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Outline 
• What are Recommender Systems ?  

• Collaborative Filtering vs Content Based 

• Hybrid/Knowledge Based 

• Advanced Topics 





Recommender Systems 
• Application areas 



In the Social Web 



We Know What You Ought 
To Be Watching This 
Summer 





Value of Recommender Systems [WPS] 
•  To the Customer ? 

•  To the Provider ?  



What information would you use to build 
one ? [WPS] 



Recommender systems  
• RS seen as a function  
• Given: 

•  User model (e.g. ratings, preferences, demographics, situational 
context) 

•  Items (with or without description of item characteristics) 
•  Find: 

•  Relevance score. Used for ranking. 

•  Finally: 
•  Recommend items that are assumed to be relevant 

• But: 
•  Remember that relevance might be context-dependent 
•  Characteristics of the list itself might be important (diversity) 



Paradigms of recommender systems 
Recommender	  systems	  reduce	  
informa1on	  overload	  by	  es1ma1ng	  
relevance	  	  



Paradigms of recommender systems 
Personalized	  recommenda1ons	  



Paradigms of recommender systems 
Collabora1ve:	  "Tell	  me	  what's	  popular	  
among	  my	  peers"	  



Paradigms of recommender systems 
Content-‐based:	  "Show	  me	  more	  of	  the	  
same	  what	  I've	  liked" 



Paradigms of recommender systems 
Knowledge-‐based:	  "Tell	  me	  what	  fits	  
based	  on	  my	  needs"	  



Paradigms of recommender systems 
Hybrid:	  combina1ons	  of	  various	  inputs	  
and/or	  composi1on	  of	  different	  
mechanism	  



Collaborative filtering 
•  Recommend items based on past transactions of users 
•  Analyze relations between users and/or items 
•  Specific data characteristics are irrelevant 

•  Domain-free: user/item attributes are not necessary 
•  Can identify elusive aspects 



Collaborative Filtering (CF) 
•  The most prominent approach to generate 

recommendations 
•  used by large, commercial e-commerce sites 
•  well-understood, various algorithms and variations exist 
•  applicable in many domains (book, movies, DVDs, ..) 

• Approach 
•  use the "wisdom of the crowd" to recommend items 

• Basic assumption and idea 
•  Users give ratings to catalog items (implicitly or explicitly) 
•  Customers who had similar tastes in the past, will have similar 

tastes in the future 



User-based nearest-neighbor 
collaborative filtering (1) 
•  The basic technique: 

•  Given an "active user" (Alice) and an item I not yet seen by Alice 
•  The goal is to estimate Alice's rating for this item, e.g., by 

•  find a set of users (peers) who liked the same items as Alice in the past 
and who have rated item I 

•  use, e.g. the average of their ratings to predict, if Alice will like item I 
•  do this for all items Alice has not seen and recommend the best-rated 

Item1	   Item2	   Item3	   Item4	   Item5	  

Alice	   5	   3	   4	   4	   ?	  
User1	   3	   1	   2	   3	   3	  

User2	   4	   3	   4	   3	   5	  

User3	   3	   3	   1	   5	   4	  

User4	   1	   5	   5	   2	   1	  



User-based nearest-neighbor 
collaborative filtering (2) 
• Some first questions 

•  How do we measure similarity? 
•  How many neighbors should we consider? 
•  How do we generate a prediction from the neighbors' ratings? 

 
Item1	   Item2	   Item3	   Item4	   Item5	  

Alice	   5	   3	   4	   4	   ?	  
User1	   3	   1	   2	   3	   3	  

User2	   4	   3	   4	   3	   5	  

User3	   3	   3	   1	   5	   4	  

User4	   1	   5	   5	   2	   1	  



Measuring user similarity 
• A popular similarity measure in user-based CF: Pearson 

correlation 
  

a, b  : users 
ra,p     : rating of user a for item p 
P    : set of items, rated both by a and b 
Possible similarity values between -1 and 1;   = user's 

average ratings 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Item1	   Item2	   Item3	   Item4	   Item5	  

Alice	   5	   3	   4	   4	   ?	  
User1	   3	   1	   2	   3	   3	  

User2	   4	   3	   4	   3	   5	  

User3	   3	   3	   1	   5	   4	  

User4	   1	   5	   5	   2	   1	  

sim	  	  =	  0,85	  
sim	  	  =	  0,70	  
sim	  	  =	  -‐0,79	  



Making predictions 
• A common prediction function: 

