
RECOMMENDER
SYSTEMS
CS 584: Recommender Systems
Fall 2016
Huzefa Rangwala, Ph.D.
http://www.cs.gmu.edu/~hrangwal

Slides Adapted/Borrowed from: Koren, Bell, Leskovec and
Dietmar Jannach

Outline
• What are Recommender Systems ?

• Collaborative Filtering vs Content Based

• Hybrid/Knowledge Based

• Advanced Topics

Recommender Systems
• Application areas

In the Social Web

We Know What You Ought
To Be Watching This
Summer

Value of Recommender Systems [WPS]
•  To the Customer ?

•  To the Provider ?

What information would you use to build
one ? [WPS]

Recommender systems
• RS seen as a function
• Given:

•  User model (e.g. ratings, preferences, demographics, situational
context)

•  Items (with or without description of item characteristics)
•  Find:

•  Relevance score. Used for ranking.

•  Finally:
•  Recommend items that are assumed to be relevant

• But:
•  Remember that relevance might be context-dependent
•  Characteristics of the list itself might be important (diversity)

Paradigms of recommender systems
Recommender	 systems	 reduce	
informa1on	 overload	 by	 es1ma1ng	
relevance	 	

Paradigms of recommender systems
Personalized	 recommenda1ons	

Paradigms of recommender systems
Collabora1ve:	 "Tell	 me	 what's	 popular	
among	 my	 peers"	

Paradigms of recommender systems
Content-‐based:	 "Show	 me	 more	 of	 the	
same	 what	 I've	 liked"

Paradigms of recommender systems
Knowledge-‐based:	 "Tell	 me	 what	 fits	
based	 on	 my	 needs"	

Paradigms of recommender systems
Hybrid:	 combina1ons	 of	 various	 inputs	
and/or	 composi1on	 of	 different	
mechanism	

Collaborative filtering
•  Recommend items based on past transactions of users
•  Analyze relations between users and/or items
•  Specific data characteristics are irrelevant

•  Domain-free: user/item attributes are not necessary
•  Can identify elusive aspects

Collaborative Filtering (CF)
•  The most prominent approach to generate

recommendations
•  used by large, commercial e-commerce sites
•  well-understood, various algorithms and variations exist
•  applicable in many domains (book, movies, DVDs, ..)

• Approach
•  use the "wisdom of the crowd" to recommend items

• Basic assumption and idea
•  Users give ratings to catalog items (implicitly or explicitly)
•  Customers who had similar tastes in the past, will have similar

tastes in the future

User-based nearest-neighbor
collaborative filtering (1)
•  The basic technique:

•  Given an "active user" (Alice) and an item I not yet seen by Alice
•  The goal is to estimate Alice's rating for this item, e.g., by

•  find a set of users (peers) who liked the same items as Alice in the past
and who have rated item I

•  use, e.g. the average of their ratings to predict, if Alice will like item I
•  do this for all items Alice has not seen and recommend the best-rated

Item1	 Item2	 Item3	 Item4	 Item5	

Alice	 5	 3	 4	 4	 ?	
User1	 3	 1	 2	 3	 3	

User2	 4	 3	 4	 3	 5	

User3	 3	 3	 1	 5	 4	

User4	 1	 5	 5	 2	 1	

User-based nearest-neighbor
collaborative filtering (2)
• Some first questions

•  How do we measure similarity?
•  How many neighbors should we consider?
•  How do we generate a prediction from the neighbors' ratings?

Item1	 Item2	 Item3	 Item4	 Item5	

Alice	 5	 3	 4	 4	 ?	
User1	 3	 1	 2	 3	 3	

User2	 4	 3	 4	 3	 5	

User3	 3	 3	 1	 5	 4	

User4	 1	 5	 5	 2	 1	

Measuring user similarity
• A popular similarity measure in user-based CF: Pearson

correlation

a, b : users
ra,p : rating of user a for item p
P : set of items, rated both by a and b
Possible similarity values between -1 and 1; = user's

average ratings

Item1	 Item2	 Item3	 Item4	 Item5	

Alice	 5	 3	 4	 4	 ?	
User1	 3	 1	 2	 3	 3	

User2	 4	 3	 4	 3	 5	

User3	 3	 3	 1	 5	 4	

User4	 1	 5	 5	 2	 1	

sim	 	 =	 0,85	
sim	 	 =	 0,70	
sim	 	 =	 -‐0,79	

Making predictions
• A common prediction function:

• Calculate, whether the neighbors' ratings for the unseen
item i are higher or lower than their average

