Association Analysis CS 584 Data Mining (Fall 2016) Huzefa Rangwala Associate Professor, **Computer Science** George Mason University Email: rangwala@cs.gmu.edu Website: www.cs.gmu.edu/~hrangwal

Slides are adapted from the available book slides developed by Tan, Steinbach and Kumar

Association Rule Mining
 Given a set of transactions, find rules that will predict the occurrence of an item
based on the occurrences of other items
in the transaction Example of Association Rules
Items

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

 ${Diaper} \rightarrow {Beer},$ ${Milk, Bread} \rightarrow {Eggs, Coke},$ ${Beer, Bread} \rightarrow {Milk},$

Implication means co-occurrence, not causality!

Market-Basket transactions

Definition: Frequent Itemset

Itemset

0

- A collection of one or more items
 - Example: {Milk, Bread, Diaper}
- k-itemset
 - An itemset that contains k items

Support count (σ)

- Frequency of occurrence of an itemset
 - E.g. $\sigma(\{Milk, Bread, Diaper\}) = 2$

Support

0

0

- Fraction of transactions that contain an itemset
 - E.g. s({Milk, Bread, Diaper}) = 2/5

Frequent Itemset

• An itemset whose support is greater than or equal to a *minsup* threshold

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Definition: Association Rule

- An implication expression of the form $X \rightarrow Y$, where X and Y are itemsets
- Example: {Milk, Diaper} → {Beer}

Rule Evaluation Metrics

- Support (s)
 - Fraction of transactions that contain both X and Y
- Confidence (c)
 - Measures how often items in Y appear in transactions that contain X

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example: {Milk, Diaper} \Rightarrow Beer $s = \frac{\sigma(\text{Milk}, \text{Diaper}, \text{Beer})}{|T|} = \frac{2}{5} = 0.4$ $c = \frac{\sigma(\text{Milk}, \text{Diaper}, \text{Beer})}{\sigma(\text{Milk}, \text{Diaper})} = \frac{2}{3} = 0.67$

Association Rule Mining Task

- Given a set of transactions T, the goal of association rule mining is to find all rules having
 - support \geq minsup threshold
 - confidence \geq *minconf* threshold
- Brute-force approach:
 - List all possible association rules
 - Compute the support and confidence for each rule
 - Prune rules that fail the *minsup* and *minconf* thresholds
 - \Rightarrow Computationally prohibitive!

Mining Association Rules

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example of Rules:

 $\{ Milk, Diaper \} \rightarrow \{ Beer \} (s=0.4, c=0.67) \\ \{ Milk, Beer \} \rightarrow \{ Diaper \} (s=0.4, c=1.0) \\ \{ Diaper, Beer \} \rightarrow \{ Milk \} (s=0.4, c=0.67) \\ \{ Beer \} \rightarrow \{ Milk, Diaper \} (s=0.4, c=0.67) \\ \{ Diaper \} \rightarrow \{ Milk, Beer \} (s=0.4, c=0.5) \\ \{ Milk \} \rightarrow \{ Diaper, Beer \} (s=0.4, c=0.5)$

Observations:

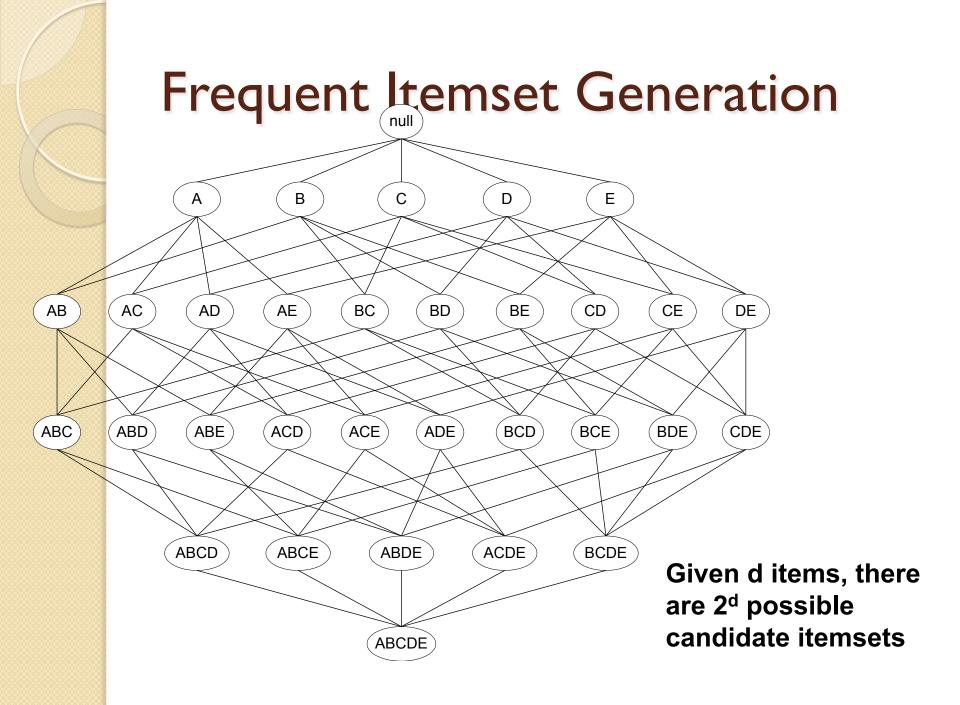
- All the above rules are binary partitions of the same itemset: {Milk, Diaper, Beer}
- Rules originating from the same itemset have identical support but can have different confidence
- Thus, we may decouple the support and confidence requirements

Mining Association Rules

- Two-step approach:
 - I. Frequent Itemset Generation
 - Generate all itemsets whose support \geq minsup

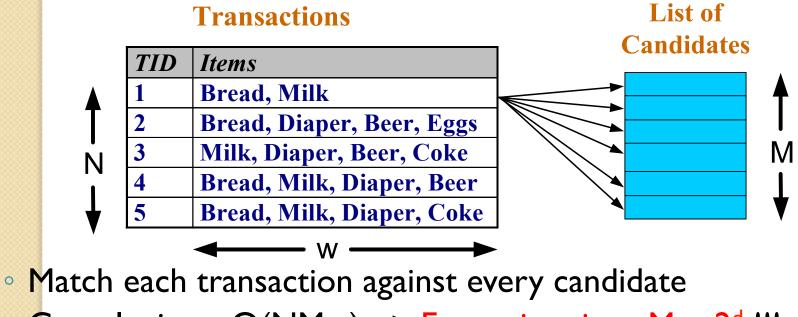
2. Rule Generation

- Generate high confidence rules from each frequent itemset, where each rule is a binary partitioning of a frequent itemset
- Frequent itemset generation is still computationally expensive



