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Association Rule Mining 

� Given a set of transactions, find rules that 
will predict the occurrence of an item 
based on the occurrences of other items 
in the transaction 

Market-Basket transactions 

TID Items 

1 Bread, Milk 

2 Bread, Diaper, Beer, Eggs 

3 Milk, Diaper, Beer, Coke  
4 Bread, Milk, Diaper, Beer 

5 Bread, Milk, Diaper, Coke  
 

Example of Association Rules 

{Diaper} → {Beer}, 
{Milk, Bread} → {Eggs,Coke}, 
{Beer, Bread} → {Milk}, 

Implication means co-occurrence, 
not causality! 



Definition: Frequent Itemset 

�  Itemset 
◦  A collection of one or more items 

�  Example: {Milk, Bread, Diaper} 

◦  k-itemset 
�  An itemset that contains k items 

�  Support count (σ) 
◦  Frequency of occurrence of an itemset 
◦  E.g.   σ({Milk, Bread,Diaper}) = 2  

�  Support 
◦  Fraction of transactions that contain an 

itemset 

◦  E.g.   s({Milk, Bread, Diaper}) = 2/5 

�  Frequent Itemset 
◦  An itemset whose support is greater than 

or equal to a minsup threshold 

TID Items 

1 Bread, Milk 

2 Bread, Diaper, Beer, Eggs 

3 Milk, Diaper, Beer, Coke  
4 Bread, Milk, Diaper, Beer 

5 Bread, Milk, Diaper, Coke  
 



Definition: Association Rule 
TID Items 

1 Bread, Milk 

2 Bread, Diaper, Beer, Eggs 

3 Milk, Diaper, Beer, Coke  
4 Bread, Milk, Diaper, Beer 

5 Bread, Milk, Diaper, Coke  
 

Example: 
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●  Association Rule 
–  An implication expression of the form 

X → Y, where X and Y are itemsets 
–  Example: 

   {Milk, Diaper} → {Beer}  
 

●  Rule Evaluation Metrics 
–  Support (s) 

!  Fraction of transactions that contain 
both X and Y 

–  Confidence (c) 
!  Measures how often items in Y  

appear in transactions that 
contain X 



Association Rule Mining Task 
�  Given a set of transactions T, the goal of 

association rule mining is to find all rules having  
◦  support ≥ minsup threshold 
◦  confidence ≥ minconf threshold 

�  Brute-force approach: 
◦  List all possible association rules 
◦  Compute the support and confidence for each rule 
◦  Prune rules that fail the minsup and minconf 

thresholds 
⇒ Computationally prohibitive! 



Mining Association Rules 
TID Items 

1 Bread, Milk 

2 Bread, Diaper, Beer, Eggs 

3 Milk, Diaper, Beer, Coke  
4 Bread, Milk, Diaper, Beer 

5 Bread, Milk, Diaper, Coke  
 

Example of Rules: 
 

{Milk,Diaper} → {Beer} (s=0.4, c=0.67) 
{Milk,Beer} → {Diaper} (s=0.4, c=1.0) 
{Diaper,Beer} → {Milk} (s=0.4, c=0.67) 
{Beer} → {Milk,Diaper} (s=0.4, c=0.67)  
{Diaper} → {Milk,Beer} (s=0.4, c=0.5)  
{Milk} → {Diaper,Beer} (s=0.4, c=0.5) 

Observations: 
•  All the above rules are binary partitions of the same itemset:  

 {Milk, Diaper, Beer} 

•  Rules originating from the same itemset have identical support but 
  can have different confidence 

•  Thus, we may decouple the support and confidence requirements 



Mining Association Rules 
�  Two-step approach:  

1.  Frequent Itemset Generation 
–  Generate all itemsets whose support ≥ minsup 
 

2.  Rule Generation 
–  Generate high confidence rules from each 

frequent itemset, where each rule is a binary 
partitioning of a frequent itemset 

�  Frequent itemset generation is still 
computationally expensive 

 



Frequent Itemset Generation 
null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

Given d items, there 
are 2d possible 
candidate itemsets 



Frequent Itemset Generation 
�  Brute-force approach:  
◦  Each itemset in the lattice is a candidate frequent itemset 
◦  Count the support of each candidate by scanning the 

database 

◦ Match each transaction against every candidate 
◦  Complexity ~ O(NMw) => Expensive since M = 2d !!! 