• Combine the rating differences – use the similarity as a
weight

• Add/subtract the neighbors' bias from the active user's
average and use this as a prediction

Making recommendations
• Making predictions is typically not the ultimate goal
• Usual approach (in academia)

•  Rank items based on their predicted ratings

• However
•  This might lead to the inclusion of (only) niche items
•  In practice also: Take item popularity into account

• Approaches
•  "Learning to rank"

•  Optimize according to a given rank evaluation metric (see later)

Improving the metrics / prediction function
• Not all neighbor ratings might be equally "valuable"

•  Agreement on commonly liked items is not so informative as
agreement on controversial items

•  Possible solution: Give more weight to items that have a higher
variance

• Value of number of co-rated items
•  Use "significance weighting", by e.g., linearly reducing the weight

when the number of co-rated items is low

• Case amplification
•  Intuition: Give more weight to "very similar" neighbors, i.e., where

the similarity value is close to 1.

• Neighborhood selection
•  Use similarity threshold or fixed number of neighbors

Memory-based and model-based
approaches
• User-based CF is said to be "memory-based"

•  the rating matrix is directly used to find neighbors / make
predictions

•  does not scale for most real-world scenarios
•  large e-commerce sites have tens of millions of customers and

millions of items

• Model-based approaches
•  based on an offline pre-processing or "model-learning" phase
•  at run-time, only the learned model is used to make predictions
•  models are updated / re-trained periodically
•  large variety of techniques used
•  model-building and updating can be computationally expensive

Item-based collaborative filtering recommendation
algorithms, B. Sarwar et al., WWW 2001

• Scalability issues arise with U2U if many more users
than items
(m >> n , m = |users|, n = |items|)
•  e.g. Amazon.com
•  Space complexity O(m2) when pre-computed
•  Time complexity for computing Pearson O(m2n)

• High sparsity leads to few common ratings between
two users

• Basic idea: "Item-based CF exploits relationships
between items first, instead of relationships between
users"

Item-based collaborative filtering
• Basic idea:

•  Use the similarity between items (and not users) to make
predictions

• Example:
•  Look for items that are similar to Item5
•  Take Alice's ratings for these items to predict the rating for Item5

Item1	 Item2	 Item3	 Item4	 Item5	

Alice	 5	 3	 4	 4	 ?	
User1	 3	 1	 2	 3	 3	

User2	 4	 3	 4	 3	 5	

User3	 3	 3	 1	 5	 4	

User4	 1	 5	 5	 2	 1	

The cosine similarity measure
• Produces better results in item-to-item filtering

•  for some datasets, no consistent picture in literature

• Ratings are seen as vector in n-dimensional space
• Similarity is calculated based on the angle between the

vectors

• Adjusted cosine similarity
•  take average user ratings into account, transform the original

ratings
•  U: set of users who have rated both items a and b

Pre-processing for item-based filtering

•  Item-based filtering does not solve the scalability problem itself
• Pre-processing approach by Amazon.com (in 2003)

•  Calculate all pair-wise item similarities in advance
•  The neighborhood to be used at run-time is typically rather small,

because only items are taken into account which the user has rated
•  Item similarities are supposed to be more stable than user similarities

• Memory requirements
•  Up to N2 pair-wise similarities to be memorized (N = number of items) in

theory
•  In practice, this is significantly lower (items with no co-ratings)
•  Further reductions possible

•  Minimum threshold for co-ratings (items, which are rated at least by n users)
•  Limit the size of the neighborhood (might affect recommendation accuracy)

More on ratings
•  Pure CF-based systems only rely on the rating matrix
•  Explicit ratings

•  Most commonly used (1 to 5, 1 to 7 Likert response scales)
•  Research topics

•  "Optimal" granularity of scale; indication that 10-point scale is better accepted in
movie domain

•  Multidimensional ratings (multiple ratings per movie)
•  Challenge

•  Users not always willing to rate many items; sparse rating matrices
•  How to stimulate users to rate more items?

•  Implicit ratings
•  clicks, page views, time spent on some page, demo downloads …
•  Can be used in addition to explicit ones; question of correctness of

interpretation

Data sparsity problems
• Cold start problem

•  How to recommend new items? What to recommend to new users?