• Calculate, whether the neighbors' ratings for the unseen 
item i are higher or lower than their average 

• Combine the rating differences – use the similarity as a 
weight 

• Add/subtract the  neighbors' bias from the active user's 
average and use this as a prediction 



Making recommendations 
• Making predictions is typically not the ultimate goal 
• Usual approach (in academia) 

•  Rank items based on their predicted ratings 

• However 
•  This might lead to the inclusion of (only) niche items 
•  In practice also: Take item popularity into account 

• Approaches 
•  "Learning to rank"  

•  Optimize according to a given rank evaluation metric (see later) 



Improving the metrics  / prediction function 
• Not all neighbor ratings might be equally "valuable" 

•  Agreement on commonly liked items is not so informative as 
agreement on controversial items 

•  Possible solution:  Give more weight to items that have a higher 
variance 

• Value of number of co-rated items 
•  Use "significance weighting", by e.g., linearly reducing the weight 

when the number of co-rated items is low  

• Case amplification 
•  Intuition: Give more weight to "very similar" neighbors, i.e., where 

the similarity value is close to 1. 

• Neighborhood selection 
•  Use similarity threshold or fixed number of neighbors 



Memory-based and model-based 
approaches 
• User-based CF is said to be "memory-based" 

•  the rating matrix is directly used to find neighbors / make 
predictions 

•  does not scale for most real-world scenarios 
•  large e-commerce sites have tens of millions of customers and 

millions of items 

• Model-based approaches 
•  based on an offline pre-processing or "model-learning" phase 
•  at run-time, only the learned model is used to make predictions 
•  models are updated / re-trained periodically 
•  large variety of techniques used  
•  model-building and updating can be computationally expensive 



Item-based collaborative filtering recommendation 
algorithms, B.  Sarwar et al., WWW 2001 

• Scalability issues arise with U2U if many more users 
than items  
(m >> n , m = |users|, n = |items|) 
•  e.g. Amazon.com 
•  Space complexity O(m2) when pre-computed 
•  Time complexity for computing Pearson O(m2n) 

• High sparsity leads to few common ratings between 
two users 

• Basic idea: "Item-based CF exploits relationships 
between items first, instead of relationships between 
users" 



Item-based collaborative filtering 
• Basic idea:  

•  Use the similarity between items (and not users) to make 
predictions 

• Example:  
•  Look for items that are similar to Item5 
•  Take Alice's ratings for these items to predict the rating for Item5 

Item1	   Item2	   Item3	   Item4	   Item5	  

Alice	   5	   3	   4	   4	   ?	  
User1	   3	   1	   2	   3	   3	  

User2	   4	   3	   4	   3	   5	  

User3	   3	   3	   1	   5	   4	  

User4	   1	   5	   5	   2	   1	  



The cosine similarity measure 
• Produces better results in item-to-item filtering 

•  for some datasets, no consistent picture in literature 

• Ratings are seen as vector in n-dimensional space 
• Similarity is calculated based on the angle between the 

vectors 

• Adjusted cosine similarity 
•  take average user ratings into account, transform the original 

ratings 
•  U: set of users who have rated both items a and b 



Pre-processing for item-based filtering 

•  Item-based filtering does not solve the scalability problem itself 
• Pre-processing approach by Amazon.com (in 2003) 

•  Calculate all pair-wise item similarities in advance 
•  The neighborhood to be used at run-time is typically rather small, 

because only items are taken into account which the user has rated 
•  Item similarities are supposed to be more stable than user similarities 

• Memory requirements 
•  Up to N2 pair-wise similarities to be memorized (N = number of items) in 

theory 
•  In practice, this is significantly lower (items with no co-ratings) 
•  Further reductions possible 

•  Minimum threshold for co-ratings (items, which are rated at least by n users) 
•  Limit the size of the neighborhood (might affect recommendation accuracy) 



More on ratings 
•  Pure CF-based systems only rely on the rating matrix 
•  Explicit ratings 

•  Most commonly used (1 to 5, 1 to 7 Likert response scales) 
•  Research topics 

•  "Optimal" granularity of scale; indication that 10-point scale is better accepted in 
movie domain 

•  Multidimensional ratings (multiple ratings per movie) 
•  Challenge 

•  Users not always willing to rate many items; sparse rating matrices 
•  How to stimulate users to rate more items?  