TID Items 
1 Bread, Milk 
2 Bread, Diaper, Beer, Eggs 
3 Milk, Diaper, Beer, Coke 
4 Bread, Milk, Diaper, Beer 
5 Bread, Milk, Diaper, Coke 

 

N

Transactions List of
Candidates

M

w



Computational Complexity 
� Given d unique items: 
◦ Total number of itemsets = 2d 

◦ Total number of possible association rules:  

123 1

1

1 1

+−=

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠

⎞
⎜
⎝

⎛ −
×⎟
⎠

⎞
⎜
⎝

⎛
=

+

−

=

−

=
∑ ∑

dd

d

k

kd

j j
kd

k
d

R

If d=6,  R = 602 rules 



Frequent Itemset Generation Strategies 

� Reduce the number of candidates (M) 
◦ Complete search: M=2d 

◦ Use pruning techniques to reduce M 

� Reduce the number of transactions (N) 
◦ Reduce size of N as the size of itemset increases 
◦ Used by vertical-based mining algorithms 

� Reduce the number of comparisons (NM) 
◦ Use efficient data structures to store the candidates 

or transactions 
◦ No need to match every candidate against every 

transaction 



Reducing Number of Candidates 
� Apriori principle: 
◦  If an itemset is frequent, then all of its subsets must also 

be frequent 

� Apriori principle holds due to the following 
property of the support measure: 

◦  Support of an itemset never exceeds the support of its 
subsets 
◦  This is known as the anti-monotone property of support 

)()()(:, YsXsYXYX ≥⇒⊆∀



Found to be 
Infrequent 

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

Illustrating Apriori Principle 

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE
Pruned 
supersets 



Illustrating Apriori Principle 
Item Count
Bread 4
Coke 2
Milk 4
Beer 3
Diaper 4
Eggs 1

Itemset Count
{Bread,Milk} 3
{Bread,Beer} 2
{Bread,Diaper} 3
{Milk,Beer} 2
{Milk,Diaper} 3
{Beer,Diaper} 3

Itemset Count 
{Bread,Milk,Diaper} 3 
 

Items (1-itemsets) 

Pairs (2-itemsets) 
 
(No need to generate 
candidates involving Coke 
or Eggs) 

Triplets (3-itemsets) Minimum Support = 3 

If every subset is considered,  
 6C1 + 6C2 + 6C3 = 41 

With support-based pruning, 
 6 + 6 + 1 = 13 



Apriori Algorithm 
�  Method:  

 

◦  Let k=1 
◦  Generate frequent itemsets of length 1 
◦  Repeat until no new frequent itemsets are identified 

�  Generate length (k+1) candidate itemsets from length k 
frequent itemsets 

�  Prune candidate itemsets containing subsets of length k that 
are infrequent  

�  Count the support of each candidate by scanning the DB 
�  Eliminate candidates that are infrequent, leaving only those 

that are frequent 



Rule Generation 
�  Given a frequent itemset L, find all non-empty subsets f ⊂ L such 

that f → L – f satisfies the minimum confidence requirement 
◦  If {A,B,C,D} is a frequent itemset, candidate rules: 
�  ABC →D,  ABD →C,  ACD →B,  BCD 
→A,  
A →BCD,  B →ACD,  C →ABD,  D 
→ABC 
AB →CD,  AC → BD,  AD → BC,  BC 
→AD,  
BD →AC,  CD →AB,   
 

�  If |L| = k, then there are 2^k – 2 candidate 
association rules (ignoring L → ∅ and ∅ 
→ L) 



Rule Generation 
� How to efficiently generate rules from 

frequent itemsets? 
◦  In general, confidence does not have an anti-

monotone property 
 c(ABC →D) can be larger or smaller than c(AB 
→D) 

◦  But confidence of rules generated from the 
same itemset has an anti-monotone property 
◦  e.g., L = {A,B,C,D}: 

  
  c(ABC → D) ≥ c(AB → CD) ≥ c(A 
→ BCD) 
  
�   Confidence is anti-monotone w.r.t. number of 

items on the RHS of the rule 



Theorem 

�  If Rule X " Y – X does not satisfy the 
confidence threshold then any rule X’ " 
Y – X’ where X’ is a subset of X does 
not satisfy the confidence threshold as 
well. 