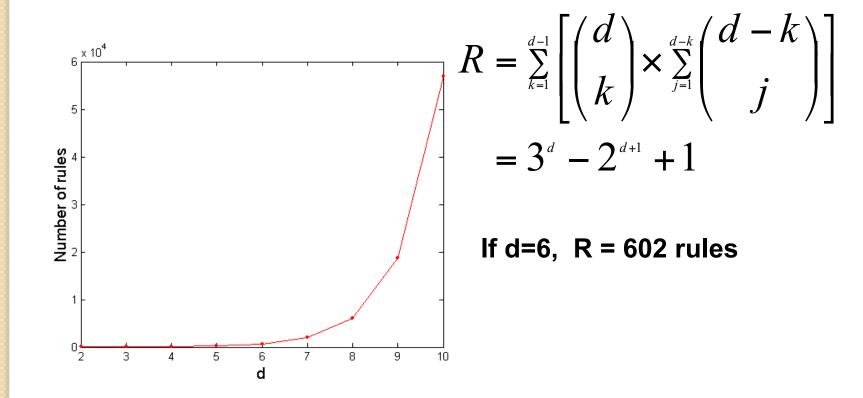
Frequent Itemset Generation Brute-force approach:

- Each itemset in the lattice is a candidate frequent itemset
- Count the support of each candidate by scanning the database



• Complexity ~ O(NMw) => Expensive since M = 2^d !!!

Computational Complexity Given d unique items: Total number of itemsets = 2^d Total number of possible association rules:



Frequent Itemset Generation Strategies

Reduce the number of candidates (M)
Complete search: M=2^d

- Use pruning techniques to reduce M
- Reduce the number of transactions (N)
 Reduce size of N as the size of itemset increases
- Used by vertical-based mining algorithms

Reduce the number of comparisons (NM)

- Use efficient data structures to store the candidates or transactions
- No need to match every candidate against every transaction

Reducing Number of Candidates Apriori principle:

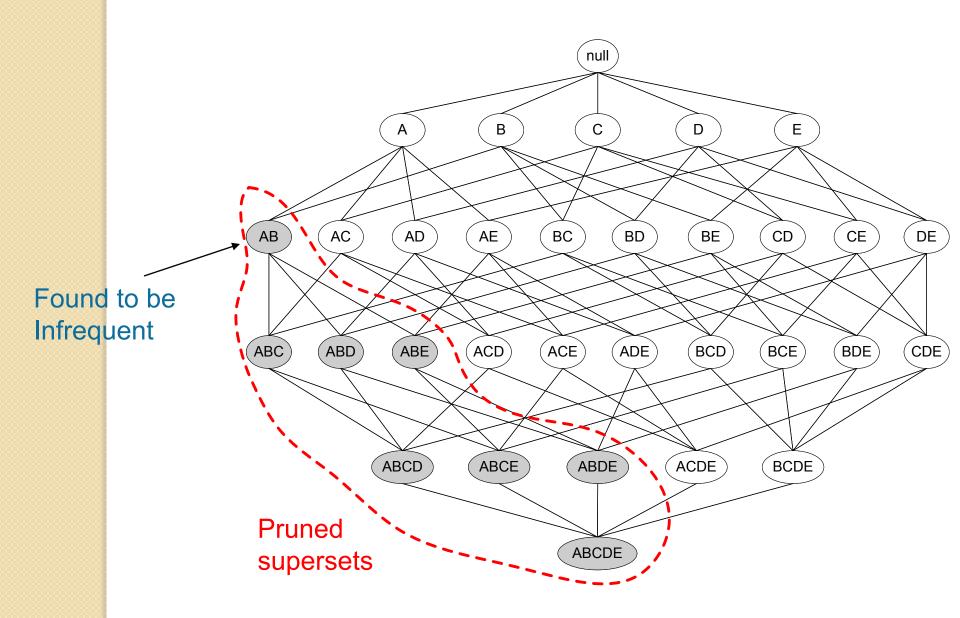
 If an itemset is frequent, then all of its subsets must also be frequent

 Apriori principle holds due to the following property of the support measure:

 $\forall X, Y : (X \subseteq Y) \Longrightarrow s(X) \ge s(Y)$

- Support of an itemset never exceeds the support of its subsets
- This is known as the anti-monotone property of support

Illustrating Apriori Principle



Illustrating Apriori Principle

Item	Count	Items (1	-itemsets)			
Bread	4					
Coke	2					
Milk	4		Itemset	Count	Pairs (2-item	isets)
Beer	3		{Bread,Milk}	3		
Diaper	4		{Bread,Beer}	2	(No need to	generate
Eggs	1		{Bread,Diaper}	3	`	nvolving Coke
			{Milk,Beer}	2	or Eggs)	5
		4	{Milk,Diaper}	3	- 33-7	
	_		{Beer,Diaper}	3		
Minimum	Support	= 3	_		Triple	ts (3-itemsets)
If every su	ubset is cor	nsidered,		Itemset		Count
10 F	$C_1 + {}^6C_2 +$	-		{Bread,M	ilk,Diaper}	3
With supp	ort-based μ 5 + 6 + 1 =	oruning,			·•••	

Apriori Algorithm

• Method:

- Let k=l
- Generate frequent itemsets of length I
- Repeat until no new frequent itemsets are identified
 - Generate length (k+1) candidate itemsets from length k frequent itemsets
 - Prune candidate itemsets containing subsets of length k that are infrequent
 - Count the support of each candidate by scanning the DB
 - Eliminate candidates that are infrequent, leaving only those that are frequent

Rule Generation

- Given a frequent itemset L, find all non-empty subsets $f \subset L$ such that $f \rightarrow L f$ satisfies the minimum confidence requirement
 - If {A,B,C,D} is a frequent itemset, candidate rules:

• ABC →D,	$ABD \rightarrow C$,	$ACD \rightarrow B$,	BCD
→A,			
A →BCD,	$B \rightarrow ACD$,	C →ABD,	D
→ABC			
AB →CD,	$AC \rightarrow BD$,	$AD \rightarrow BC$,	BC
→AD,			
$BD \to AC,$	$CD \rightarrow AB$,		

• If |L| = k, then there are $2^k - 2$ candidate association rules (ignoring $L \rightarrow \emptyset$ and $\emptyset \rightarrow L$)

