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Roadmap   

� Validating Clusters 

� Hierarchical Clustering 



Cluster Validity  
�  For supervised classification we have a variety of 

measures to evaluate how good our model is 
◦  Accuracy, precision, recall 

�  For cluster analysis, the analogous question is how to 
evaluate the “goodness” of the resulting clusters? 

�  But “clusters are in the eye of the beholder”!  

�  Then why do we want to evaluate them? 
◦  To avoid finding patterns in noise 
◦  To compare clustering algorithms 
◦  To compare two sets of clusters 
◦  To compare two clusters 



Clusters found in Random Data 
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Measures of Cluster Validity 
�  Numerical measures that are applied to judge various aspects of 

cluster validity, are classified into the following three types. 
◦  External Index: Used to measure the extent to which cluster labels 

match externally supplied class labels. 
�  Entropy  

◦  Internal Index:  Used to measure the goodness of a clustering structure 
without respect to external information.  
�  Sum of Squared Error (SSE) 

◦  Relative Index: Used to compare two different clusterings or clusters.  
�  Often an external or internal index is used for this function, e.g., SSE or entropy 



Measuring Cluster Validity Via Correlation 
�  Two matrices  
◦  Proximity Matrix 
◦  “Incidence” Matrix 

�  One row and one column for each data point 
�  An entry is 1 if the associated pair of points belong to the same cluster 
�  An entry is 0 if the associated pair of points belongs to different clusters 

�  Compute the correlation between the two matrices 
◦  Since the matrices are symmetric, only the correlation between  

n(n-1) / 2 entries needs to be calculated. 

�  High correlation indicates that points that belong to the same 
cluster are close to each other.  

�  Not a good measure for some density or contiguity based 
clusters. 



Measuring Cluster Validity Via Correlation 

� Correlation of incidence and proximity 
matrices for the K-means clusterings of 
the following two data sets.  
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Using Similarity Matrix for Cluster Validation 

�  Order the similarity matrix with respect to cluster labels 
and inspect visually.  
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Using Similarity Matrix for Cluster Validation 

� Clusters in random data are not so crisp 
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� Clusters in random data are not so crisp 

K-means 
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Using Similarity Matrix for Cluster Validation 

� Clusters in random data are not so crisp 
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Using Similarity Matrix for Cluster Validation 
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Internal Measures: SSE 
�  Clusters in more complicated figures aren’t well separated 
�  Internal Index:  Used to measure the goodness of a clustering 

structure without respect to external information 
◦  SSE 

�  SSE is good for comparing two clusterings or two clusters 
(average SSE). 

�  Can also be used to estimate the number of clusters 
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Internal Measures: SSE 

�  SSE curve for a more complicated data 
set 
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Framework for Cluster Validity 
�  Need a framework to interpret any measure.  
◦  For example, if our measure of evaluation has the value, 10, is that good, fair, or 

poor? 

�  Statistics provide a framework for cluster validity 
◦  The more “atypical” a clustering result is, the more likely it represents valid 

structure in the data 

◦  Can compare the values of an index that result from random data or 
clusterings to those of a clustering result. 
�  If the value of the index is unlikely, then the cluster results are valid 

◦  These approaches are more complicated and harder to understand. 

�  For comparing the results of two different sets of cluster 
analyses, a framework is less necessary. 
◦  However, there is the question of whether the difference between two index 

values is significant 



Internal Measures: Cohesion and Separation 

�  Cluster Cohesion: Measures how closely 
related are objects in a cluster 
◦  Example: SSE 

�  Cluster Separation: Measure how distinct or 
well-separated a cluster is from other clusters 

�  Example: Squared Error 
◦  Cohesion is measured by the within cluster sum of squares (SSE) 