Rule Generation for Apriori Algorithm 
ABCD=>{ }

BCD=>A ACD=>B ABD=>C ABC=>D

BC=>ADBD=>ACCD=>AB AD=>BC AC=>BD AB=>CD

D=>ABC C=>ABD B=>ACD A=>BCD

Lattice of rules 
ABCD=>{ }

BCD=>A ACD=>B ABD=>C ABC=>D

BC=>ADBD=>ACCD=>AB AD=>BC AC=>BD AB=>CD

D=>ABC C=>ABD B=>ACD A=>BCD
Pruned 
Rules 

Low 
Confidence 
Rule 



Reducing Number of Comparisons 
� Candidate counting: 
◦  Scan the database of transactions to determine the 

support of each candidate itemset 
◦  To reduce the number of comparisons, store the 

candidates in a hash structure 
�   Instead of matching each transaction against every candidate, 

match it against candidates contained in the hashed buckets 



Subset Operation (Enumeration) 

1  2  3  5  6

Transaction, t

2  3  5  61 3  5  62

5  61 33  5  61 2 61 5 5  62 3 62 5

5  63

1 2 3
1 2 5
1 2 6

1 3 5
1 3 6 1 5 6 2 3 5

2 3 6 2 5 6 3 5 6

Subsets of 3 items

Level 1

Level 2

Level 3

63 5

Given a transaction t, what 
are the possible subsets of 
size 3? 



Generate Hash Tree 

2 3 4 
5 6 7 

1 4 5 1 3 6 

1 2 4 
4 5 7 1 2 5 

4 5 8 
1 5 9 

3 4 5 3 5 6 
3 5 7 
6 8 9 

3 6 7 
3 6 8 

1,4,7 
2,5,8 

3,6,9 
Hash function 

Suppose you have 15 candidate itemsets of length 3:  

{1 4 5}, {1 2 4}, {4 5 7}, {1 2 5}, {4 5 8}, {1 5 9}, {1 3 6}, {2 3 4}, {5 6 7}, {3 4 5}, 
{3 5 6}, {3 5 7}, {6 8 9}, {3 6 7}, {3 6 8} 

You need: 

•  Hash function  

•  Max leaf size: max number of itemsets stored in a leaf node (if number of 
candidate itemsets exceeds max leaf size, split the node) 