Rule Generation

- How to efficiently generate rules from frequent itemsets?
 - In general, confidence does not have an antimonotone property

c(ABC \rightarrow D) can be larger or smaller than c(AB \rightarrow D)

But confidence of rules generated from the same itemset has an anti-monotone property
e.g., L = {A,B,C,D}:

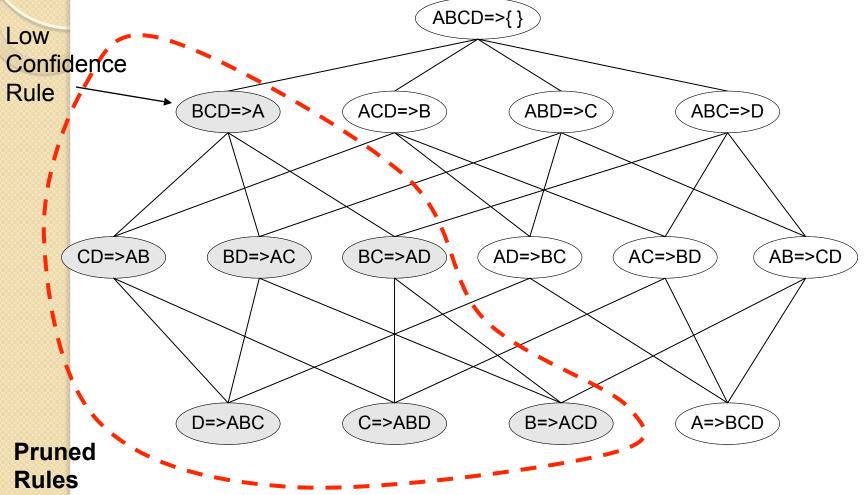
 $c(ABC \rightarrow D) \ge c(AB \rightarrow CD) \ge c(A \rightarrow BCD)$

Theorem

If Rule X → Y – X does not satisfy the confidence threshold then any rule X' → Y – X' where X' is a subset of X does not satisfy the confidence threshold as well.

Rule Generation for Apriori Algorithm

Lattice of rules



Reducing Number of Comparisons Candidate counting:

- Scan the database of transactions to determine the support of each candidate itemset
 - To reduce the number of comparisons, store the candidates in a hash structure

0

 Instead of matching each transaction against every candidate, match it against candidates contained in the hashed buckets

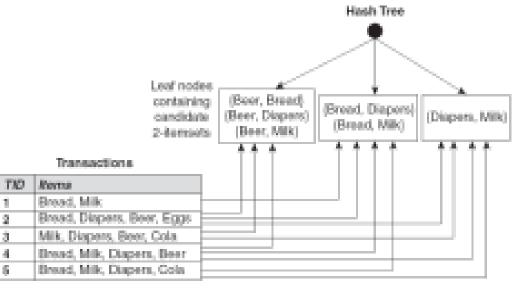
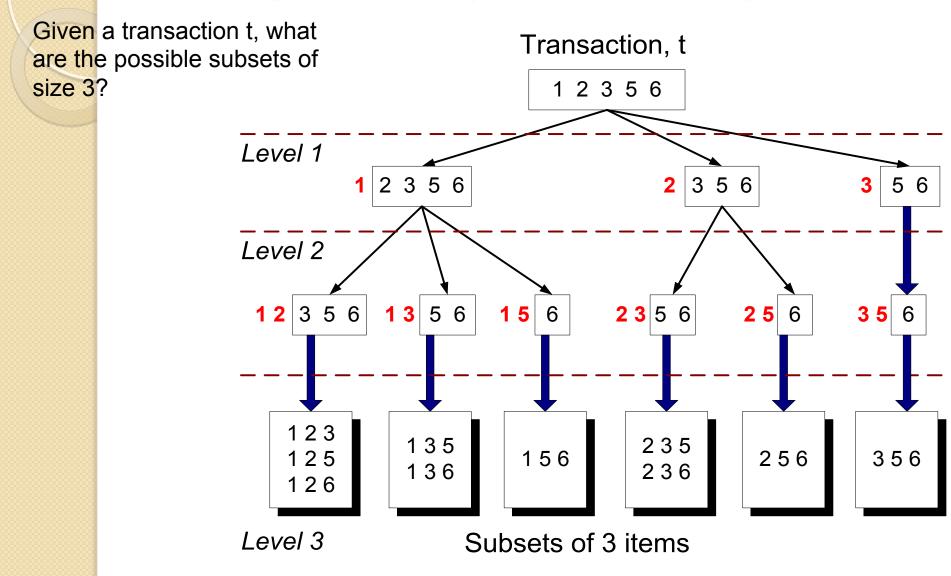


Figure 6.10. Counting the support of itemsets using hash structure.

Subset Operation (Enumeration)



Generate Hash Tree

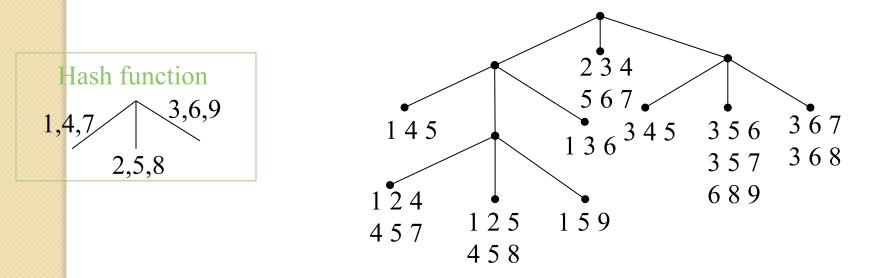
Suppose you have 15 candidate itemsets of length 3:

{1 4 5}, {1 2 4}, {4 5 7}, {1 2 5}, {4 5 8}, {1 5 9}, {1 3 6}, {2 3 4}, {5 6 7}, {3 4 5}, **{3 5** 6}, {3 5 7}, {6 8 9}, {3 6 7}, {3 6 8}

