
Association Analysis
CS 584 Data Mining (Fall 2016)

Huzefa Rangwala
Associate Professor,
Computer Science
George Mason University
Email: rangwala@cs.gmu.edu
Website: www.cs.gmu.edu/~hrangwal

Slides are adapted from the available book slides developed by Tan, Steinbach and Kumar

Association Rule Mining

� Given a set of transactions, find rules that
will predict the occurrence of an item
based on the occurrences of other items
in the transaction

Market-Basket transactions

TID Items

1 Bread, Milk

2 Bread, Diaper, Beer, Eggs

3 Milk, Diaper, Beer, Coke
4 Bread, Milk, Diaper, Beer

5 Bread, Milk, Diaper, Coke

Example of Association Rules

{Diaper} → {Beer},
{Milk, Bread} → {Eggs,Coke},
{Beer, Bread} → {Milk},

Implication means co-occurrence,
not causality!

Definition: Frequent Itemset

�  Itemset
◦  A collection of one or more items

�  Example: {Milk, Bread, Diaper}

◦  k-itemset
�  An itemset that contains k items

�  Support count (σ)
◦  Frequency of occurrence of an itemset
◦  E.g. σ({Milk, Bread,Diaper}) = 2

�  Support
◦  Fraction of transactions that contain an

itemset

◦  E.g. s({Milk, Bread, Diaper}) = 2/5

�  Frequent Itemset
◦  An itemset whose support is greater than

or equal to a minsup threshold

TID Items

1 Bread, Milk

2 Bread, Diaper, Beer, Eggs

3 Milk, Diaper, Beer, Coke
4 Bread, Milk, Diaper, Beer

5 Bread, Milk, Diaper, Coke

Definition: Association Rule
TID Items

1 Bread, Milk

2 Bread, Diaper, Beer, Eggs

3 Milk, Diaper, Beer, Coke
4 Bread, Milk, Diaper, Beer

5 Bread, Milk, Diaper, Coke

Example:
Beer}Diaper,Milk{ ⇒

4.0
5
2

|T|
)BeerDiaper,,Milk(

===
σs

67.0
3
2

)Diaper,Milk(
)BeerDiaper,Milk,(

===
σ

σc

●  Association Rule
–  An implication expression of the form

X → Y, where X and Y are itemsets
–  Example:

 {Milk, Diaper} → {Beer}

●  Rule Evaluation Metrics
–  Support (s)

!  Fraction of transactions that contain
both X and Y

–  Confidence (c)
!  Measures how often items in Y

appear in transactions that
contain X

Association Rule Mining Task
�  Given a set of transactions T, the goal of

association rule mining is to find all rules having
◦  support ≥ minsup threshold
◦  confidence ≥ minconf threshold

�  Brute-force approach:
◦  List all possible association rules
◦  Compute the support and confidence for each rule
◦  Prune rules that fail the minsup and minconf

thresholds
⇒ Computationally prohibitive!

Mining Association Rules
TID Items

1 Bread, Milk

2 Bread, Diaper, Beer, Eggs

3 Milk, Diaper, Beer, Coke
4 Bread, Milk, Diaper, Beer

5 Bread, Milk, Diaper, Coke

Example of Rules:

{Milk,Diaper} → {Beer} (s=0.4, c=0.67)
{Milk,Beer} → {Diaper} (s=0.4, c=1.0)
{Diaper,Beer} → {Milk} (s=0.4, c=0.67)
{Beer} → {Milk,Diaper} (s=0.4, c=0.67)
{Diaper} → {Milk,Beer} (s=0.4, c=0.5)
{Milk} → {Diaper,Beer} (s=0.4, c=0.5)

Observations:
•  All the above rules are binary partitions of the same itemset:

 {Milk, Diaper, Beer}

•  Rules originating from the same itemset have identical support but
 can have different confidence

•  Thus, we may decouple the support and confidence requirements

Mining Association Rules
�  Two-step approach:

1.  Frequent Itemset Generation
–  Generate all itemsets whose support ≥ minsup

2.  Rule Generation
–  Generate high confidence rules from each

frequent itemset, where each rule is a binary
partitioning of a frequent itemset

�  Frequent itemset generation is still
computationally expensive

Frequent Itemset Generation
null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

Given d items, there
are 2d possible
candidate itemsets

Frequent Itemset Generation
�  Brute-force approach:
◦  Each itemset in the lattice is a candidate frequent itemset
◦  Count the support of each candidate by scanning the

database

◦ Match each transaction against every candidate
◦  Complexity ~ O(NMw) => Expensive since M = 2d !!!