Association Rule Discovery: Hash tree 

1 5 9 

1 4 5 1 3 6 
3 4 5 3 6 7 

3 6 8 
3 5 6 
3 5 7 
6 8 9 

2 3 4 
5 6 7 

1 2 4 
4 5 7 

1 2 5 
4 5 8 

1,4,7 

2,5,8 

3,6,9 

Hash Function Candidate Hash Tree 

Hash on 
1, 4 or 7 



Association Rule Discovery: Hash tree 

1 5 9 

1 4 5 1 3 6 
3 4 5 3 6 7 

3 6 8 
3 5 6 
3 5 7 
6 8 9 

2 3 4 
5 6 7 

1 2 4 
4 5 7 

1 2 5 
4 5 8 

1,4,7 

2,5,8 

3,6,9 

Hash Function Candidate Hash Tree 

Hash on 
2, 5 or 8 



Association Rule Discovery: Hash tree 

1 5 9 

1 4 5 1 3 6 
3 4 5 3 6 7 

3 6 8 
3 5 6 
3 5 7 
6 8 9 

2 3 4 
5 6 7 

1 2 4 
4 5 7 

1 2 5 
4 5 8 

1,4,7 

2,5,8 

3,6,9 

Hash Function Candidate Hash Tree 

Hash on 
3, 6 or 9 



Subset Operation Using Hash Tree 

1 5 9 

1 4 5 1 3 6 
3 4 5 3 6 7 

3 6 8 
3 5 6 
3 5 7 
6 8 9 

2 3 4 
5 6 7 

1 2 4 
4 5 7 

1 2 5 
4 5 8 

1 2 3 5 6 

1 + 2 3 5 6 3 5 6 2 + 

5 6 3 + 

1,4,7 

2,5,8 

3,6,9 

Hash Function transaction 



Subset Operation Using Hash Tree 

1 5 9 

1 4 5 1 3 6 
3 4 5 3 6 7 

3 6 8 
3 5 6 
3 5 7 
6 8 9 

2 3 4 
5 6 7 

1 2 4 
4 5 7 

1 2 5 
4 5 8 

1,4,7 

2,5,8 

3,6,9 

Hash Function 1 2 3 5 6 

3 5 6 1 2 + 

5 6 1 3 + 

6 1 5 + 

3 5 6 2 + 

5 6 3 + 

1 + 2 3 5 6 

transaction 



Subset Operation Using Hash Tree 

1 5 9 

1 4 5 1 3 6 
3 4 5 3 6 7 

3 6 8 
3 5 6 
3 5 7 
6 8 9 

2 3 4 
5 6 7 

1 2 4 
4 5 7 

1 2 5 
4 5 8 

1,4,7 

2,5,8 

3,6,9 

Hash Function 1 2 3 5 6 

3 5 6 1 2 + 

5 6 1 3 + 

6 1 5 + 

3 5 6 2 + 

5 6 3 + 

1 + 2 3 5 6 

transaction 

Match transaction against 11 out of 15 candidates 



Factors Affecting Complexity 
�  Choice of minimum support threshold 
◦   lowering support threshold results in more frequent itemsets 
◦   this may increase number of candidates and max length of 

frequent itemsets 
�  Dimensionality (number of items) of the data set 
◦   more space is needed to store support count of each item 
◦   if number of frequent items also increases, both computation and 

I/O costs may also increase 
�  Size of database 
◦   since Apriori makes multiple passes, run time of algorithm may 

increase with number of transactions 
�  Average transaction width 
◦   transaction width increases with denser data sets 
◦  This may increase max length of frequent itemsets and traversals 

of hash tree (number of subsets in a transaction increases with its 
width) 



Compact Representation of Frequent Itemsets 

TID A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

�  Some itemsets are redundant because they have identical 
support as their supersets 

�  Number of frequent itemsets 

�  Need a compact representation 
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Maximal Frequent Itemset 
null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCD
E

Border 
Infrequent 
Itemsets 

Maximal 
Itemsets 

An itemset is maximal frequent if none of its immediate supersets 
is frequent 



Closed Itemset 

TID Items
1 {A,B}
2 {B,C,D}
3 {A,B,C,D}
4 {A,B,D}
5 {A,B,C,D}

�  An itemset is closed if none of its immediate supersets has the 
same support as the itemset. Using the closed itemset 
support, we can find the support for the non-closed itemsets. 

 Itemset Support
{A} 4
{B} 5
{C} 3
{D} 4
{A,B} 4
{A,C} 2
{A,D} 3
{B,C} 3
{B,D} 4
{C,D} 3



Maximal vs Closed Itemsets 
TID Items
1 ABC
2 ABCD
3 BCE
4 ACDE
5 DE

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

124 123 1234 245 345

12 124 24 4 123 2 3 24 34 45

12 2 24 4 4 2 3 4

2 4

Transaction Ids 

Not supported by 
any transactions 



Maximal vs Closed Frequent Itemsets 
null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

124 123 1234 245 345

12 124 24 4 123 2 3 24 34 45

12 2 24 4 4 2 3 4

2 4

Minimum support = 2 

# Closed = 9 

# Maximal = 4 

Closed and 
maximal 

Closed but 
not maximal 

TID Items
1 ABC
2 ABCD
3 BCE
4 ACDE
5 DE



Determining support for non-closed 
itemsets 

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

124 123 1234 245 345

12 124 24 4 123 2 3 24 34 45

12 2 24 4 4 2 3 4

2 4

Minimum support = 2 

# Closed = 9 

# Maximal = 4 

Closed and 
maximal 

Closed but 
not maximal 

TID Items
1 ABC
2 ABCD
3 BCE
4 ACDE
5 DE



Closed Frequent Itemset 

� An itemset is closed frequent itemset if it 
is closed and it support is greater than or 
equal to “minsup”. 



Maximal vs Closed Itemsets 

Frequent
Itemsets

Closed
Frequent
Itemsets

Maximal
Frequent
Itemsets



Apriori Problems 

� High I/O 
� Poor performance for dense datasets 

because of increasing width of 
dimensions. 



Alternative Methods for Frequent Itemset Generation 

Frequent
itemset
border null

{a1,a2,...,an}

(a) General-to-specific

null

{a1,a2,...,an}

Frequent
itemset
border

(b) Specific-to-general

..

..
..
..

Frequent
itemset
border

null

{a1,a2,...,an}

(c) Bidirectional

..

..

� Traversal of Itemset Lattice 
◦ General-to-specific vs Specific-to-general 



Alternative Methods for Frequent Itemset Generation 

null

AB AC AD BC BD CD

A B C D

ABC ABD ACD BCD

ABCD

null

AB AC ADBC BD CD

A B C D

ABC ABD ACD BCD

ABCD

(a) Prefix tree (b) Suffix tree

� Traversal of Itemset Lattice 
◦  Equivalent Classes based on prefix or suffix 
◦ Consider frequent itemsets from these classes. 