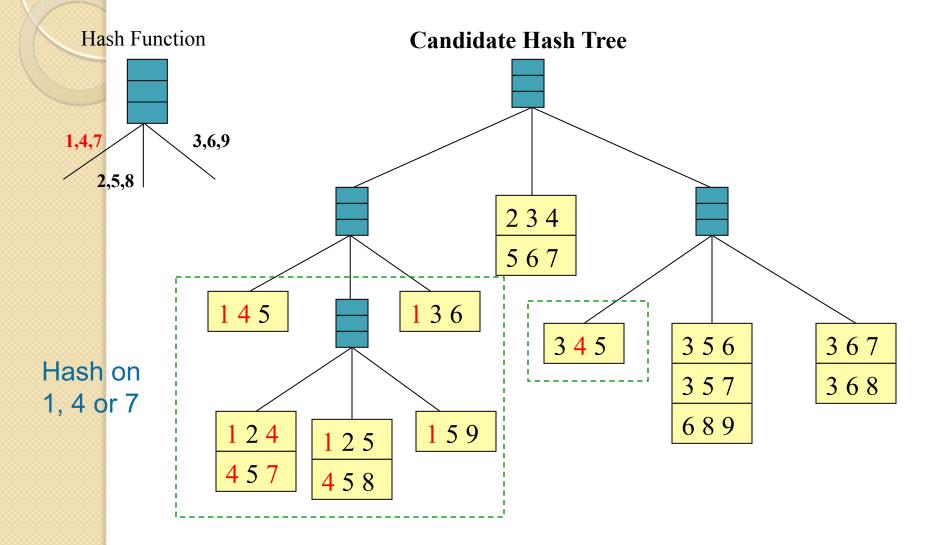
You need:

Hash function

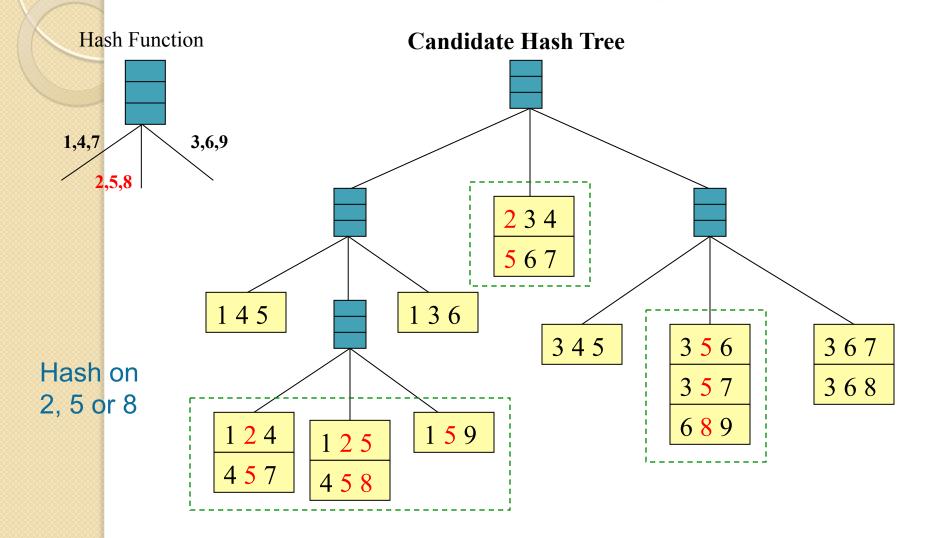
 Max leaf size: max number of itemsets stored in a leaf node (if number of candidate itemsets exceeds max leaf size, split the node)



