN 

 
 

Technology2-DOWN 

3 Fannie-Mae-DOWN,Fed-Home-Loan-DOWN, 
MBNA-Corp-DOWN,Morgan-Stanley-DOWN 

 
Financial-DOWN 

4 Baker-Hughes-UP,Dresser-Inds-UP,Halliburton-HLD-UP, 
Louisiana-Land-UP,Phillips-Petro-UP,Unocal-UP, 

Schlumberger-UP 

 
Oil-UP 

 

 

Clustering precipitation 
in Australia 



What is not Cluster Analysis? 

�  Supervised classification 
◦  Have class label information 

�  Simple segmentation 
◦  Dividing students into different registration groups alphabetically, 

by last name 

�  Results of a query 
◦  Groupings are a result of an external specification 



Notion of a Cluster can be Ambiguous 

How many clusters? 

Four Clusters  Two Clusters  

Six Clusters  



Types of Clusterings 

� Partitional Clustering 
◦ A division data objects into non-overlapping 

subsets (clusters) such that each data object is 
in exactly one subset 

� Hierarchical clustering 
◦ A set of nested clusters organized as a 

hierarchical tree  



Partitional Clustering 

Original Points A Partitional  Clustering 



Hierarchical Clustering 
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Traditional Hierarchical Clustering 

Non-traditional Hierarchical Clustering Non-traditional Dendrogram 

Traditional Dendrogram 



Clustering Algorithms 

� K-means and its variants 

� Hierarchical clustering 

� Density-based clustering 



K-means Clustering 

�  Partitional clustering approach  
�  Each cluster is associated with a centroid (center point)  
�  Each point is assigned to the cluster with the closest 

centroid 
�  Number of clusters, K, must be specified 
�  The basic algorithm is very simple 



K-means Clustering – Details 
�  Initial centroids are often chosen randomly. 
◦  Clusters produced vary from one run to another. 

�  The centroid is (typically) the mean of the points in the 
cluster. 

�  ‘Closeness’ is measured by Euclidean distance, cosine 
similarity, correlation, etc. 

�  K-means will converge for common similarity measures 
mentioned above. 

�  Most of the convergence happens in the first few iterations. 
◦  Often the stopping condition is changed to ‘Until relatively few 

points change clusters’ 
�  Complexity is O( n * K * I * d ) 
◦  n = number of points, K = number of clusters,  

I = number of iterations, d = number of attributes 



Evaluating K-means Clusters 
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�  Most common measure is Sum of Squared Error (SSE) 
◦  For each point, the error is the distance to the nearest cluster 
◦  To get SSE, we square these errors and sum them. 

 

◦  x is a data point in cluster Ci and mi is the representative point for 
cluster Ci  
�   can show that mi corresponds to the center (mean) of the cluster 
◦  Given two clusters, we can choose the one with the smallest error 
◦  One easy way to reduce SSE is to increase K, the number of clusters 

�   A good clustering with smaller K can have a lower SSE than a   
poor clustering with higher K 



Two different K-means Clusterings 
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Importance of Choosing Initial Centroids 
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Importance of Choosing Initial Centroids 
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Importance of Choosing Initial Centroids … 
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Importance of Choosing Initial Centroids … 
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Problems with Selecting Initial Points 

�  If there are K ‘real’ clusters then the chance of 
selecting one centroid from each cluster is small.  
◦  Chance is relatively small when K is large 
◦  If clusters are the same size, n, then 

 
◦   

 
 
 
◦  For example, if K = 10, then probability = 10!/10^10 = 

0.00036 
◦  Sometimes the initial centroids will readjust themselves in 
‘right’ way, and sometimes they don’t 
◦  Consider an example of five pairs of clusters 



10 Clusters Example 
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Starting with two initial centroids in one cluster of each pair of clusters 



10 Clusters Example 
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Starting with two initial centroids in one cluster of each pair of clusters 



10 Clusters Example 

Starting with some pairs of clusters having three initial centroids, while other have only one. 
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10 Clusters Example 

Starting with some pairs of clusters having three initial centroids, while other have only one. 
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Solutions to Initial Centroids Problem 

� Multiple runs 
◦ Helps, but probability is not on your side 

�  Sample and use hierarchical clustering to 
determine initial centroids 

�  Select more than k initial centroids and 
then select among these initial centroids 
◦  Select most widely separated 

� Postprocessing 
� Bisecting K-means 
◦ Not as susceptible to initialization issues 



Bisecting K-means 

�  Bisecting K-means algorithm 
◦  Variant of K-means that can produce a partitional or a hierarchical 

clustering 

 



Bisecting K-means Example 



Handling Empty Clusters 

� Basic K-means algorithm can yield empty 
clusters. 

�  Several strategies 
◦ Choose the replacement centroid as the point 

that is furthest away from any other 
centroids. 
◦ Choose a point from the cluster with the 

highest SSE 
�  Splits the clusters. 

◦  If there are several empty clusters, the above 
can be repeated several times. 



Updating Centers Incrementally 
�  In the basic K-means algorithm, centroids 

are updated after all points are assigned to a 
centroid 

� An alternative is to update the centroids 
after each assignment (incremental 
approach) 
◦  Each assignment updates zero or two centroids 
◦ Never get an empty cluster 
◦  Can use “weights” to change the impact 
◦ More expensive 
◦  Introduces an order dependency 



Pre-processing and Post-processing 

� Pre-processing 
◦ Normalize the data 
◦  Eliminate outliers 

� Post-processing 
◦  Eliminate small clusters that may represent 

outliers 
◦  Split ‘loose’ clusters, i.e., clusters with 

relatively high SSE 
◦ Merge clusters that are ‘close’ and that have 

relatively low SSE 



Limitations of K-means 

� K-means has problems when clusters are 
of differing  
◦  Sizes 
◦ Densities 
◦ Non-globular shapes 

� K-means has problems when the data 
contains outliers. 



Limitations of K-means: Differing Sizes 

 

 

Original Points K-means (3 Clusters) 



Limitations of K-means: Differing Density 

 

 

Original Points K-means (3 Clusters) 



Limitations of K-means: Non-globular Shapes 

 

 

Original Points K-means (2 Clusters) 



Overcoming K-means Limitations 

 

 

Original Points     K-means Clusters 

One solution is to use many clusters. 
Find parts of clusters, but need to put together. 



Overcoming K-means Limitations 

 

 

Original Points     K-means Clusters 



Overcoming K-means Limitations 

 

 

Original Points     K-means Clusters 