•  Implicit ratings 
•  clicks, page views, time spent on some page, demo downloads … 
•  Can be used in addition to explicit ones; question of correctness of 

interpretation 



Data sparsity problems 
• Cold start problem 

•  How to recommend new items? What to recommend to new users? 

• Straightforward approaches 
•  Ask/force users to rate a set of items 
•  Use another method (e.g., content-based, demographic or simply 

non-personalized) in the initial phase 

• Alternatives 
•  Use better algorithms (beyond nearest-neighbor approaches) 
•  Example:  

•  In nearest-neighbor approaches, the set of sufficiently similar neighbors 
might be to small to make good predictions 

•  Assume "transitivity" of neighborhoods 



Model-based approaches 
• Plethora of different techniques proposed in the last 

years, e.g., 
•  Matrix factorization techniques, statistics 

•  singular value decomposition, principal component analysis 
•  Association rule mining 

•  compare: shopping basket analysis 
•  Probabilistic models 

•  clustering models, Bayesian networks, probabilistic Latent Semantic 
Analysis 

•  Various other machine learning approaches 

• Costs of pre-processing  
•  Usually not discussed 
•  Incremental updates possible? 



Application of Dimensionality Reduction in 
 Recommender System, B. Sarwar et al., WebKDD Workshop 

• Basic idea: Trade more complex offline model 
building for faster online prediction generation 

• Singular Value Decomposition for dimensionality 
reduction of rating matrices 
•  Captures important factors/aspects and their weights in the data    
•  factors can be genre, actors but also non-understandable ones 
•  Assumption that k dimensions capture the signals and filter out noise (K = 

20 to 100) 

• Constant time to make recommendations 
• Approach also popular in IR (Latent Semantic 
Indexing), data compression, … 



Geared 
towards  
females 

Geared 
towards  
males 

serious 

escapist 

The Princess 
Diaries 

The Lion King 

Braveheart 

Lethal 
Weapon 

Independence 
Day 

Amadeus The Color 
Purple 

Dumb and 
Dumber 

Ocean’s 11 

Sense and 
Sensibility 

Gus 

Dave 

Latent factor models 



Latent factor models 
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Matrix factorization 

Vk
T	  

Dim1	   -‐0.44	   -‐0.57	   0.06	   0.38	   0.57	  

Dim2	   0.58	   -‐0.66	   0.26	   0.18	   -‐0.36	  

Uk	   Dim1	   Dim2	  

Alice	   0.47	   -‐0.30	  

Bob	   	  -‐0.44	   0.23	  

Mary	   0.70	   -‐0.06	  

Sue	   0.31	   0.93	   Dim1	   Dim2	  

Dim1	   5.63	   0	  

Dim2	   0	   3.23	  

T
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•  SVD:	  

•  Predic1on:	  	  
	   	  =	  3	  +	  0.84	  =	  3.84	  
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Factorization meets the neighborhood: a multifaceted 
collaborative  

 filtering model, Y. Koren, ACM SIGKDD 

!  S=mulated	  by	  work	  on	  NeBlix	  
compe==on	  
–  Prize	  of	  $1,000,000	  for	  accuracy	  improvement	  of	  

10%	  RMSE	  compared	  to	  own	  Cinematch	  system	  
–  Very	  large	  dataset	  (~100M	  ra1ngs,	  ~480K	  users	  ,	  

~18K	  movies)	  
–  Last	  ra1ngs/user	  withheld	  (set	  K)	  

!  Root	  mean	  squared	  error	  metric	  
op=mized	  to	  0.8567	  
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!  Merges	  neighborhood	  models	  with	  latent	  factor	  models	  
!  Latent	  factor	  models	  

–  good	  to	  capture	  weak	  signals	  in	  the	  overall	  data	  

!  Neighborhood	  models	  
–  good	  at	  detec1ng	  strong	  rela1onships	  between	  close	  items	  

!  Combina=on	  in	  one	  predic=on	  single	  func=on	  	  
–  Local	  search	  method	  such	  as	  stochas1c	  gradient	  descent	  to	  

determine	  parameters	  
–  Add	  penalty	  for	  high	  values	  to	  avoid	  over-‐fifng	  

 Factorization meets the neighborhood: a multifaceted 
collaborative  filtering model, Y. Koren, ACM SIGKDD 
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Summarizing recent methods 
• Recommendation is concerned with learning from noisy 

observations  (x, y), where 
             
       has to be determined such  that  
       is minimal. 