TID Items
1 Bread, Milk
2 Bread, Diaper, Beer, Eggs
3 Milk, Diaper, Beer, Coke
4 Bread, Milk, Diaper, Beer
5 Bread, Milk, Diaper, Coke

N

Transactions List of
Candidates

M

w

Computational Complexity
� Given d unique items:
◦ Total number of itemsets = 2d

◦ Total number of possible association rules:

123 1

1

1 1

+−=

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠

⎞
⎜
⎝

⎛ −
×⎟
⎠

⎞
⎜
⎝

⎛
=

+

−

=

−

=
∑ ∑

dd

d

k

kd

j j
kd

k
d

R

If d=6, R = 602 rules

Frequent Itemset Generation Strategies

� Reduce the number of candidates (M)
◦ Complete search: M=2d

◦ Use pruning techniques to reduce M

� Reduce the number of transactions (N)
◦ Reduce size of N as the size of itemset increases
◦ Used by vertical-based mining algorithms

� Reduce the number of comparisons (NM)
◦ Use efficient data structures to store the candidates

or transactions
◦ No need to match every candidate against every

transaction

Reducing Number of Candidates
� Apriori principle:
◦  If an itemset is frequent, then all of its subsets must also

be frequent

� Apriori principle holds due to the following
property of the support measure:

◦  Support of an itemset never exceeds the support of its
subsets
◦  This is known as the anti-monotone property of support

)()()(:, YsXsYXYX ≥⇒⊆∀

Found to be
Infrequent

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

Illustrating Apriori Principle

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE
Pruned
supersets

Illustrating Apriori Principle
Item Count
Bread 4
Coke 2
Milk 4
Beer 3
Diaper 4
Eggs 1

Itemset Count
{Bread,Milk} 3
{Bread,Beer} 2
{Bread,Diaper} 3
{Milk,Beer} 2
{Milk,Diaper} 3
{Beer,Diaper} 3

Itemset Count
{Bread,Milk,Diaper} 3

Items (1-itemsets)

Pairs (2-itemsets)

(No need to generate
candidates involving Coke
or Eggs)

Triplets (3-itemsets) Minimum Support = 3

If every subset is considered,
 6C1 + 6C2 + 6C3 = 41

With support-based pruning,
 6 + 6 + 1 = 13

Apriori Algorithm
�  Method:

◦  Let k=1
◦  Generate frequent itemsets of length 1
◦  Repeat until no new frequent itemsets are identified

�  Generate length (k+1) candidate itemsets from length k
frequent itemsets

�  Prune candidate itemsets containing subsets of length k that
are infrequent

�  Count the support of each candidate by scanning the DB
�  Eliminate candidates that are infrequent, leaving only those

that are frequent

Rule Generation
�  Given a frequent itemset L, find all non-empty subsets f ⊂ L such

that f → L – f satisfies the minimum confidence requirement
◦  If {A,B,C,D} is a frequent itemset, candidate rules:
�  ABC →D, ABD →C, ACD →B, BCD
→A,
A →BCD, B →ACD, C →ABD, D
→ABC
AB →CD, AC → BD, AD → BC, BC
→AD,
BD →AC, CD →AB,

�  If |L| = k, then there are 2^k – 2 candidate
association rules (ignoring L → ∅ and ∅
→ L)

Rule Generation
� How to efficiently generate rules from

frequent itemsets?
◦  In general, confidence does not have an anti-

monotone property
 c(ABC →D) can be larger or smaller than c(AB
→D)

◦  But confidence of rules generated from the
same itemset has an anti-monotone property
◦  e.g., L = {A,B,C,D}:

 c(ABC → D) ≥ c(AB → CD) ≥ c(A
→ BCD)

�  Confidence is anti-monotone w.r.t. number of

items on the RHS of the rule

Theorem

�  If Rule X " Y – X does not satisfy the
confidence threshold then any rule X’ "
Y – X’ where X’ is a subset of X does
not satisfy the confidence threshold as
well.