• Straightforward approaches
•  Ask/force users to rate a set of items
•  Use another method (e.g., content-based, demographic or simply

non-personalized) in the initial phase

• Alternatives
•  Use better algorithms (beyond nearest-neighbor approaches)
•  Example:

•  In nearest-neighbor approaches, the set of sufficiently similar neighbors
might be to small to make good predictions

•  Assume "transitivity" of neighborhoods

Model-based approaches
• Plethora of different techniques proposed in the last

years, e.g.,
•  Matrix factorization techniques, statistics

•  singular value decomposition, principal component analysis
•  Association rule mining

•  compare: shopping basket analysis
•  Probabilistic models

•  clustering models, Bayesian networks, probabilistic Latent Semantic
Analysis

•  Various other machine learning approaches

• Costs of pre-processing
•  Usually not discussed
•  Incremental updates possible?

Application of Dimensionality Reduction in
 Recommender System, B. Sarwar et al., WebKDD Workshop

• Basic idea: Trade more complex offline model
building for faster online prediction generation

• Singular Value Decomposition for dimensionality
reduction of rating matrices
•  Captures important factors/aspects and their weights in the data
•  factors can be genre, actors but also non-understandable ones
•  Assumption that k dimensions capture the signals and filter out noise (K =

20 to 100)

• Constant time to make recommendations
• Approach also popular in IR (Latent Semantic
Indexing), data compression, …

Geared
towards
females

Geared
towards
males

serious

escapist

The Princess
Diaries

The Lion King

Braveheart

Lethal
Weapon

Independence
Day

Amadeus The Color
Purple

Dumb and
Dumber

Ocean’s 11

Sense and
Sensibility

Gus

Dave

Latent factor models

Latent factor models

45531

312445

53432142

24542

522434

42331

item
s

.2 -.4 .1

.5 .6 -.5

.5 .3 -.2

.3 2.1 1.1

-2 2.1 -.7

.3 .7 -1

-.9 2.4 1.4 .3 -.4 .8 -.5 -2 .5 .3 -.2 1.1

1.3 -.1 1.2 -.7 2.9 1.4 -1 .3 1.4 .5 .7 -.8

.1 -.6 .7 .8 .4 -.3 .9 2.4 1.7 .6 -.4 2.1

~

~

item
s

users

users

A rank-3 SVD approximation

Matrix factorization

Vk
T	

Dim1	 -‐0.44	 -‐0.57	 0.06	 0.38	 0.57	

Dim2	 0.58	 -‐0.66	 0.26	 0.18	 -‐0.36	

Uk	 Dim1	 Dim2	

Alice	 0.47	 -‐0.30	

Bob	 	 -‐0.44	 0.23	

Mary	 0.70	 -‐0.06	

Sue	 0.31	 0.93	 Dim1	 Dim2	

Dim1	 5.63	 0	

Dim2	 0	 3.23	

T
kkkk VUM ×Σ×=

kΣ

•  SVD:	

•  Predic1on:	 	
	 	 =	 3	 +	 0.84	 =	 3.84	

)()(ˆ EPLVAliceUrr T
kkkuui ×Σ×+=

Factorization meets the neighborhood: a multifaceted
collaborative

 filtering model, Y. Koren, ACM SIGKDD

!  S=mulated	 by	 work	 on	 NeBlix	
compe==on	
–  Prize	 of	 $1,000,000	 for	 accuracy	 improvement	 of	

10%	 RMSE	 compared	 to	 own	 Cinematch	 system	
–  Very	 large	 dataset	 (~100M	 ra1ngs,	 ~480K	 users	 ,	

~18K	 movies)	
–  Last	 ra1ngs/user	 withheld	 (set	 K)	

!  Root	 mean	 squared	 error	 metric	
op=mized	 to	 0.8567	

K

rr
RMSE Kiu

uiui∑
∈

−

=),(

2)ˆ(

!  Merges	 neighborhood	 models	 with	 latent	 factor	 models	
!  Latent	 factor	 models	

–  good	 to	 capture	 weak	 signals	 in	 the	 overall	 data	

!  Neighborhood	 models	
–  good	 at	 detec1ng	 strong	 rela1onships	 between	 close	 items	

!  Combina=on	 in	 one	 predic=on	 single	 func=on	 	
–  Local	 search	 method	 such	 as	 stochas1c	 gradient	 descent	 to	

determine	 parameters	
–  Add	 penalty	 for	 high	 values	 to	 avoid	 over-‐fifng	

 Factorization meets the neighborhood: a multifaceted
collaborative filtering model, Y. Koren, ACM SIGKDD

∑
∈

++++−−−−
Kiu

iuiui
T
uiuuibqp

bbqpqpbbr
),(

22222

,,
)()(min

λµ

i
T
uiuui qpbbr +++= µˆ

Summarizing recent methods
• Recommendation is concerned with learning from noisy

observations (x, y), where

 has to be determined such that
 is minimal.

