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Roadmap

* Validating Clusters

 Hierarchical Clustering



Cluster Validity

e For supervised classification we have a variety of
measures to evaluate how good our model is

> Accuracy, precision, recall

* For cluster analysis, the analogous question is how to
evaluate the “goodness” of the resulting clusters?

 But “clusters are in the eye of the beholder”!

e Then why do we want to evaluate them!?
To avoid finding patterns in noise

To compare clustering algorithms

To compare two sets of clusters

To compare two clusters
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Measures of Cluster Validity

* Numerical measures that are applied to judge various aspects of
cluster validity, are classified into the following three types.

> External Index: Used to measure the extent to which cluster labels
match externally supplied class labels.
Entropy
° Internal Index: Used to measure the goodness of a clustering structure
without respect to external information.
Sum of Squared Error (SSE)

> Relative Index: Used to compare two different clusterings or clusters.
Often an external or internal index is used for this function, e.g., SSE or entropy



Measuring Cluster Validity Via Correlation
Two matrices
¥ Proximity Matrix
o “Incidence” Matrix
One row and one column for each data point

An entry is | if the associated pair of points belong to the same cluster

An entry is O if the associated pair of points belongs to different clusters

Compute the correlation between the two matrices

¥ Since the matrices are symmetric, only the correlation between
n(n-1) / 2 entries needs to be calculated.

High correlation indicates that points that belong to the same
cluster are close to each other.

Not a good measure for some density or contiguity based
clusters.



Measuring Cluster Validity Via Correlation

e Correlation of incidence and proximity
matrices for the K-means clusterings of
the following two data sets.
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Using Similarity Matrix for Cluster Validation

¢ Order the similarity matrix with respect to cluster labels
and inspect visually.
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Points

Using Similarity Matrix for Cluster Validation

* Clusters in random data are not so crisp
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Points

Using Similarity Matrix for Cluster Validation

* Clusters in random data are not so crisp
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Points

Using Similarity Matrix for Cluster Validation

* Clusters in random data are not so crisp
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Using Similarity Matrix for Cluster Validation
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Internal Measures: SSE

Clusters in more complicated figures aren’ t well separated

Internal Index: Used to measure the goodness of a clustering
structure without respect to external information

> SSE

SSE is good for comparing two clusterings or two clusters
(average SSE).

Can also be used to estimate the number of clusters
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Internal Measures: SSE

* SSE curve for a more complicated data
Set 12000
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2000

SSE of clusters found using K-means



Framework for Cluster Validity
* Need a framework to interpret any measure.
¥ For example, if our measure of evaluation has the value, 10, is that good, fair, or
poor?
e Statistics provide a framework for cluster validity

> The more “atypical” a clustering result is, the more likely it represents valid
structure in the data

0 Can compare the values of an index that result from random data or
clusterings to those of a clustering result.

If the value of the index is unlikely, then the cluster results are valid

¥ These approaches are more complicated and harder to understand.

*  For comparing the results of two different sets of cluster
analyses, a framework is less necessary.

0 However, there is the question of whether the difference between two index
values is significant



Internal Measures: Cohesion and Separation
e Cluster Cohesion: Measures how closely

related are objects in a cluster
> Example: SSE

* Cluster Separation: Measure how distinct or
well-separated a cluster is from other clusters

e Example: Squared Error

> Cohesion is measured by the within cluster sum of squares (SSE)

2
WSS = E E(x—mi)
i x&C,
o Separation is measured by the between cluster sum of squares

BSS = Y |C

* Where |C|| i¢ the size of cluster i

(m — mi)2




Internal Measures: Cohesion and Separation
* A proximity graph based approach can also be used for cohesion and
separation.
o Cluster cohesion is the sum of the weight of all links within a cluster.

o Cluster separation is the sum of the weights between nodes in the cluster and
nodes outside the cluster.

cohesion separation



Internal Measures: Silhouette Coefficient
e Silhouette Coefficient combine ideas of both cohesion and separation, but
for individual points, as well as clusters and clusterings
e For an individual point, i
> Calculate a = average distance of i to the points in its cluster

> Calculate b = min (average distance of i to points in another cluster)

o The silhouette coefficient for a point is then given by

s=1—-a/b ifa<b, (ors=bla-1 ifa=b,notthe usual case)
o Typically between 0 and I. b
> The closer to | the better. e{-‘%

* Can calculate the Average Silhouette width for a cluster or a
clustering



Hierarchical Clustering

* Produces a set of nested clusters
organized as a hierarchical tree
* Can be visualized as a dendrogram

> A tree like diagram that records the
sequences of merges or splits




Strengths of Hierarchical Clustering

* Do not have to assume any particular
number of clusters

> Any desired number of clusters can be
obtained by ‘cutting’ the dendogram at the

proper level

e They may correspond to meaningful
taxonomies

> Example in biological sciences (e.g., animal
kingdom, phylogeny reconstruction, ...)