Rule Generation for Apriori Algorithm
ABCD=>{ }

BCD=>A ACD=>B ABD=>C ABC=>D

BC=>ADBD=>ACCD=>AB AD=>BC AC=>BD AB=>CD

D=>ABC C=>ABD B=>ACD A=>BCD

Lattice of rules
ABCD=>{ }

BCD=>A ACD=>B ABD=>C ABC=>D

BC=>ADBD=>ACCD=>AB AD=>BC AC=>BD AB=>CD

D=>ABC C=>ABD B=>ACD A=>BCD
Pruned
Rules

Low
Confidence
Rule

Reducing Number of Comparisons
� Candidate counting:
◦  Scan the database of transactions to determine the

support of each candidate itemset
◦  To reduce the number of comparisons, store the

candidates in a hash structure
�  Instead of matching each transaction against every candidate,

match it against candidates contained in the hashed buckets

Subset Operation (Enumeration)

1 2 3 5 6

Transaction, t

2 3 5 61 3 5 62

5 61 33 5 61 2 61 5 5 62 3 62 5

5 63

1 2 3
1 2 5
1 2 6

1 3 5
1 3 6 1 5 6 2 3 5

2 3 6 2 5 6 3 5 6

Subsets of 3 items

Level 1

Level 2

Level 3

63 5

Given a transaction t, what
are the possible subsets of
size 3?

Generate Hash Tree

2 3 4
5 6 7

1 4 5 1 3 6

1 2 4
4 5 7 1 2 5

4 5 8
1 5 9

3 4 5 3 5 6
3 5 7
6 8 9

3 6 7
3 6 8

1,4,7
2,5,8

3,6,9
Hash function

Suppose you have 15 candidate itemsets of length 3:

{1 4 5}, {1 2 4}, {4 5 7}, {1 2 5}, {4 5 8}, {1 5 9}, {1 3 6}, {2 3 4}, {5 6 7}, {3 4 5},
{3 5 6}, {3 5 7}, {6 8 9}, {3 6 7}, {3 6 8}

You need:

•  Hash function

•  Max leaf size: max number of itemsets stored in a leaf node (if number of
candidate itemsets exceeds max leaf size, split the node)

Association Rule Discovery: Hash tree

1 5 9

1 4 5 1 3 6
3 4 5 3 6 7

3 6 8
3 5 6
3 5 7
6 8 9

2 3 4
5 6 7

1 2 4
4 5 7

1 2 5
4 5 8

1,4,7

2,5,8

3,6,9

Hash Function Candidate Hash Tree

Hash on
1, 4 or 7

Association Rule Discovery: Hash tree

1 5 9

1 4 5 1 3 6
3 4 5 3 6 7

3 6 8
3 5 6
3 5 7
6 8 9

2 3 4
5 6 7

1 2 4
4 5 7

1 2 5
4 5 8

1,4,7

2,5,8

3,6,9

Hash Function Candidate Hash Tree

Hash on
2, 5 or 8

Association Rule Discovery: Hash tree

1 5 9

1 4 5 1 3 6
3 4 5 3 6 7

3 6 8
3 5 6
3 5 7
6 8 9

2 3 4
5 6 7

1 2 4
4 5 7

1 2 5
4 5 8

1,4,7

2,5,8

3,6,9

Hash Function Candidate Hash Tree

Hash on
3, 6 or 9

Subset Operation Using Hash Tree

1 5 9

1 4 5 1 3 6
3 4 5 3 6 7

3 6 8
3 5 6
3 5 7
6 8 9

2 3 4
5 6 7

1 2 4
4 5 7

1 2 5
4 5 8

1 2 3 5 6

1 + 2 3 5 6 3 5 6 2 +

5 6 3 +

1,4,7

2,5,8

3,6,9

Hash Function transaction

Subset Operation Using Hash Tree

1 5 9

1 4 5 1 3 6
3 4 5 3 6 7

3 6 8
3 5 6
3 5 7
6 8 9

2 3 4
5 6 7

1 2 4
4 5 7

1 2 5
4 5 8

1,4,7

2,5,8

3,6,9

Hash Function 1 2 3 5 6

3 5 6 1 2 +

5 6 1 3 +

6 1 5 +

3 5 6 2 +

5 6 3 +

1 + 2 3 5 6

transaction

Subset Operation Using Hash Tree

1 5 9

1 4 5 1 3 6
3 4 5 3 6 7

3 6 8
3 5 6
3 5 7
6 8 9

2 3 4
5 6 7

1 2 4
4 5 7

1 2 5
4 5 8

1,4,7

2,5,8

3,6,9

Hash Function 1 2 3 5 6

3 5 6 1 2 +

5 6 1 3 +

6 1 5 +

3 5 6 2 +

5 6 3 +

1 + 2 3 5 6

transaction

Match transaction against 11 out of 15 candidates

Factors Affecting Complexity
�  Choice of minimum support threshold
◦  lowering support threshold results in more frequent itemsets
◦  this may increase number of candidates and max length of

frequent itemsets
�  Dimensionality (number of items) of the data set
◦  more space is needed to store support count of each item
◦  if number of frequent items also increases, both computation and