◦  Separation is measured by the between cluster sum of squares 

�  Where |Ci| is the size of cluster i  
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Internal Measures: Cohesion and Separation 
�  A proximity graph based approach can also be used for cohesion and 

separation. 
◦  Cluster cohesion is the sum of the weight of all links within a cluster. 
◦  Cluster separation is the sum of the weights between nodes in the cluster and 

nodes outside the cluster. 

cohesion separation 



Internal Measures: Silhouette Coefficient 
�  Silhouette Coefficient combine ideas of both cohesion and separation, but 

for individual points, as well as clusters and clusterings 
�  For an individual point, i 
◦  Calculate a = average distance of i to the points in its cluster 
◦  Calculate b = min (average distance of i  to points in another cluster) 
◦  The silhouette coefficient for a point is then given by  

 
s = 1 – a/b   if a < b,   (or s = b/a - 1    if a ≥ b, not the usual case)  

◦  Typically between 0 and 1.  
◦  The closer to 1 the better. 

�  Can calculate the Average Silhouette width for a cluster or a 
clustering 

a
b



Hierarchical Clustering  

� Produces a set of nested clusters 
organized as a hierarchical tree 

� Can be visualized as a dendrogram 
◦ A tree like diagram that records the 

sequences of merges or splits 
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Strengths of Hierarchical Clustering 

� Do not have to assume any particular 
number of clusters 
◦ Any desired number of clusters can be 

obtained by ‘cutting’ the dendogram at the 
proper level 

 
� They may correspond to meaningful 

taxonomies 
◦  Example in biological sciences (e.g., animal 

kingdom, phylogeny reconstruction, …) 



Phylogenetic Trees 



Hierarchical Clustering 
�  Two main types of hierarchical clustering 
◦  Agglomerative:   

�   Start with the points as individual clusters 
�   At each step, merge the closest pair of clusters until only one cluster 

(or k clusters) left 

◦  Divisive:   
�   Start with one, all-inclusive cluster  
�   At each step, split a cluster until each cluster contains a point (or 

there are k clusters) 

�  Traditional hierarchical algorithms use a similarity or 
distance matrix 
◦  Merge or split one cluster at a time 



Agglomerative Clustering Algorithm 
�  More popular hierarchical clustering technique 

�  Basic algorithm is straightforward 
◦  Compute the proximity matrix 
◦  Let each data point be a cluster 
◦  Repeat 
◦   Merge the two closest clusters 
◦   Update the proximity matrix 
◦  Until only a single cluster remains 
◦    

�  Key operation is the computation of the proximity of 
two clusters 
◦  Different approaches to defining the distance between 

clusters distinguish the different algorithms 



Starting Situation  

...
p1 p2 p3 p4 p9 p10 p11 p12

�  Start with clusters of individual points and a 
proximity matrix 
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Intermediate Situation 

...
p1 p2 p3 p4 p9 p10 p11 p12

�  After some merging steps, we have some clusters  
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Intermediate Situation 

...
p1 p2 p3 p4 p9 p10 p11 p12

�  We want to merge the two closest clusters (C2 and C5)  and 
update the proximity matrix.  
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After Merging 

...
p1 p2 p3 p4 p9 p10 p11 p12

�  The question is “How do we update the proximity matrix?”  

C1 

C4 

C2 U C5 

C3 
?        ?        ?        ?         

? 

? 

? 

C2 
U 
C5 C1 

C1 

C3 

C4 

C2 U C5 

C3 C4 

Proximity Matrix 



How to Define Inter-Cluster Similarity 
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Similarity? 