Phylogenetic Trees

Domestic dog

— Gray wolf

Red wolf

— — Coyote

African wild dog

Jackal

—— Maned wolf

—— South American foxes

—— Red fox

L Swift fox

Redrawn from Wayne, 1993. Molecular evolution of the dog family



Hierarchical Clustering

e Two main types of hierarchical clustering

> Agglomerative:

Start with the points as individual clusters

At each step, merge the closest pair of clusters until only one cluster
(or k clusters) left

o Divisive:
Start with one, all-inclusive cluster

At each step, split a cluster until each cluster contains a point (or
there are k clusters)

* Traditional hierarchical algorithms use a similarity or
distance matrix

> Merge or split one cluster at a time



Agglomerative Clustering Algorithm

More popular hierarchical clustering technique

Basic algorithm is straightforward
o Compute the proximity matrix

° Let each data point be a cluster

> Repeat

> Merge the two closest clusters
Update the proximity matrix

> Until only a single cluster remains

o

o

Key operation is the computation of the proximity of
two clusters

> Different approaches to defining the distance between
clusters distinguish the different algorithms



Starting Situation

o Start with clusters of individual points and a
proximity matrix
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Intermediate Situation

» After some merging steps, we have some clusters
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Intermediate Situation

*  We want to merge the two closest clusters (C2 and C5) and

update the proximity matrix.
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After Merging

» The question is “How do we update the proximity matrix?”
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How to Define Inter-Cluster Similarity

p1 | p2 p3 p4 | p5

Similarity? P

: 02

p3

p4

MIN P

MAX '
Group Average

Distance Between Centroids

Other methods driven by an objective
function
— Ward’ s Method uses squared error

Proximity Matrix




How to Define Inter-Cluster Similarity

p1 | p2 p3 p4 | p5

MIN &
MAX '
Group Average

Distance Between Centroids

Other methods driven by an objective
function
— Ward’ s Method uses squared error

Proximity Matrix




How to Define Inter-Cluster Similarity

p1 | p2 p3 p4 | p5

MIN >
MAX '
Group Average

Distance Between Centroids

Other methods driven by an objective
function
— Ward’ s Method uses squared error

Proximity Matrix




How to Define Inter-Cluster Similarity

MIN >
MAX '
Group Average

Distance Between Centroids

Other methods driven by an objective
function
— Ward’ s Method uses squared error

Proximity Matrix




How to Define Inter-Cluster Similarity

p1 | p2 p3 p4 | p5

MIN >
MAX '
Group Average

Distance Between Centroids

Other methods driven by an objective
function
— Ward’ s Method uses squared error

Proximity Matrix
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Cluster Similarity: MIN or Single Link

e Similarity of two clusters is based on the
two most similar (closest) points in the

different clusters

> Determined by one pair of points, i.e., by one
link in the proximity graph.

1 12 13 14 15

1.00 0.90 0.10 0.65 0.20
0.90 1.00 0.70 0.60 0.50
0.10 0.70 1.00 0.40 0.30
0.65 0.60 0.40 1.00 0.80
0.20 0.50 0.30 0.80 1.00

-
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Hierarchical Clustering: MIN
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Strength of MIN
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Limitations of MIN
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Cluster Similarity: MAX or Complete Linkage

e Similarity of two clusters is based on the
two least similar (most distant) points in
the different clusters

> Determined by all pairs of points in the two
clusters

1 12 13 14 15

1.00 0.90 0.10 0.65 0.20

0.90 1.00 0.70 0.60 0.50
0.10 0.70 1.00 0.40 0.30 r_‘ |‘“

0.65 0.60 0.40 1.00 0.80 1 2 3 4 5

0.20 0.50 0.30 0.80 1.00




Hierarchical Clustering: MAX
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Strength of MAX
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Limitations of MAX
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Cluster Similarity: Group Average

e Proximity of two clusters is the average of pairwise proximity
between points in the two clusters.

proximity(p;,p;)
P Cluster,

roximity(Cluster,, Cluster;) =
P 4 y ) | Cluster, | | Cluster, |

* Need to use average connectivity for scalability since total proximity
favors large clusters

1 12 13 14 15
111 1.00 0.90 0.10 0.65 0.20
12| 0.90 1.00 0.70 0.60 0.50

13| 0.10 0.70 1.00 0.40 0.30
14| 0.65 0.60 0.40 1.00 0.80 r“

15{ 0.20 0.50 0.30 0.80 1.00 1 2 3 4 5




Hierarchical Clustering: Group Average
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Hierarchical Clustering: Group Average

» Compromise between Single and
Complete Link

e Strengths

> Less susceptible to noise and outliers

e Limitations

> Biased towards globular clusters



Cluster Similarity:Ward' s Method

 Similarity of two clusters is based on the
increase in squared error when two clusters
are merged

o Similar to group average if distance between
points is distance squared
* Less susceptible to noise and outliers

» Biased towards globular clusters

e Hierarchical analogue of K-means
> Can be used to initialize K-means



Hierarchical Clustering: Comparison

MAX

Ward’ s Method

Group Average




Hierarchical Clustering: Time and Space requirements

» O(N?) space since it uses the proximity
matrix.
> N is the number of points.

» O(N?3) time in many cases

> There are N steps and at each step the size,
N2, proximity matrix must be updated and
searched

> Complexity can be reduced to O(N? log(N) )
time for some approaches



Hierarchical Clustering: Problems and Limitations

e Once a decision is made to combine two
clusters, it cannot be undone

* No objective function is directly minimized

 Different schemes have problems with one
or more of the following:
° Sensitivity to noise and outliers

o Difficulty handling different sized clusters and
convex shapes

> Breaking large clusters



MST: Divisive Hierarchical Clustering
* Build MST (Minimum Spanning Tree)

o Start with a tree that consists of any point

° |In successive steps, look for the closest pair of points (p, q) such that
one point (p) is in the current tree but the other (q) is not

> Add q to the tree and put an edge between p and q
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MST: Divisive Hierarchical Clustering

e Use MST for constructing hierarchy of
clusters

Algorithm 7.5 MST Divisive Hierarchical Clustering Algorithm

1: Compute a minimum spanning tree for the proximity graph.

[N]

repeat
3:  Create a new cluster by breaking the link corresponding to the largest distance

(smallest similarity).

.

- until Only singleton clusters remain