I/O costs may also increase
�  Size of database
◦  since Apriori makes multiple passes, run time of algorithm may

increase with number of transactions
�  Average transaction width
◦  transaction width increases with denser data sets
◦  This may increase max length of frequent itemsets and traversals

of hash tree (number of subsets in a transaction increases with its
width)

Compact Representation of Frequent Itemsets

TID A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
1 1 1 1 1 1 1 1 1 1 1 0
2 1 1 1 1 1 1 1 1 1 1 0
3 1 1 1 1 1 1 1 1 1 1 0
4 1 1 1 1 1 1 1 1 1 1 0
5 1 1 1 1 1 1 1 1 1 1 0
6 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
11 0 1 1 1 1 1 1 1 1 1 1
12 0 1 1 1 1 1 1 1 1 1 1
13 0 1 1 1 1 1 1 1 1 1 1
14 0 1 1 1 1 1 1 1 1 1 1
15 0 1 1 1 1 1 1 1 1 1 1

�  Some itemsets are redundant because they have identical
support as their supersets

�  Number of frequent itemsets

�  Need a compact representation

∑
=

⎟
⎠

⎞
⎜
⎝

⎛
×=

10

1

10
3

k k

Maximal Frequent Itemset
null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCD
E

Border
Infrequent
Itemsets

Maximal
Itemsets

An itemset is maximal frequent if none of its immediate supersets
is frequent

Closed Itemset

TID Items
1 {A,B}
2 {B,C,D}
3 {A,B,C,D}
4 {A,B,D}
5 {A,B,C,D}

�  An itemset is closed if none of its immediate supersets has the
same support as the itemset. Using the closed itemset
support, we can find the support for the non-closed itemsets.

 Itemset Support
{A} 4
{B} 5
{C} 3
{D} 4
{A,B} 4
{A,C} 2
{A,D} 3
{B,C} 3
{B,D} 4
{C,D} 3

Maximal vs Closed Itemsets
TID Items
1 ABC
2 ABCD
3 BCE
4 ACDE
5 DE

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

124 123 1234 245 345

12 124 24 4 123 2 3 24 34 45

12 2 24 4 4 2 3 4

2 4

Transaction Ids

Not supported by
any transactions

Maximal vs Closed Frequent Itemsets
null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

124 123 1234 245 345

12 124 24 4 123 2 3 24 34 45

12 2 24 4 4 2 3 4

2 4

Minimum support = 2

Closed = 9

Maximal = 4

Closed and
maximal

Closed but
not maximal

TID Items
1 ABC
2 ABCD
3 BCE
4 ACDE
5 DE

Determining support for non-closed
itemsets

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

124 123 1234 245 345

12 124 24 4 123 2 3 24 34 45

12 2 24 4 4 2 3 4

2 4

Minimum support = 2

Closed = 9

Maximal = 4

Closed and
maximal

Closed but
not maximal

TID Items
1 ABC
2 ABCD
3 BCE
4 ACDE
5 DE

Closed Frequent Itemset

� An itemset is closed frequent itemset if it
is closed and it support is greater than or
equal to “minsup”.

Maximal vs Closed Itemsets

Frequent
Itemsets

Closed
Frequent
Itemsets

Maximal
Frequent
Itemsets

Apriori Problems

� High I/O
� Poor performance for dense datasets

because of increasing width of
dimensions.

Alternative Methods for Frequent Itemset Generation

Frequent
itemset
border null

{a1,a2,...,an}

(a) General-to-specific

null

{a1,a2,...,an}

Frequent
itemset
border

(b) Specific-to-general

..

..
..
..

Frequent
itemset
border

null

{a1,a2,...,an}

(c) Bidirectional

..

..