• A variety of different learning strategies have been applied 
trying to estimate f(x) 
•  Non parametric neighborhood models 
•  MF models, SVMs, Neural Networks, Bayesian Networks,… 
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Collaborative Filtering Issues 
• Pros:  

•  well-understood, works well in some domains, no knowledge engineering required 

• Cons: 
•  requires user community, sparsity problems, no integration of other knowledge 

sources, no explanation of results 

• What is the best CF method? 
•  In which situation and which domain? Inconsistent findings; always the same 

domains and data sets; differences between methods are often very small (1/100) 

• How to evaluate the prediction quality? 
•  MAE / RMSE: What does an MAE of 0.7 actually mean? 
•  Serendipity: Not yet fully understood 

• What about multi-dimensional ratings? 





Content-based recommendation 
• Collaborative filtering does NOT require any information 

about the items, 
•  However, it might be reasonable to exploit such information 
•  E.g. recommend fantasy novels to people who liked fantasy novels in the 

past 

• What do we need: 
•  Some information about the available items such as the genre ("content")  
•  Some sort of user profile describing what the user likes (the preferences) 

•  The task: 
•  Learn user preferences 
•  Locate/recommend items that are "similar" to the user preferences 



Paradigms of recommender systems 
Content-‐based:	  "Show	  me	  more	  of	  the	  
same	  what	  I've	  liked" 



What is the "content"? 
•  The genre is actually not part of the content of a book 
• Most CB-recommendation methods originate from 

Information Retrieval (IR) field: 
•  The item descriptions are usually automatically extracted 

(important words) 
•  Goal is to find and rank interesting text documents (news articles, 

web pages) 

• Here: 
•  Classical IR-based methods based on keywords 
•  No expert recommendation knowledge involved 
•  User profile (preferences) are rather learned than explicitly elicited 



Content representation and item similarities 

• Simple approach 
•  Compute the similarity of an unseen item with the user profile 

based on the keyword overlap (e.g. using the Dice coefficient) 
•  sim(bi, bj) = 2  ∗|𝑘𝑒𝑦𝑤𝑜𝑟𝑑𝑠(𝑏𝑖)∩𝑘𝑒𝑦𝑤𝑜𝑟𝑑𝑠(𝑏𝑗)|/|𝑘𝑒𝑦𝑤𝑜𝑟𝑑𝑠(𝑏𝑖)|+|
𝑘𝑒𝑦𝑤𝑜𝑟𝑑𝑠(𝑏𝑗)|       



Term-Frequency - Inverse Document 
Frequency (TF-IDF) 
• Simple keyword representation has its problems  

•  In particular when automatically extracted because 
•  Not every word has similar importance 
•  Longer documents have a higher chance to have an overlap with the user 

profile 

• Standard measure: TF-IDF 
•  Encodes text documents as weighted term vector 
•  TF: Measures, how often a term appears (density in a document) 

•  Assuming that important terms appear more often 
•  Normalization has to be done in order to take document length into account 

•  IDF: Aims to reduce the weight of terms that appear in all documents 



TF-IDF 
• Compute the overall importance of keywords 

•  Given a keyword i and a document j 
  TF-‐IDF  (i,j)  =  TF(i,j)  *  IDF(i)

•  Term frequency (TF) 
•  Let freq(i,j) number of occurrences of keyword i in document j 
•  Let maxOthers(i,j) denote the highest number of occurrences of 

another keyword of j 

•  Inverse Document Frequency (IDF) 
•  N: number of all recommendable documents 
•  n(i): number of documents in which keyword i appears 

 
 



Example TF-IDF representation 

Figure taken from http://informationretrieval.org 



Recommending items 
• Simple method: nearest neighbors 

•  Given a set of documents D already rated by the user (like/dislike) 
•  Find the n nearest neighbors of a not-yet-seen item i in D 
•  Take these ratings to predict a rating/vote for i 
•  (Variations: neighborhood size, lower/upper similarity thresholds) 