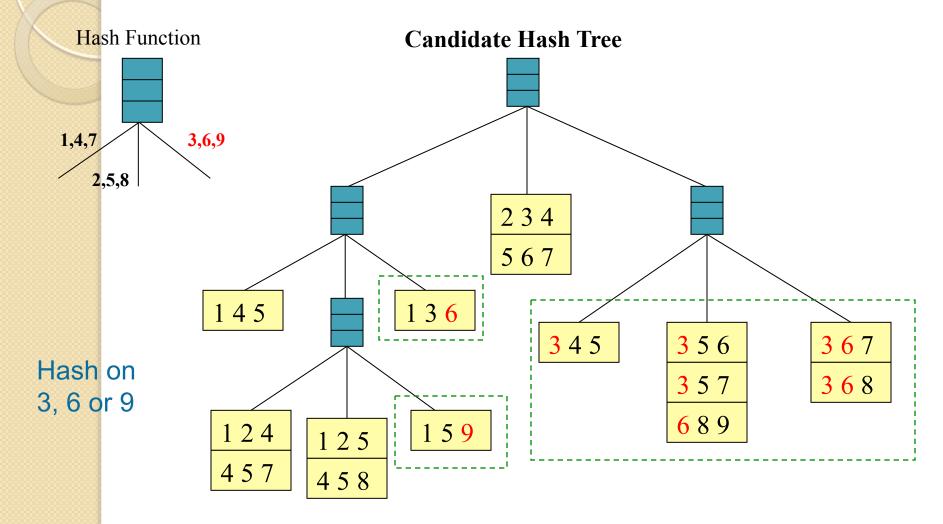
Association Rule Discovery: Hash tree



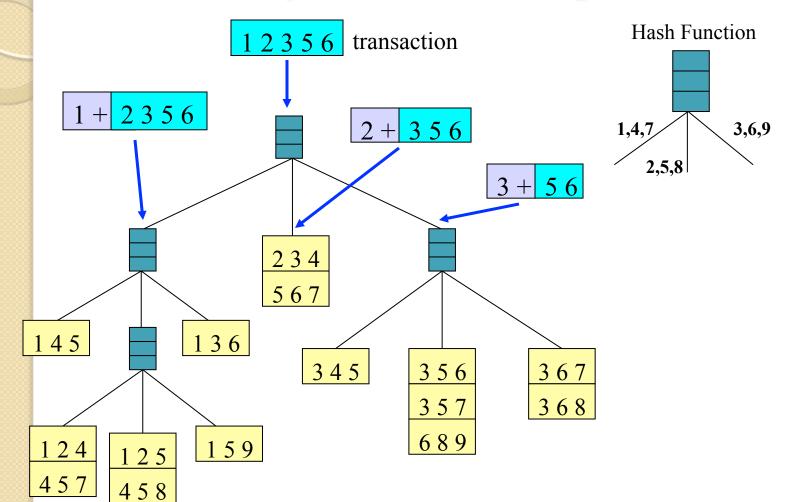
Association Rule Discovery: Hash tree

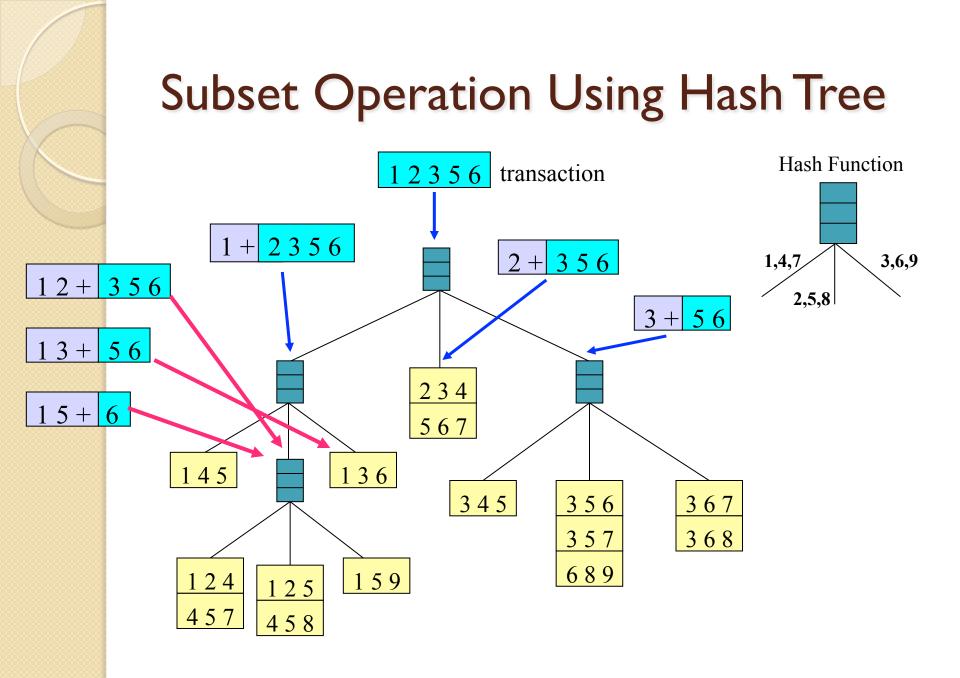


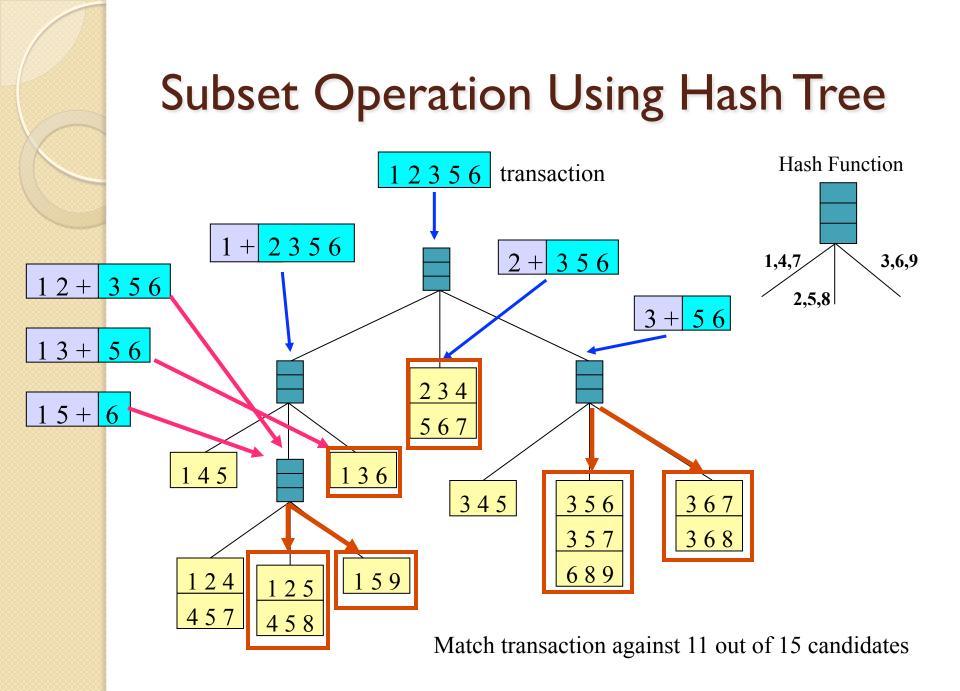
Association Rule Discovery: Hash tree



Subset Operation Using Hash Tree







Factors Affecting Complexity

- Choice of minimum support threshold
 - lowering support threshold results in more frequent itemsets
 - this may increase number of candidates and max length of frequent itemsets
- Dimensionality (number of items) of the data set
 - more space is needed to store support count of each item
 - if number of frequent items also increases, both computation and I/O costs may also increase

• Size of database

- since Apriori makes multiple passes, run time of algorithm may increase with number of transactions
- Average transaction width
 - transaction width increases with denser data sets
 - This may increase max length of frequent itemsets and traversals of hash tree (number of subsets in a transaction increases with its width)

Compact Representation of Frequent Itemsets

 Some itemsets are redundant because they have identical support as their supersets

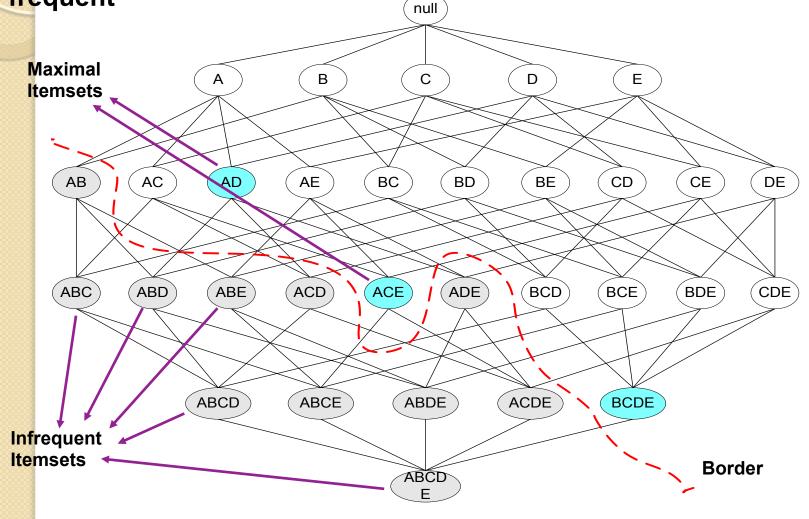
8	TID	A1	A2	A3	A4	A5	A6	A7	A 8	A9	A10	B1	B2	B 3	B4	B5	B6	B7	B 8	B9	B10	C1	C2	C3	C4	C5	C6	C7	C8	C9	C10
	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	3	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8	5	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8	6	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
	7	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
	8	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
8	9	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
8	10	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
	11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
	12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
8	13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
	14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
	15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1