� Traversal of Itemset Lattice
◦ General-to-specific vs Specific-to-general

Alternative Methods for Frequent Itemset Generation

null

AB AC AD BC BD CD

A B C D

ABC ABD ACD BCD

ABCD

null

AB AC ADBC BD CD

A B C D

ABC ABD ACD BCD

ABCD

(a) Prefix tree (b) Suffix tree

� Traversal of Itemset Lattice
◦  Equivalent Classes based on prefix or suffix
◦ Consider frequent itemsets from these classes.

Alternative Methods for Frequent Itemset Generation

(a) Breadth first (b) Depth first

� Traversal of Itemset Lattice
◦  Breadth-first vs Depth-first

Alternative Methods for Frequent Itemset Generation

TID Items
1 A,B,E
2 B,C,D
3 C,E
4 A,C,D
5 A,B,C,D
6 A,E
7 A,B
8 A,B,C
9 A,C,D
10 B

Horizontal
Data Layout

A B C D E
1 1 2 2 1
4 2 3 4 3
5 5 4 5 6
6 7 8 9
7 8 9
8 10
9

Vertical Data Layout

� Representation of Database
◦  horizontal vs vertical data layout

Effect of Support Distribution
�  How to set the appropriate minsup threshold?
◦  If minsup is set too high, we could miss itemsets

involving interesting rare items (e.g., expensive
products)

◦  If minsup is set too low, it is computationally

expensive and the number of itemsets is very large

�  Using a single minimum support threshold may not be
effective

Multiple Minimum Support
�  How to apply multiple minimum supports?
◦  MS(i): minimum support for item i
◦  e.g.: MS(Milk)=5%, MS(Coke) = 3%,

 MS(Broccoli)=0.1%, MS(Salmon)=0.5%
◦  MS({Milk, Broccoli}) = min (MS(Milk), MS(Broccoli))= 0.1%

◦  Challenge: Support is no longer anti-monotone
�  Suppose: Support(Milk, Coke) = 1.5% and

 Support(Milk, Coke, Broccoli) = 0.5%

�  {Milk,Coke} is infrequent but {Milk,Coke,Broccoli} is frequent

Multiple Minimum Support (Liu 1999)

� Order the items according to their minimum
support (in ascending order)
◦  e.g.: MS(Milk)=5%, MS(Coke) = 3%,

 MS(Broccoli)=0.1%, MS(Salmon)=0.5%
◦ Ordering: Broccoli, Salmon, Coke, Milk

� Need to modify Apriori such that:
◦  L1 : set of frequent items
◦  F1 : set of items whose support is ≥ MS(1)

 where MS(1) is mini(MS(i))
◦  C2 : candidate itemsets of size 2 is generated from

F1
 instead of L1

Multiple Minimum Support (Liu 1999)

� Modifications to Apriori:
◦  In traditional Apriori,
�  A candidate (k+1)-itemset is generated by merging two

 frequent itemsets of size k
�  The candidate is pruned if it contains any infrequent

subsets
 of size k

◦  Pruning step has to be modified:
�  Prune only if subset contains the first item
�  e.g.: Candidate={Broccoli, Coke, Milk} (ordered

according to minimum support)
�  {Broccoli, Coke} and {Broccoli, Milk} are frequent but

 {Coke, Milk} is infrequent
�  Candidate is not pruned because {Coke,Milk} does not contain

 the first item, i.e., Broccoli.

Statistical Independence
�  Population of 1000 students
◦  600 students know how to swim (S)
◦  700 students know how to bike (B)
◦  420 students know how to swim and bike (S,B)

◦  P(S∧B) = 420/1000 = 0.42
◦  P(S) × P(B) = 0.6 × 0.7 = 0.42

◦  P(S∧B) = P(S) × P(B) => Statistical independence
◦  P(S∧B) > P(S) × P(B) => Positively correlated
◦  P(S∧B) < P(S) × P(B) => Negatively correlated

There are lots of
measures proposed
in the literature

Some measures are
good for certain
applications, but not
for others

What criteria should
we use to determine
whether a measure
is good or bad?

What about Apriori-
style support based
pruning? How does
it affect these
measures?

Pattern Evaluation
� Association rule algorithms tend to produce

too many rules
◦ many of them are uninteresting or redundant
◦  Redundant if {A,B,C} → {D} and {A,B} → {D}

have same support & confidence

�  Interestingness measures can be used to
prune/rank the derived patterns

�  In the original formulation of association
rules, support & confidence are the only
measures used