• Query-based retrieval: Rocchio's method 
•  The SMART System: Users are allowed to rate (relevant/irrelevant) 

retrieved documents (feedback) 
•  The system then learns a prototype of relevant/irrelevant 

documents 
•  Queries are then automatically extended with additional terms/

weight of relevant documents 



Limitations of content-based 
recommendation methods 
• Keywords alone may not be sufficient to judge 
quality/relevance of a document or web page 

•  Up-to-dateness, usability, aesthetics, writing style 
•  Content may also be limited / too short 
•  Content may not be automatically extractable (multimedia) 

• Ramp-up phase required 
•  Some training data is still required 
•  Web 2.0: Use other sources to learn the user preferences 

• Overspecialization 
•  Algorithms tend to propose "more of the same" 
•  E.g. too similar news items 





Monolithic hybridization design 
• Only a single recommendation component 

• Hybridization is "virtual" in the sense that 
•  Features/knowledge sources of different paradigms are combined  



Parallelized hybridization design 
• Output of several existing implementations combined 
•  Least invasive design 
• Weighting or voting scheme applied 

•  Weights can be learned dynamically 



Pipelined hybridization designs 
• One recommender system pre-processes some input for 

the subsequent one 
•  Cascade 
•  Meta-level 

• Refinement of recommendation lists (cascade) 
•  Learning of model (e.g. collaborative knowledge-based 

meta-level) 



TAGS/PREFS/
EXPLANATIONS 



Explanations in recommender systems 
Motivation 
 

•  “The digital camera Profishot is a must-buy for you because . . . .” 

•  Why should recommender systems deal with explanations at all? 

•  The answer is related to the two parties providing and receiving 
recommendations: 
•  A selling agent may be interested in promoting particular products 
•  A buying agent is concerned about making the right buying decision 



• Similarity between 
items 

• Similarity between 
users 

•  Tags 
•  Tag relevance (for item) 
•  Tag preference (of user) 

Tags
Inspiring, feel-good

Feel-good, drama

Crime drama, 90s

Prison movie

User 1

User 2

User 3

User 4

Users Tags Item

User-preferences Item-descriptor

Problem: Overhead for users to provide tags while 
rating items

Is there a way to predict tags? Yes!!

Tags are synonymous for user-preferences and item-descriptor

aspects

Tag-based Recommender Systems

User

e.g., Fiction, 
Comedy, Horror, 

Thriller

Items

Tags

uses

All users in
the system

user-item rating
matrix

user-user network

item-item network

Tag predictions 
for users/items

(collective 
classification)

User-user / item-item CF
OR

Factorization Machines

Top-N predicted items Predicted rating of an item

User

GI

GUrates

Rm1,Rm2, · · · ,Rmn

R11,R12, · · · ,R1n

Pre-condition:  
(i) preference tags 

for some users 
(ii) item descriptor 
tags for some items 

are available 
as training data 

Collaborative
Filtering Recommender

System (CF)

[Saha, Rangwala, Domeniconi. SDM 2015 (submitted)]



Neighborhood-based CF

User-based Item-basedEasy to add tags
in similarity computation

 Use cosine similarity/Pearson correlation coefficient to compute 
tag-based similarity

[Breese et al. UAI 1998] [Sarwar et al. WWW 2001]

Latent Factor Models for CF

E = argmin
U,V

X

hu,ii

(Ru,i � vi
Tuu)

2 + �(kvik2 + kuuk2)

Matrix Factorization
How to 

incorporate tags 
here?

Factorization Machines
• A user-item pair <u,i> in matrix factorization is 

represented as a feature vector:

• Adding user-tags and item-tags to feature:

• Can model interactions between pairwise 
variables

hu, ii ! x = (0, · · · , 1, · · · , 0| {z }
|U |

, 0, · · · , 1, · · · , 0| {z }
|I|

)
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, t̂u1, t̂u2, · · · , t̂u|P || {z }
attributes of user u

, t̂i1, t̂i2, · · · , t̂i|P || {z }
attributes of item i

)

(Rendle. In ACM Transactions on Intelligent Systems and Technology TIST 2012)
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Evaluation Metrics
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P
hu,ii | ˆRu,i �Ru,i|

n
where n = total number of ratings
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Other Directions 
•  Temporal ?  

• Contextual ?  
-  Time of the Day, Day of the Week 

- ACM RecSYS Competition on Click-Through Prediction. 

- Great Fun Projects! 