- Number of frequent itemsets
- Need a compact representation

 $=3\times\sum_{k=1}^{10}\binom{10}{k}$

An itemset is maximal frequent if none of its immediate supersets

is frequent



Closed Itemset

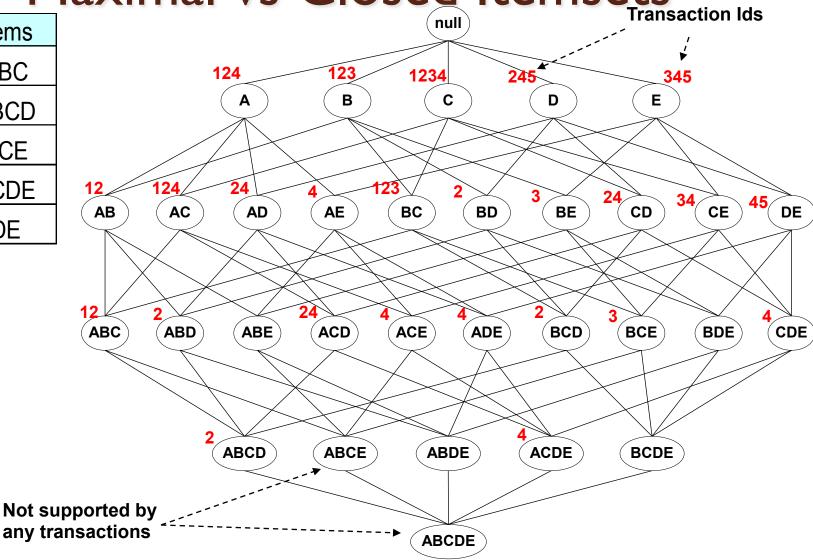
An itemset is closed if none of its immediate supersets has the same support as the itemset. Using the closed itemset support, we can find the support for the non-closed itemsets.

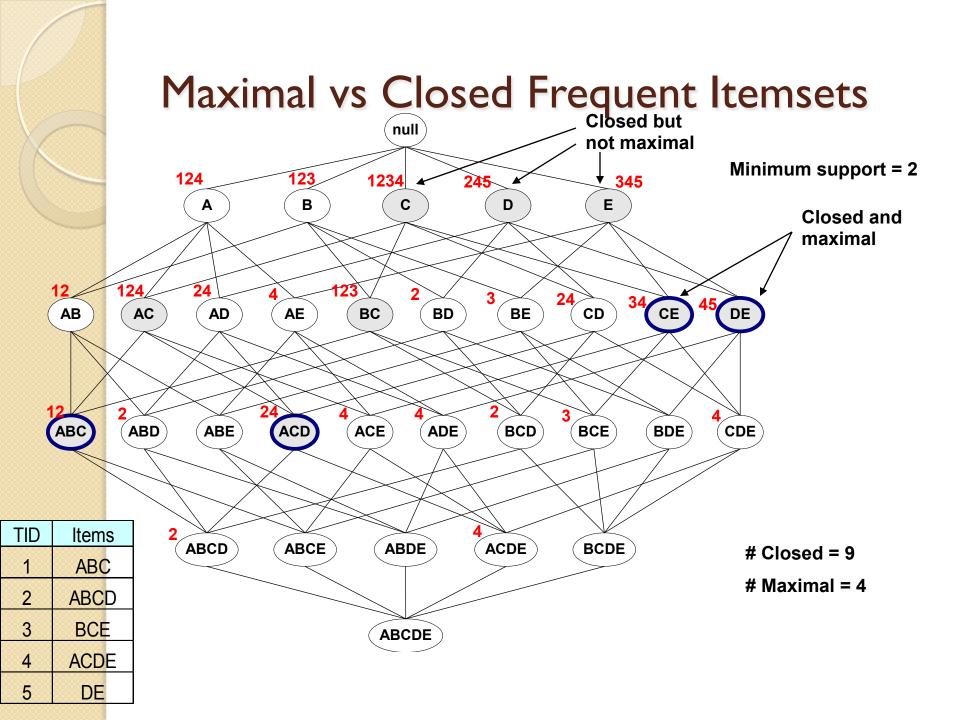
-	TID	Items
	1	{A,B}
	2	{B,C,D}
	3	{A,B,C,D}
	4	{A,B,D}
	5	{A,B,C,D}

•	
ltemset	Support
{A}	4
{B}	5
{C}	3
{D}	4
{A,B}	4
{A,C}	2
{A,D}	3
{B,C}	3
{B,D}	4
{C,D}	3

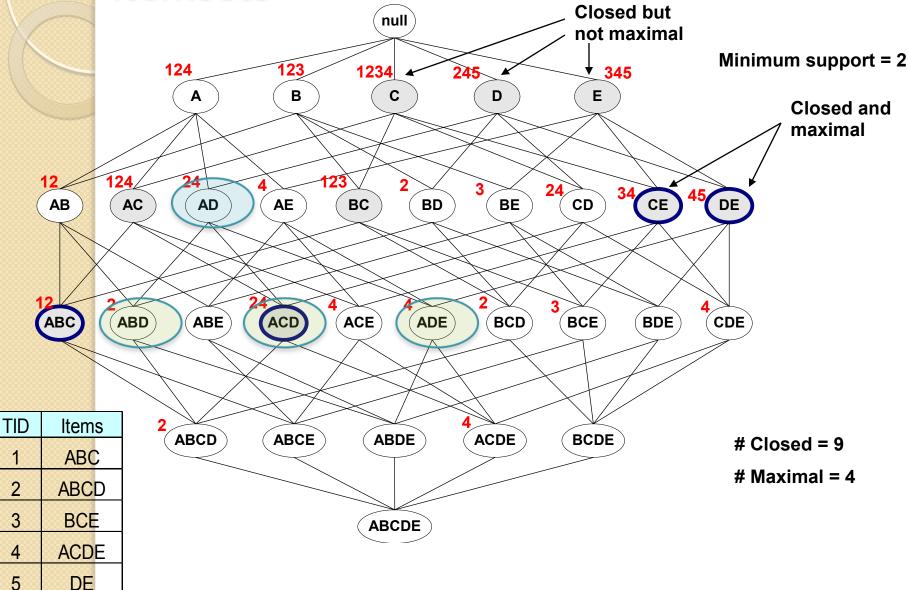
Itemset	Support
{A,B,C}	2
{A,B,D}	3
{A,C,D}	2
{B,C,D}	3
$\{A,B,C,D\}$	2