• A variety of different learning strategies have been applied
trying to estimate f(x)
•  Non parametric neighborhood models
•  MF models, SVMs, Neural Networks, Bayesian Networks,…

yxf ˆ)(=

∑ −
y

yy
ˆ

2)ˆ(

Collaborative Filtering Issues
• Pros:

•  well-understood, works well in some domains, no knowledge engineering required

• Cons:
•  requires user community, sparsity problems, no integration of other knowledge

sources, no explanation of results

• What is the best CF method?
•  In which situation and which domain? Inconsistent findings; always the same

domains and data sets; differences between methods are often very small (1/100)

• How to evaluate the prediction quality?
•  MAE / RMSE: What does an MAE of 0.7 actually mean?
•  Serendipity: Not yet fully understood

• What about multi-dimensional ratings?

Content-based recommendation
• Collaborative filtering does NOT require any information

about the items,
•  However, it might be reasonable to exploit such information
•  E.g. recommend fantasy novels to people who liked fantasy novels in the

past

• What do we need:
•  Some information about the available items such as the genre ("content")
•  Some sort of user profile describing what the user likes (the preferences)

•  The task:
•  Learn user preferences
•  Locate/recommend items that are "similar" to the user preferences

Paradigms of recommender systems
Content-‐based:	 "Show	 me	 more	 of	 the	
same	 what	 I've	 liked"

What is the "content"?
•  The genre is actually not part of the content of a book
• Most CB-recommendation methods originate from

Information Retrieval (IR) field:
•  The item descriptions are usually automatically extracted

(important words)
•  Goal is to find and rank interesting text documents (news articles,

web pages)

• Here:
•  Classical IR-based methods based on keywords
•  No expert recommendation knowledge involved
•  User profile (preferences) are rather learned than explicitly elicited

Content representation and item similarities

• Simple approach
•  Compute the similarity of an unseen item with the user profile

based on the keyword overlap (e.g. using the Dice coefficient)
•  sim(bi, bj) = 2 ∗|𝑘𝑒𝑦𝑤𝑜𝑟𝑑𝑠(𝑏𝑖)∩𝑘𝑒𝑦𝑤𝑜𝑟𝑑𝑠(𝑏𝑗)|/|𝑘𝑒𝑦𝑤𝑜𝑟𝑑𝑠(𝑏𝑖)|+|
𝑘𝑒𝑦𝑤𝑜𝑟𝑑𝑠(𝑏𝑗)| 

Term-Frequency - Inverse Document
Frequency (TF-IDF)
• Simple keyword representation has its problems

•  In particular when automatically extracted because
•  Not every word has similar importance
•  Longer documents have a higher chance to have an overlap with the user

profile

• Standard measure: TF-IDF
•  Encodes text documents as weighted term vector
•  TF: Measures, how often a term appears (density in a document)

•  Assuming that important terms appear more often
•  Normalization has to be done in order to take document length into account

•  IDF: Aims to reduce the weight of terms that appear in all documents

TF-IDF
• Compute the overall importance of keywords

•  Given a keyword i and a document j
 TF-‐IDF (i,j) = TF(i,j) * IDF(i)

•  Term frequency (TF)
•  Let freq(i,j) number of occurrences of keyword i in document j
•  Let maxOthers(i,j) denote the highest number of occurrences of

another keyword of j

•  Inverse Document Frequency (IDF)
•  N: number of all recommendable documents
•  n(i): number of documents in which keyword i appears

Example TF-IDF representation

Figure taken from http://informationretrieval.org

Recommending items
• Simple method: nearest neighbors

•  Given a set of documents D already rated by the user (like/dislike)
•  Find the n nearest neighbors of a not-yet-seen item i in D
•  Take these ratings to predict a rating/vote for i
•  (Variations: neighborhood size, lower/upper similarity thresholds)

• Query-based retrieval: Rocchio's method
•  The SMART System: Users are allowed to rate (relevant/irrelevant)

retrieved documents (feedback)
•  The system then learns a prototype of relevant/irrelevant

documents
•  Queries are then automatically extended with additional terms/

weight of relevant documents

Limitations of content-based
recommendation methods
• Keywords alone may not be sufficient to judge
quality/relevance of a document or web page

•  Up-to-dateness, usability, aesthetics, writing style
•  Content may also be limited / too short
•  Content may not be automatically extractable (multimedia)