Alternative Methods for Frequent Itemset Generation 

(a) Breadth first (b) Depth first

� Traversal of Itemset Lattice 
◦  Breadth-first vs Depth-first 



Alternative Methods for Frequent Itemset Generation 

TID Items
1 A,B,E
2 B,C,D
3 C,E
4 A,C,D
5 A,B,C,D
6 A,E
7 A,B
8 A,B,C
9 A,C,D
10 B

Horizontal
Data Layout

A B C D E
1 1 2 2 1
4 2 3 4 3
5 5 4 5 6
6 7 8 9
7 8 9
8 10
9

Vertical Data Layout

� Representation of Database 
◦  horizontal vs vertical data layout 
 
 



Effect of Support Distribution 
�  How to set the appropriate minsup threshold? 
◦  If minsup is set too high, we could miss itemsets 

involving interesting rare items (e.g., expensive 
products) 

 
◦  If minsup is set too low, it is computationally 

expensive and the number of itemsets is very large 

�  Using a single minimum support threshold may not be 
effective 



Multiple Minimum Support 
�  How to apply multiple minimum supports? 
◦  MS(i): minimum support for item i  
◦  e.g.:     MS(Milk)=5%,        MS(Coke) = 3%, 

            MS(Broccoli)=0.1%,      MS(Salmon)=0.5% 
◦  MS({Milk, Broccoli}) = min (MS(Milk), MS(Broccoli) )= 0.1% 

◦  Challenge: Support is no longer anti-monotone 
�    Suppose:  Support(Milk, Coke) = 1.5% and 

  Support(Milk, Coke, Broccoli) = 0.5% 

�   {Milk,Coke} is infrequent but {Milk,Coke,Broccoli} is frequent 



Multiple Minimum Support (Liu 1999) 

� Order the items according to their minimum 
support (in ascending order) 
◦  e.g.:     MS(Milk)=5%,        MS(Coke) = 3%, 

            MS(Broccoli)=0.1%,     MS(Salmon)=0.5% 
◦ Ordering:  Broccoli, Salmon, Coke, Milk 

� Need to modify Apriori such that: 
◦  L1 : set of frequent items 
◦  F1 : set of items whose support is ≥ MS(1) 

  where MS(1) is mini( MS(i) ) 
◦  C2 : candidate itemsets of size 2 is generated from 

F1 
          instead of L1 



Multiple Minimum Support (Liu 1999) 

� Modifications to Apriori: 
◦  In traditional Apriori,  
�   A candidate (k+1)-itemset is generated by merging two 

   frequent itemsets of size k 
�   The candidate is pruned if it contains any infrequent 

subsets 
    of size k 

◦  Pruning step has to be modified: 
�   Prune only if subset contains the first item 
�   e.g.:  Candidate={Broccoli, Coke, Milk}   (ordered 

according to minimum support) 
�   {Broccoli, Coke} and {Broccoli, Milk} are frequent but  

    {Coke, Milk} is infrequent 
�   Candidate is not pruned because {Coke,Milk} does not contain 

 the first item, i.e., Broccoli. 



Statistical Independence 
�  Population of 1000 students 
◦  600 students know how to swim (S) 
◦  700 students know how to bike (B) 
◦  420 students know how to swim and bike (S,B) 

◦  P(S∧B) = 420/1000 = 0.42 
◦  P(S) × P(B) = 0.6 × 0.7 = 0.42 

◦  P(S∧B) = P(S) × P(B) => Statistical independence 
◦  P(S∧B) > P(S) × P(B) => Positively correlated 
◦  P(S∧B) < P(S) × P(B) => Negatively correlated 



There are lots of 
measures proposed 
in the literature 

 

Some measures are 
good for certain 
applications, but not 
for others 

 

What criteria should 
we use to determine 
whether a measure 
is good or bad? 

 

What about Apriori-
style support based 
pruning? How does 
it affect these 
measures? 



Pattern Evaluation 
� Association rule algorithms tend to produce 

too many rules  
◦ many of them are uninteresting or redundant 
◦  Redundant if {A,B,C} → {D} and {A,B} → {D}    

have same support & confidence 
 

�  Interestingness measures can be used to 
prune/rank the derived patterns 

�  In the original formulation of association 
rules, support & confidence are the only 
measures used 