Maximal vs Closed Itemsets





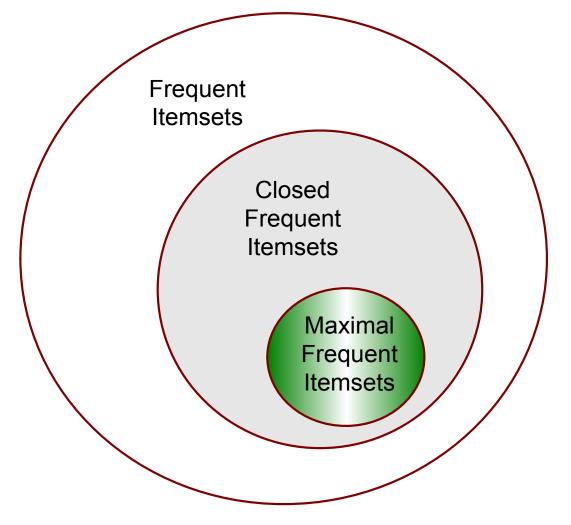
Determining support for non-closed itemsets



Closed Frequent Itemset

 An itemset is closed frequent itemset if it is closed and it support is greater than or equal to "minsup".

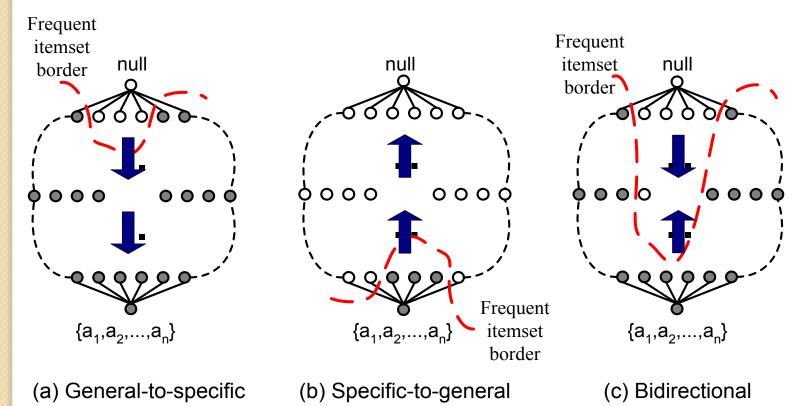
Maximal vs Closed Itemsets



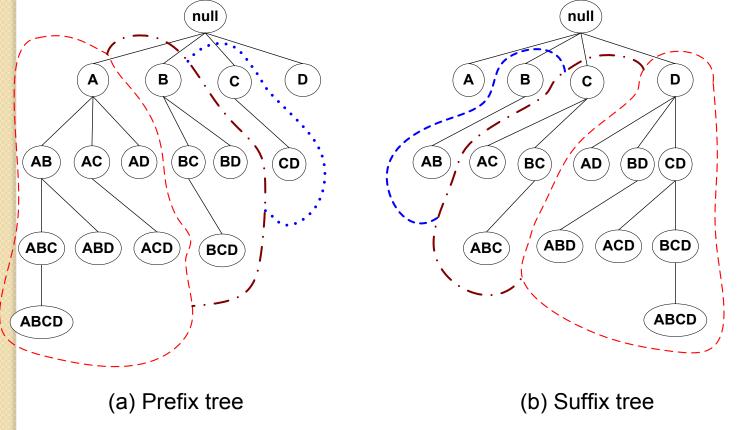
Apriori Problems

- High I/O
- Poor performance for dense datasets because of increasing width of dimensions.

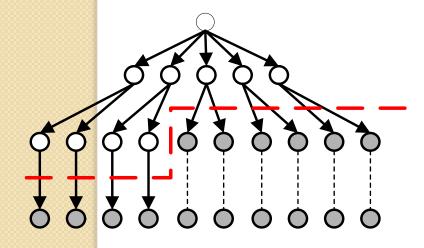
Traversal of Itemset Lattice • General-to-specific vs Specific-to-general



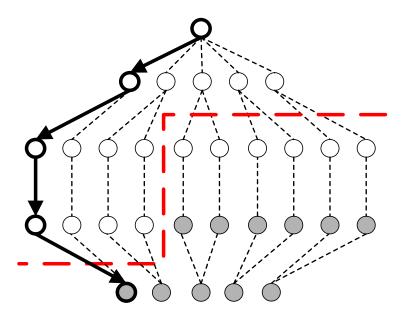
- Traversal of Itemset Lattice
 - Equivalent Classes based on prefix or suffix
 - Consider frequent itemsets from these classes.



Traversal of Itemset Lattice
 Breadth-first vs Depth-first



(a) Breadth first



(b) Depth first

Representation of Database

• horizontal vs vertical data layout

Horizontal Data Layout

TID	Items
1	A,B,E
2	B,C,D
3	C,E
4	A,C,D
5	A,B,C,D
6	A,E
7	A,B
8	A,B,C
9	A,C,D
10	В

Vertical Data Layout

Α	В	С	D	Ε
1	1	2	2	1
4	2	2 3 4 9	2 4 5 9	3 6
4 5 6 7	2 5 7	4	5	6
6	7	8	9	
7	8	9		
8 9	10			
9				

Effect of Support Distribution

- How to set the appropriate minsup threshold?
 - If minsup is set too high, we could miss itemsets involving interesting rare items (e.g., expensive products)
 - If minsup is set too low, it is computationally expensive and the number of itemsets is very large
- Using a single minimum support threshold may not be effective

Multiple Minimum Support

- How to apply multiple minimum supports?
 - MS(i): minimum support for item i
 - e.g.: MS(Milk)=5%, MS(Coke) = 3%, MS(Broccoli)=0.1%, MS(Salmon)=0.5%
 - MS({Milk, Broccoli}) = min (MS(Milk), MS(Broccoli)) = 0.1%
 - Challenge: Support is no longer anti-monotone
 - Suppose: Support(Milk, Coke) = 1.5% and Support(Milk, Coke, Broccoli) = 0.5%
 - {Milk,Coke} is infrequent but {Milk,Coke,Broccoli} is frequent

Multiple Minimum Support (Liu 1999)

- Order the items according to their minimum support (in ascending order)
 - e.g.: MS(Milk)=5%, MS(Coke) = 3%, MS(Broccoli)=0.1%, MS(Salmon)=0.5%
 - Ordering: Broccoli, Salmon, Coke, Milk
- Need to modify Apriori such that:
 - L_I : set of frequent items
 - $F_{I}^{'}$: set of items whose support is $\geq MS(I)$ where MS(I) is min_i(MS(i))
 - C₂: candidate itemsets of size 2 is generated from F₁
 instead of L₁

Multiple Minimum Support (Liu 1999)

- Modifications to Apriori:
 - In traditional Apriori,
 - A candidate (k+1)-itemset is generated by merging two frequent itemsets of size k
 - The candidate is pruned if it contains any infrequent subsets

of size k

- Pruning step has to be modified:
 - Prune only if subset contains the first item
 - e.g.: Candidate={Broccoli, Coke, Milk} (ordered according to minimum support)
 - {Broccoli, Coke} and {Broccoli, Milk} are frequent but {Coke, Milk} is infrequent
 - Candidate is not pruned because {Coke,Milk} does not contain the first item, i.e., Broccoli.