• Ramp-up phase required
•  Some training data is still required
•  Web 2.0: Use other sources to learn the user preferences

• Overspecialization
•  Algorithms tend to propose "more of the same"
•  E.g. too similar news items

Monolithic hybridization design
• Only a single recommendation component

• Hybridization is "virtual" in the sense that
•  Features/knowledge sources of different paradigms are combined

Parallelized hybridization design
• Output of several existing implementations combined
•  Least invasive design
• Weighting or voting scheme applied

•  Weights can be learned dynamically

Pipelined hybridization designs
• One recommender system pre-processes some input for

the subsequent one
•  Cascade
•  Meta-level

• Refinement of recommendation lists (cascade)
•  Learning of model (e.g. collaborative knowledge-based

meta-level)

TAGS/PREFS/
EXPLANATIONS

Explanations in recommender systems
Motivation

•  “The digital camera Profishot is a must-buy for you because”

•  Why should recommender systems deal with explanations at all?

•  The answer is related to the two parties providing and receiving
recommendations:
•  A selling agent may be interested in promoting particular products
•  A buying agent is concerned about making the right buying decision

• Similarity between
items

• Similarity between
users

•  Tags
•  Tag relevance (for item)
•  Tag preference (of user)

Tags
Inspiring, feel-good

Feel-good, drama

Crime drama, 90s

Prison movie

User 1

User 2

User 3

User 4

Users Tags Item

User-preferences Item-descriptor

Problem: Overhead for users to provide tags while
rating items

Is there a way to predict tags? Yes!!

Tags are synonymous for user-preferences and item-descriptor

aspects

Tag-based Recommender Systems

User

e.g., Fiction,
Comedy, Horror,

Thriller

Items

Tags

uses

All users in
the system

user-item rating
matrix

user-user network

item-item network

Tag predictions
for users/items

(collective
classification)

User-user / item-item CF
OR

Factorization Machines

Top-N predicted items Predicted rating of an item

User

GI

GUrates

Rm1,Rm2, · · · ,Rmn

R11,R12, · · · ,R1n

Pre-condition:
(i) preference tags

for some users
(ii) item descriptor
tags for some items

are available
as training data

Collaborative
Filtering Recommender

System (CF)

[Saha, Rangwala, Domeniconi. SDM 2015 (submitted)]

Neighborhood-based CF

User-based Item-basedEasy to add tags
in similarity computation

 Use cosine similarity/Pearson correlation coefficient to compute
tag-based similarity

[Breese et al. UAI 1998] [Sarwar et al. WWW 2001]

Latent Factor Models for CF

E = argmin
U,V

X

hu,ii

(Ru,i � vi
Tuu)

2 + �(kvik2 + kuuk2)

Matrix Factorization
How to

incorporate tags
here?

Factorization Machines
• A user-item pair <u,i> in matrix factorization is

represented as a feature vector:

• Adding user-tags and item-tags to feature:

• Can model interactions between pairwise
variables

hu, ii ! x = (0, · · · , 1, · · · , 0| {z }
|U |

, 0, · · · , 1, · · · , 0| {z }
|I|

)

x = (0, · · · , 1, · · · , 0| {z }
|U |

, 0, · · · , 1, · · · , 0| {z }
|I|

, t̂u1, t̂u2, · · · , t̂u|P || {z }
attributes of user u

, t̂i1, t̂i2, · · · , t̂i|P || {z }
attributes of item i

)

(Rendle. In ACM Transactions on Intelligent Systems and Technology TIST 2012)

f(x) = w0 + wu + wi +

|P |X

s=1

t̂usws +

|P |X

s=1

t̂ushvi,vsi+
|P |X

s=1

|P |X

s0>s

t̂ust̂us0hvs,vs0i+

|P |X

q=1

|P |X

q0>q

t̂iq t̂iq0hvq,vq0i+
|P |X

q=1

t̂iqwq +

|P |X

q=1

t̂iqhvu,vqi+
FX

f=1

vufvif

Evaluation Metrics

Top-N hit-rate =

1

|U |
X

u2U

I(ˆIhu \ Ihu 6= ;)

MAE =

P
hu,ii | ˆRu,i �Ru,i|

n
where n = total number of ratings

RMSE =

vuut 1

n

X

hu,ii

(ˆRu,i �Ru,i)
2

Other Directions
•  Temporal ?

• Contextual ?
-  Time of the Day, Day of the Week

- ACM RecSYS Competition on Click-Through Prediction.

- Great Fun Projects!