●  MIN 
●  MAX 
●  Group Average 
●  Distance Between Centroids 
●  Other methods driven by an objective 

function 
–  Ward’s Method uses squared error 

Proximity Matrix 



How to Define Inter-Cluster Similarity 
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How to Define Inter-Cluster Similarity 
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How to Define Inter-Cluster Similarity 
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Cluster Similarity: MIN or Single Link  

�  Similarity of two clusters is based on the 
two most similar (closest) points in the 
different clusters 
◦ Determined by one pair of points, i.e., by one 

link in the proximity graph. 
I1 I2 I3 I4 I5

I1 1.00 0.90 0.10 0.65 0.20
I2 0.90 1.00 0.70 0.60 0.50
I3 0.10 0.70 1.00 0.40 0.30
I4 0.65 0.60 0.40 1.00 0.80
I5 0.20 0.50 0.30 0.80 1.00 1 2 3 4 5 



Hierarchical Clustering: MIN 

Nested Clusters Dendrogram 
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Strength of MIN 

Original Points Two Clusters 

•  Can handle non-elliptical shapes 



Limitations of MIN 

Original Points Two Clusters 

•  Sensitive to noise and outliers 



Cluster Similarity: MAX or Complete Linkage 

�  Similarity of two clusters is based on the 
two least similar (most distant) points in 
the different clusters 
◦ Determined by all pairs of points in the two 

clusters 

I1 I2 I3 I4 I5
I1 1.00 0.90 0.10 0.65 0.20
I2 0.90 1.00 0.70 0.60 0.50
I3 0.10 0.70 1.00 0.40 0.30
I4 0.65 0.60 0.40 1.00 0.80
I5 0.20 0.50 0.30 0.80 1.00

1 2 3 4 5 



Hierarchical Clustering: MAX 

Nested Clusters Dendrogram 
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Strength of MAX 

Original Points Two Clusters 

•  Less susceptible to noise and outliers 



Limitations of MAX 

Original Points Two Clusters 

• Tends to break large clusters 

• Biased towards globular clusters 



Cluster Similarity: Group Average 
�  Proximity of two clusters is the average of pairwise proximity 

between points in the two clusters. 

�  Need to use average connectivity for scalability since total proximity 
favors large clusters 
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I1 I2 I3 I4 I5
I1 1.00 0.90 0.10 0.65 0.20
I2 0.90 1.00 0.70 0.60 0.50
I3 0.10 0.70 1.00 0.40 0.30
I4 0.65 0.60 0.40 1.00 0.80
I5 0.20 0.50 0.30 0.80 1.00 1 2 3 4 5 



Hierarchical Clustering: Group Average 

Nested Clusters Dendrogram 
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Hierarchical Clustering: Group Average 

�  Compromise between Single and 
Complete Link 

�  Strengths 
◦  Less susceptible to noise and outliers 

�  Limitations 
◦  Biased towards globular clusters 



Cluster Similarity: Ward’s Method 

�  Similarity of two clusters is based on the 
increase in squared error when two clusters 
are merged 
◦  Similar to group average if distance between 

points is distance squared 

�  Less susceptible to noise and outliers 

�  Biased towards globular clusters 

� Hierarchical analogue of K-means 
◦  Can be used to initialize K-means 



Hierarchical Clustering: Comparison 
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Hierarchical Clustering:  Time and Space requirements 

� O(N2) space since it uses the proximity 
matrix.   
◦ N is the number of points. 

� O(N3) time in many cases 
◦ There are N steps and at each step the size, 

N2, proximity matrix must be updated and 
searched 
◦ Complexity can be reduced to O(N2 log(N) ) 

time for some approaches 



Hierarchical Clustering:  Problems and Limitations 

� Once a decision is made to combine two 
clusters, it cannot be undone 

� No objective function is directly minimized 

� Different schemes have problems with one 
or more of the following: 
◦  Sensitivity to noise and outliers 
◦ Difficulty handling different sized clusters and 

convex shapes 
◦  Breaking large clusters 



MST: Divisive Hierarchical Clustering 
� Build MST (Minimum Spanning Tree) 
◦  Start with a tree that consists of any point 
◦  In successive steps, look for the closest pair of points (p, q)  such that 

one point (p) is in the current tree but the other (q) is not 
◦  Add q to the tree and put an edge between p and q 



MST: Divisive Hierarchical Clustering 

� Use MST for constructing hierarchy of 
clusters 