Statistical Independence

- Population of 1000 students
 - 600 students know how to swim (S)
 - 700 students know how to bike (B)
 - 420 students know how to swim and bike (S,B)

•
$$P(S \land B) = 420/1000 = 0.42$$

• $P(S) \times P(B) = 0.6 \times 0.7 = 0.42$

• $P(S \land B) = P(S) \times P(B) =>$ Statistical independence

- $P(S \land B) > P(S) \times P(B) =>$ Positively correlated
- $P(S \land B) < P(S) \times P(B) =>$ Negatively correlated

There are lots of measures proposed in the literature

Some measures are good for certain applications, but not for others

What criteria should we use to determine whether a measure is good or bad?

What about Aprioristyle support based pruning? How does it affect these measures?

#	Measure	Formula
1	ϕ -coefficient	$\frac{P(A,B)-P(A)P(B)}{\sqrt{P(A)P(B)(1-P(A))(1-P(B))}}$
2	Goodman-Kruskal's (λ)	$\frac{P(A,B)-P(A)P(B)}{\sqrt{P(A)P(B)(1-P(A))(1-P(B))}}$ $\frac{\sum_{j}\max_{k}P(A_{j},B_{k})+\sum_{k}\max_{j}P(A_{j},B_{k})-\max_{j}P(A_{j})-\max_{k}P(B_{k})}{2-\max_{j}P(A_{j})-\max_{k}P(B_{k})}$
3	Odds ratio (α)	$\frac{P(A,B)P(A,B)}{P(A,\overline{B})P(\overline{A},B)}$
4	Yule's Q	$\frac{P(\overline{A},\overline{B})P(\overline{AB}) - P(\overline{A},\overline{B})P(\overline{A},B)}{P(\overline{A},\overline{B})P(\overline{AB}) + P(\overline{A},\overline{B})P(\overline{A},B)} = \frac{\alpha - 1}{\alpha + 1}$
5	Yule's Y	$\frac{\sqrt{P(A,B)P(\overline{AB})} - \sqrt{P(A,\overline{B})P(\overline{A},B)}}{\sqrt{P(A,B)P(\overline{AB})} + \sqrt{P(A,\overline{B})P(\overline{A},B)}} = \frac{\sqrt{\alpha}-1}{\sqrt{\alpha}+1}$
6	Kappa (κ)	$\frac{P(A,B)+P(\overline{A},\overline{B})-P(A)P(B)-P(\overline{A})P(\overline{B})}{1-P(A)P(B)-P(\overline{A})P(\overline{B})}$ $\sum_{i}\sum_{j}P(A_{i},B_{j})\log\frac{P(A_{i},B_{j})}{P(A_{i})P(\overline{B}_{j})}$
7	Mutual Information (M)	$\frac{\sum_i \sum_j P(A_i, B_j) \log \frac{P(A_i, B_j)}{P(A_i)P(B_j)}}{\min(-\sum_i P(A_i) \log P(A_i), -\sum_j P(B_j) \log P(B_j))}$
8	J-Measure (J)	$\max\Big(\overline{P(A,B)}\log(\tfrac{P(B A)}{P(B)}) + P(A\overline{B})\log(\tfrac{P(\overline{B} A)}{P(\overline{B})}),$
		$P(A,B)\log(rac{P(A B)}{P(A)}) + P(\overline{A}B)\log(rac{P(\overline{A} B)}{P(\overline{A})}) \Big)$
9	Gini index (G)	$\max\left(P(A)[P(B A)^{2} + P(\overline{B} A)^{2}] + P(\overline{A})[P(B \overline{A})^{2} + P(\overline{B} \overline{A})^{2}]\right)$
		$-P(B)^{2}-P(\overline{B})^{2},$
		$P(B)[P(A B)^{2} + P(\overline{A} B)^{2}] + P(\overline{B})[P(A \overline{B})^{2} + P(\overline{A} \overline{B})^{2}]$
		$-P(A)^2 - P(\overline{A})^2 \Big)$
10	Support (s)	P(A,B)
11	Confidence (c)	$\max(P(B A), P(A B))$
12	Laplace (L)	$\max\left(\frac{NP(A,B)+1}{NP(A)+2},\frac{NP(A,B)+1}{NP(B)+2}\right)$
13	Conviction (V)	$\max\left(\frac{P(A)P(\overline{B})}{P(A\overline{B})},\frac{P(B)P(\overline{A})}{P(B\overline{A})}\right)$
14	Interest (I)	$\frac{P(A,B)}{P(A)P(B)}$
15	cosine (IS)	$\frac{\frac{P(A,B)}{P(A)P(B)}}{\frac{P(A,B)}{\sqrt{P(A)P(B)}}}$
16	$\operatorname{Piatetsky-Shapiro's}\left(PS ight)$	P(A,B) - P(A)P(B)
17	Certainty factor (F)	$\max\left(\frac{P(B A)-P(B)}{1-P(B)},\frac{P(A B)-P(A)}{1-P(A)}\right)$
18	Added Value (AV)	$\max(P(B A) - P(B), P(A B) - P(A))$
19	Collective strength (S)	$\frac{P(A,B)+P(\overline{AB})}{P(A)P(B)+P(\overline{A})P(\overline{B})} \times \frac{1-P(A)P(B)-P(\overline{A})P(\overline{B})}{1-P(A,B)-P(\overline{AB})}$
20	Jaccard (ζ)	$\frac{P(A,B)}{P(A)+P(B)-P(A,B)}$
21	Klosgen (K)	$\sqrt{P(A,B)}\max(P(B A)-P(B),P(A B)-P(A))$

Pattern Evaluation

- Association rule algorithms tend to produce too many rules
 - many of them are uninteresting or redundant
 - Redundant if {A,B,C} → {D} and {A,B} → {D} have same support & confidence
- Interestingness measures can be used to prune/rank the derived patterns
- In the original formulation of association rules, support & confidence are the only measures used